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THE DRAMATIC SUCCESS In machine learning has led to 
an explosion of artificial intelligence (AI) applications 
and increasing expectations for autonomous systems 
that exhibit human-level intelligence. These expectations 
have, however, met with fundamental obstacles that 
cut across many application areas. One such obstacle 
is adaptability, or robustness. Machine learning 
researchers have noted current systems lack the ability 
to recognize or react to new circumstances they have 
not been specifically programmed or trained for. 

Intensive theoretical and experimental 
efforts toward “transfer learning,” “do-
main adaptation,” and “lifelong learn-
ing”4 are reflective of this obstacle. 

Another obstacle is “explainability,” 
or that “machine learning models re-
main mostly black boxes”26 unable to 
explain the reasons behind their pre-
dictions or recommendations, thus 
eroding users’ trust and impeding di-
agnosis and repair; see Hutson8 and 
Marcus.11 A third obstacle concerns the 
lack of understanding of cause-effect 
connections. This hallmark of human 
cognition10,23 is, in my view, a neces-
sary (though not sufficient) ingredient 
for achieving human-level intelligence. 
This ingredient should allow computer 
systems to choreograph a parsimoni-
ous and modular representation of 
their environment, interrogate that rep-
resentation, distort it through acts of 
imagination, and finally answer “What 
if?” kinds of questions. Examples in-
clude interventional questions: “What 
if I make it happen?” and retrospective 
or explanatory questions: “What if I had 
acted differently?” or “What if my flight 
had not been late?” Such questions can-
not be articulated, let alone answered by 
systems that operate in purely statistical 
mode, as do most learning machines to-
day. In this article, I show that all three 
obstacles can be overcome using causal 
modeling tools, in particular, causal di-
agrams and their associated logic. Cen-
tral to the development of these tools 
are advances in graphical and structural 
models that have made counterfactuals 
computationally manageable and thus 
rendered causal reasoning a viable com-
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those taken in previous price-raising 
situations—unless we replicate pre-
cisely the market conditions that ex-
isted when the price reached double 
its current value. Finally, the top level 
invokes Counterfactuals, a mode of 
reasoning that goes back to the philos-
ophers David Hume and John Stuart 
Mill and that has been given comput-
er-friendly semantics in the past two 
decades.1,18 A typical question in the 
counterfactual category is: “What if I 
had acted differently?” thus necessi-
tating retrospective reasoning. 

I place Counterfactuals at the top 
of the hierarchy because they sub-
sume interventional and association-
al questions. If we have a model that 
can answer counterfactual queries, 
we can also answer questions about 
interventions and observations. For 
example, the interventional question: 
What will happen if we double the 
price? can be answered by asking the 
counterfactual question: What would 
happen had the price been twice its 
current value? Likewise, association-
al questions can be answered once 
we answer interventional questions; 
we simply ignore the action part and 
let observations take over. The trans-
lation does not work in the opposite 
direction. Interventional questions 
cannot be answered from purely ob-
servational information, from statis-
tical data alone. No counterfactual 
question involving retrospection can 
be answered from purely interven-
tional information, as with that ac-
quired from controlled experiments; 
we cannot re-run an experiment on 
human subjects who were treated 
with a drug and see how they might 
behave had they not been given the 
drug. The hierarchy is therefore di-
rectional, with the top level being the 
most powerful one. 

Counterfactuals are the building 
blocks of scientific thinking, as well 
as of legal and moral reasoning. For 
example, in civil court, a defendant is 
considered responsible for an injury 
if, but for the defendant’s action, it is 
more likely than not the injury would 
not have occurred. The computational 
meaning of “but for” calls for com-
paring the real world to an alternative 
world in which the defendant’s action 
did not take place. 

Each layer in the hierarchy has a 

syntactic signature that characterizes 
the sentences admitted into that layer. 
For example, the Association layer is 
characterized by conditional prob-
ability sentences, as in P(y|x) = p, stating 
that: The probability of event Y = y, given 
that we observed event X = x is equal to 
p. In large systems, such evidentiary 
sentences can be computed efficiently 
through Bayesian networks or any num-
ber of machine learning techniques. 

At the Intervention layer, we deal 
with sentences of the type P(y|do(x), z) 
that denote “The probability of event Y 
= y, given that we intervene and set the 
value of X to x and subsequently observe 
event Z = z. Such expressions can be es-
timated experimentally from random-
ized trials or analytically using causal 
Bayesian networks.18 A child learns the 
effects of interventions through playful 
manipulation of the environment (usu-
ally in a deterministic playground), 
and AI planners obtain interventional 
knowledge by exercising admissible 
sets of actions. Interventional expres-
sions cannot be inferred from passive 
observations alone, regardless of how 
big the data. 

Finally, at the Counterfactual level, 
we deal with expressions of the type 
P(yx |x′,y′) that stand for “The probabil-
ity that event Y = y would be observed 
had X been x, given that we actually 
observed X to be x′ and Y to be y′.” For 
example, the probability that Joe’s sal-
ary would be y had he finished college, 
given that his actual salary is y′ and that 
he had only two years of college.” Such 
sentences can be computed only when 
the model is based on functional rela-
tions or structural.18 

This three-level hierarchy, and the 
formal restrictions it entails, explains 
why machine learning systems, based 
only on associations, are prevented 
from reasoning about (novel) actions, 
experiments, and causal explanations.b 

b	 One could be tempted to argue that deep 
learning is not merely “curve fitting” because 
it attempts to minimize “overfit,” through, say, 
sample-splitting cross-validation, as opposed 
to maximizing “fit.” Unfortunately, the theo-
retical barriers that separate the three layers in 
the hierarchy tell us the nature of our objective 
function does not matter. As long as our sys-
tem optimizes some property of the observed 
data, however noble or sophisticated, while 
making no reference to the world outside the 
data, we are back to level-1 of the hierarchy, 
with all the limitations this level entails.

ponent in support of strong AI. 
In the next section, I describe a 

three-level hierarchy that restricts and 
governs inferences in causal reason-
ing. The final section summarizes how 
traditional impediments are circum-
vented through modern tools of causal 
inference. In particular, I present seven 
tasks that are beyond the reach of “as-
sociational” learning systems and have 
been (and can be) accomplished only 
through the tools of causal modeling. 

The Three-Level Causal Hierarchy 
A useful insight brought to light 
through the theory of causal models is 
the classification of causal information 
in terms of the kind of questions each 
class is capable of answering. The clas-
sification forms a three-level hierarchy 
in the sense that questions at level i (i = 
1, 2, 3) can be answered only if informa-
tion from level j (j > i) is available. 

Figure 1 outlines the three-level hi-
erarchy, together with the characteris-
tic questions that can be answered at 
each level. I call the levels 1. Associa-
tion, 2. Intervention, and 3. Counter-
factual, to match their usage. I call the 
first level Association because it in-
vokes purely statistical relationships, 
defined by the naked data.a For in-
stance, observing a customer who buys 
toothpaste makes it more likely that 
this customer will also buy floss; such 
associations can be inferred directly 
from the observed data using standard 
conditional probabilities and condi-
tional expectation.15 Questions at this 
layer, because they require no causal 
information, are placed at the bottom 
level in the hierarchy. Answering them 
is the hallmark of current machine 
learning methods.4 The second level, 
Intervention, ranks higher than Asso-
ciation because it involves not just see-
ing what is but changing what we see. 
A typical question at this level would 
be: What will happen if we double the 
price? Such a question cannot be an-
swered from sales data alone, as it in-
volves a change in customers’ choices 
in reaction to the new pricing. These 
choices may differ substantially from 

a	 Other terms used in connection with this 
layer include  “model-free,” “model-blind,” 
“black-box,” and “data-centric”; Darwiche5 
used “function-fitting,” as it amounts to fit-
ting data by a complex function defined by a 
neural network architecture.
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These impediments have changed 
dramatically in the past three de-
cades; for example, a mathemati-
cal language has been developed for 
managing causes and effects, ac-
companied by a set of tools that turn 
causal analysis into a mathematical 
game, like solving algebraic equa-
tions or finding proofs in high-school 
geometry. These tools permit scien-
tists to express causal questions for-
mally, codify their existing knowledge 
in both diagrammatic and algebraic 
forms, and then leverage data to esti-
mate the answers. Moreover, the the-
ory warns them when the state of ex-
isting knowledge or the available data 
is insufficient to answer their ques-
tions and then suggests additional 
sources of knowledge or data to make 
the questions answerable. 

The development of the tools has 
had a transformative impact on all da-
ta-intensive sciences, especially social 
science and epidemiology, in which 
causal diagrams have become a second 
language.14,34 In these disciplines, caus-
al diagrams have helped scientists ex-
tract causal relations from associations 
and deconstruct paradoxes that have 
baffled researchers for decades.23,25 

I call the mathematical framework 
that led to this transformation “struc-
tural causal models” (SCM), which con-
sists of three parts: graphical models, 
structural equations, and counterfac-
tual and interventional logic. Graphi-
cal models serve as a language for 
representing what agents know about 
the world. Counterfactuals help them 
articulate what they wish to know. And 
structural equations serve to tie the two 
together in a solid semantics. 

Figure 2 illustrates the operation 
of SCM in the form of an inference 
engine. The engine accepts three in-
puts—Assumptions, Queries, and 
Data—and produces three outputs—
Estimand, Estimate, and Fit indices. 

Questions Answered  
with a Causal Model 
Consider the following five questions: 

˲˲ How effective is a given treatment 
in preventing a disease?; 

˲˲ Was it the new tax break that 
caused our sales to go up?; 

˲˲ What annual health-care costs are 
attributed to obesity?; 

˲˲ Can hiring records prove an em-
ployer guilty of sex discrimination?; 
and 

˲˲ I am about to quit my job, but 
should I? 

The common feature of these ques-
tions concerns cause-and-effect rela-
tionships. We recognize them through 
such words as “preventing,” “cause,” 
“attributed to,” “discrimination,” and 
“should I.” Such words are common 

in everyday language, and modern so-
ciety constantly demands answers to 
such questions. Yet, until very recently, 
science gave us no means even to ar-
ticulate them, let alone answer them. 
Unlike the rules of geometry, mechan-
ics, optics, or probabilities, the rules of 
cause and effect have been denied the 
benefits of mathematical analysis. 

To appreciate the extent of this de-
nial readers would likely be stunned 
to learn that only a few decades ago 
scientists were unable to write down 
a mathematical equation for the ob-
vious fact that “Mud does not cause 
rain.” Even today, only the top echelon 
of the scientific community can write 
such an equation and formally distin-
guish “mud causes rain” from “rain 
causes mud.” 

Figure 1. The causal hierarchy. Questions at level 1 can be answered only if information 
from level i or higher is available. 

Level (Symbol) Typical Activity Typical Questions Examples

1.	� Association  
P(y|x)

Seeing What is? How would 
seeing X change my 
belief inY?

What does a symptom 
tell me about a disease? 
What does a survey tell 
us about the election 
results?

2.	� Intervention  
P(y|do(x), z)

Doing,
Intervening

What if? What if I do X? What if I take aspirin, 
will my headache be 
cured? What if we ban 
cigarettes?

3.	� Counterfactuals 
P(yx|x′, y′)

Imagining, 
Retrospection

Why? Was it X that 
caused Y? What if I had 
acted differently?

Was it the aspirin that 
stopped my headache? 
Would Kennedy be alive 
had Oswald not shot 
him? What if I had not 
been smoking the past 
two years?

Figure 2. How the SCM “inference engine” combines data with a causal model (or assump-
tions) to produce answers to queries of interest. 
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Figure 3. Graphical model depicting 
causal assumptions about three variables; 
the task is to estimate the causal effect 
of X on Y from non-experimental data on 
{X, Y, Z}. 
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lack testable implications. Therefore, 
the veracity of the resultant estimate 
must lean entirely on the assumptions 
encoded in the arrows of Figure 3, so 
neither refutation nor corroboration 
can be obtained from the data.c 

The same procedure applies to 
more sophisticated queries, as in, say, 
the counterfactual query Q = P(yx |x′,y′) 
discussed earlier. We may also permit 
some of the data to arrive from con-
trolled experiments that would take 
the form P(V|do(W)) in case W is the 
controlled variable. The role of the Es-
timand would remain that of convert-
ing the Query into the syntactic form 
involving the available data and then 
guiding the choice of the estimation 
technique to ensure unbiased esti-
mates. The conversion task is not al-
ways feasible, in which case the Query 
is declared “non-identifiable,” and the 
engine should exit with FAILURE. For-
tunately, efficient and complete algo-
rithms have been developed to decide 
identifiability and produce Estimands 
for a variety of counterfactual queries 
and a variety of data types.3,30,32 

I next provide a bird’s-eye view of 
seven tasks accomplished through the 
SCM framework and the tools used in 
each task and discuss the unique con-
tribution each tool brings to the art of 
automated reasoning. 

Tool 1. Encoding causal assump-
tions: Transparency and testability. 
The task of encoding assumptions in 
a compact and usable form is not a 
trivial matter once an analyst takes 
seriously the requirement of transpar-
ency and testability.d Transparency en-
ables analysts to discern whether the 
assumptions encoded are plausible 
(on scientific grounds) or whether ad-
ditional assumptions are warranted. 
Testability permits us (whether analyst 
or machine) to determine whether the 
assumptions encoded are compatible 

c	 The assumptions encoded in Figure 3 are con-
veyed by its missing arrows. For example, Y 
does not influence X or Z, X does not influence 
Z, and, most important, Z is the only variable 
affecting both X and Y. That these assump-
tions lack testable implications can be con-
cluded directly from the fact that the graph is 
complete; that is, there exists an edge connect-
ing every pair of nodes.

d	 Economists, for example, having chosen al-
gebraic over graphical representations, are 
deprived of elementary testability-detect-
ing features.21

with the available data and, if not, iden-
tify those that need repair. 

Advances in graphical models have 
made compact encoding feasible. Their 
transparency stems naturally from the 
fact that all assumptions are encoded 
qualitatively in graphical form, mirror-
ing the way researchers perceive cause-
effect relationships in the domain; 
judgments of counterfactual or statis-
tical dependencies are not required, 
since such dependencies can be read 
off the structure of the graph.18 Test-
ability is facilitated through a graphical 
criterion called d-separation that pro-
vides the fundamental connection be-
tween causes and probabilities. It tells 
us, for any given pattern of paths in the 
model, what pattern of dependencies 
we should expect to find in the data.15 

Tool 2. Do-calculus and the control 
of confounding. Confounding, or the 
presence of unobserved causes of two 
or more variables, long considered 
the major obstacle to drawing causal 
inference from data, has been demys-
tified and “deconfounded” through a 
graphical criterion called “backdoor.” 
In particular, the task of selecting an 
appropriate set of covariates to control 
for confounding has been reduced to a 
simple “roadblocks” puzzle manage-
able through a simple algorithm.16 

For models where the backdoor 
criterion does not hold, a symbolic 
engine is available, called “do-calcu-
lus,” that predicts the effect of policy 
interventions whenever feasible and 
exits with failure whenever predictions 
cannot be ascertained on the basis of 
the specified assumptions.3,17,30,32 

Tool 3. The algorithmitization of 
counterfactuals. Counterfactual analy-
sis deals with behavior of specific in-
dividuals identified by a distinct set 
of characteristics. For example, given 
that Joe’s salary is Y = y, and that he 
went X = x years to college, what would 
Joe’s salary be had he had one more 
year of education? 

One of the crowning achievements 
of contemporary work on causality 
has been to formalize counterfactual 
reasoning within the graphical rep-
resentation, the very representation 
researchers use to encode scientific 
knowledge. Every structural equation 
model determines the “truth value” of 
every counterfactual sentence. There-
fore, an algorithm can determine if the 

The Estimand (ES) is a mathematical 
formula that, based on the Assump-
tions, provides a recipe for answering 
the Query from any hypothetical data, 
whenever it is available. After receiving 
the data, the engine uses the Estimand 
to produce an actual Estimate (ÊS) for 
the answer, along with statistical es-
timates of the confidence in that an-
swer, reflecting the limited size of the 
dataset, as well as possible measure-
ment errors or missing data. Finally, 
the engine produces a list of “fit indi-
ces” that measure how compatible the 
data is with the Assumptions conveyed 
by the model. 

To exemplify these operations, as-
sume our Query stands for the causal 
effect of X (taking a drug) on Y (re-
covery), written as Q = P(Y|do(X)). 
Let the modeling assumptions be 
encoded (see Figure 3), where Z is a 
third variable (say, Gender) affecting 
both X and Y. Finally, let the data be 
sampled at random from a joint dis-
tribution P(X, Y, Z). The Estimand 
(ES) derived by the engine (automati-
cally using Tool 2, as discussed in 
the next section) will be the formula 
ES = ∑z P(Y|X, Z)P(Z), which defines a 
procedure of estimation. It calls for 
estimating the gender-specific con-
ditional distributions P(Y|X, Z) for 
males and females, weighing them by 
the probability P(Z) of membership 
in each gender, then taking the aver-
age. Note the Estimand ES defines a 
property of P(X,Y, Z) that, if properly 
estimated, would provide a correct 
answer to our Query. The answer it-
self, the Estimate ÊS, can be produced 
through any number of techniques 
that produce a consistent estimate 
of ES from finite samples of P(X,Y, Z). 
For example, the sample average (of 
Y) over all cases satisfying the speci-
fied X and Z conditions would be a 
consistent estimate. But more-effi-
cient estimation techniques can be 
devised to overcome data sparsity.28 
This task of estimating statistical re-
lationships from sparse data is where 
deep learning techniques excel, and 
where they are often employed.33 

Finally, the Fit Index for our example 
in Figure 3 will be NULL; that is, after 
examining the structure of the graph in 
Figure 3, the engine should conclude 
(using Tool 1, as discussed in the next 
section) that the assumptions encoded 
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can be used for both for readjusting 
learned policies to circumvent envi-
ronmental changes and for controlling 
disparities between nonrepresentative 
samples and a target population.3 It 
can also be used in the context of rein-
forcement learning to evaluate policies 
that invoke new actions, beyond those 
used in training.35 

Tool 6. Recovering from missing 
data. Problems due to missing data 
plague every branch of experimental 
science. Respondents do not answer 
every item on a questionnaire, sensors 
malfunction as weather conditions 
worsen, and patients often drop from 
a clinical study for unknown reasons. 
The rich literature on this problem is 
wedded to a model-free paradigm of 
associational analysis and, accord-
ingly, is severely limited to situations 
where “missingness” occurs at ran-
dom; that is, independent of values 
taken by other variables in the model.6 
Using causal models of the missing-
ness process we can now formalize 
the conditions under which causal 
and probabilistic relationships can be 
recovered from incomplete data and, 
whenever the conditions are satisfied, 
produce a consistent estimate of the 
desired relationship.12,13 

Tool 7. Causal discovery. The d-sep-
aration criterion described earlier en-
ables machines to detect and enumer-
ate the testable implications of a given 
causal model. This opens the possibil-
ity of inferring, with mild assumptions, 
the set of models that are compatible 
with the data and to represent this set 
compactly. Systematic searches have 
been developed that, in certain circum-
stances, can prune the set of compat-
ible models significantly to the point 
where causal queries can be estimated 
directly from that set.9,18,24,31 

Alternatively, Shimizu et al.29 pro-
posed a method for discovering caus-
al directionality based on functional 
decomposition.24 The idea is that in a 
linear model X → Y with non-Gaussian 
noise, P(y) is a convolution of two non-
Gaussian distributions and would be, 
figuratively speaking, “more Gaussian” 
than P(x). The relation of “more Gauss-
ian than” can be given precise numeri-
cal measure and used to infer direc-
tionality of certain arrows. 

Tian and Pearl32 developed yet 
another method of causal discovery 

probability of the sentence is estima-
ble from experimental or observational 
studies, or a combination thereof.1,18,30 

Of special interest in causal dis-
course are counterfactual questions 
concerning “causes of effects,” as op-
posed to “effects of causes.” For exam-
ple, how likely it is that Joe’s swimming 
exercise was a necessary (or sufficient) 
cause of Joe’s death.7,20 

Tool 4. Mediation analysis and the 
assessment of direct and indirect ef-
fects. Mediation analysis concerns the 
mechanisms that transmit changes 
from a cause to its effects. The iden-
tification of such an intermediate 
mechanism is essential for generat-
ing explanations, and counterfactual 
analysis must be invoked to facilitate 
this identification. The logic of coun-
terfactuals and their graphical repre-
sentation have spawned algorithms for 
estimating direct and indirect effects 
from data or experiments.19,27,34 A typi-
cal query computable through these al-
gorithms is: What fraction of the effect 
of X on Y is mediated by variable Z? 

Tool 5. Adaptability, external va-
lidity, and sample selection bias. The 
validity of every experimental study is 
challenged by disparities between the 
experimental and the intended imple-
mentational setups. A machine trained 
in one environment cannot be ex-
pected to perform well when environ-
mental conditions change, unless the 
changes are localized and identified. 
This problem, and its various mani-
festations, are well-recognized by AI 
researchers, and enterprises (such as 
“domain adaptation,” “transfer learn-
ing,” “life-long learning,” and “explain-
able AI”)4 are just some of the subtasks 
identified by researchers and funding 
agencies in an attempt to alleviate the 
general problem of robustness. Unfor-
tunately, the problem of robustness, 
in its broadest form, requires a causal 
model of the environment and cannot 
be properly addressed at the level of As-
sociation. Associations alone cannot 
identify the mechanisms responsible 
for the changes that occurred,22 the 
reason being that surface changes in 
observed associations do not uniquely 
identify the underlying mechanism 
responsible for the change. The do-
calculus discussed earlier now offers a 
complete methodology for overcoming 
bias due to environmental changes. It 

Unlike the rules 
of geometry, 
mechanics, optics, 
or probabilities,  
the rules of cause 
and effect  
have been denied  
the benefits  
of mathematical 
analysis. 
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and effect and, leveraging this capabil-
ity, to become the dominant paradigm 
of next-generation AI. 
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based on the detection of “shocks,” 
or spontaneous local changes in the 
environment that act like “nature’s in-
terventions,” and unveil causal direc-
tionality toward the consequences of 
those shocks. 

Conclusion 
I have argued that causal reasoning is 
an indispensable component of hu-
man thought that should be formalized 
and algorithmitized toward achieving 
human-level machine intelligence. I 
have explicated some of the impedi-
ments toward that goal in the form of 
a three-level hierarchy and showed that 
inference to level 2 and level 3 requires 
a causal model of one’s environment. 
I have described seven cognitive tasks 
that require tools from these two levels 
of inference and demonstrated how 
they can be accomplished in the SCM 
framework. 

It is important for researchers to 
note that the models used in accom-
plishing these tasks are structural 
(or conceptual) and require no com-
mitment to a particular form of the 
distributions involved. On the other 
hand, the validity of all inferences de-
pends critically on the veracity of the 
assumed structure. If the true struc-
ture differs from the one assumed, 
and the data fits both equally well, 
substantial errors may result that 
can sometimes be assessed through a 
sensitivity analysis. 

It is also important for them to keep 
in mind that the theoretical limitations 
of model-free machine learning do not 
apply to tasks of prediction, diagnosis, 
and recognition, where interventions 
and counterfactuals assume a second-
ary role. 

However, the model-assisted meth-
ods by which these limitations are cir-
cumvented can nevertheless be trans-
ported to other machine learning tasks 
where problems of opacity, robust-
ness, explainability, and missing data 
are critical. Moreover, given the trans-
formative impact that causal model-
ing has had on the social and health 
sciences,14,25,34 it is only natural to ex-
pect a similar transformation to sweep 
through machine learning technology 
once it is guided by provisional mod-
els of reality. I expect this symbiosis to 
yield systems that communicate with 
users in their native language of cause 
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https://cacm.acm.org/videos/the-
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