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Introduction

I Causal inference is arguably the most important goal in econometrics
I Inform policy-makers, legislators, and managers about the likely impact of their

actions by uncovering quantitative relationships in statistical data (Frisch, 1933)

I Since the end of the 1980s, an extensive literature on causal inference was
developed in the computer science and artificial intelligence field (Pearl and
Mackenzie, 2018)

I Builds on the graph-theoretic approach to causality developed by Pearl (1995)
I Interest emerged from older AI techniques such as Markov random fields and

Bayesian nets (Pearl, 1988)
I Shares several mutual intellectual roots with econometrics (Strotz and Wold, 1960)

I Aim of this talk:
I Review the (newer) advances in the causal AI literature
I Show how management scholars can benefit from adopting these techniques
I Foster mutual knowledge exchange between the two communities



How can we prevent a future robot from trying to make the

rooster crow at 3am in order to make the sun come up?







“Beyond Curve Fitting” in Machine Learning and AI

“To Build Truly Intelligent Machines, Teach Them Cause and Effect”

— Judea Pearl, ACM Turing Award winner

I The notion of causality is a fundamental concept in human thinking

I Current ML / AI techniques remain purely prediction-based (Agrawal et al., 2018)

I In other words: machine learning is very sophisticated, high-dimensional curve
fitting

I But nothing in the theoretical basis of ML allows to capture the asymmetry
inherent to causal relationships

I If we want machines to be able to interact meaningfully with us, they should be
equipped with a notion of cause and effect

https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/


Motivating Example: How to Estimate the Gender Pay Gap?

I The New York Times reported in March 2019:
I “When Google conducted a study recently to determine whether the company was

underpaying women and members of minority groups, it found, to the surprise of
just about everyone, that men were paid less money than women for doing similar
work.”
https://www.nytimes.com/2019/03/04/technology/google-gender-pay-gap.html

I The study led Google to increase the pay of its male employees to fight this blatant
discrimination of men

I What’s going on here? Wasn’t Google just recently accused of discriminating
against women, not men?

I “Department of Labor claims that Google systematically underpays its female
employees”
https://www.theverge.com/2017/4/8/15229688/department-of-labor-google-gender-pay-gap

https://www.nytimes.com/2019/03/04/technology/google-gender-pay-gap.html
https://www.theverge.com/2017/4/8/15229688/department-of-labor-google-gender-pay-gap


Simpson’s Paradox

I Suppose we collected data on wages payed to 100 women and 100 men in company
X. We observe the following distribution of average monthly salaries for women and
men in management and non-management positions (case numbers in
parentheses). And our goal is to estimate the magnitude of the gender pay gap in
company X. How should we tackle this problem?

Female Male

Non-management $3163.30 (87) $3015.18 (59)
Management $5592.44 (13) $5319.82 (41)



Simpson’s Paradox (II)

I On average, women earn less in this example

(
87

100
· $3163.30 +

13

100
· $5592.44

)
−
(

59

100
· $3015.18 +

41

100
· $5319.82

)
≈− $481

I But in each subcategory women actually have higher salaries?
I Non-management: $3163.30− $3015.18 = $148.12
I Management: $5592.44− $5319.82 = $272.62

I Conditioning on job position gives adjusted gender pay gap

87 + 59

200
· $148.12 +

13 + 41

200
· $272.62 ≈ $181.74

I Which estimate gives us a more accurate picture of the gender pay gap?



Simpson’s Paradox (III)

I The phenomenon that a statistical association, which holds in a population, can be
reversed in every subpopulation is named after the British statistician Edward
Simpson

I Simpson’s paradox well-known, for example, in epidemiology and labor economics

I Here, the unadjusted gender pay (−$481) gap gives the right answer

I But what about this example?

Healthy Lifestyle Unhealthy Lifestyle

Non-management $3163.30 (87) $3015.18 (59)
Management $5592.44 (13) $5319.82 (41)



Simpson’s Paradox (IV)

I Here we would correctly infer that people with a healthy lifestyle earn more on
average ($181.74). What is the difference between the two examples?

Gender

Management

Salary Lifestyle

Management

Salary



Simpson’s Paradox (V)

I Statistics alone doesn’t help us to answer this question

I Note that the joint distribution of salaries is the same in both cases

I Both problems are thus identical from a statistical point of view

I Instead, we need to make causal assumptions in order to come to a conclusion here
I Gender affects both a person’s salary level and job position
I Whereas, life style affects salaries, but is itself affected by a person’s job position

I After the course you will know how to incorporate this kind of causal knowledge in
your analysis in order to solve all sorts of practical problems of causal inference



Structural Causal Models

z ← fZ (uz)

x ← fX (z , ux)

y ← fY (x , z , uY )

I The fi ’s denote the causal mechanisms in the model
I Are not restricted to be linear as in traditional SEM

I The ui ’s refer to background factors that are determined outside of the model

I Assignment operator (←) captures asymmetry of causal relationships
I x ← a · z 6= z ← x/a

I Similar to definition of “structure” according to Cowles foundation



Directed Acyclic Graphs

z ← fZ (uz)

x ← fX (z , ux)

y ← fY (x , z , uY )
X

Z

Y

I In a fully specified SCM, every counterfactual quantity is computable

I In most social science contexts it’s hard to know the causal mechanisms fi and
distribution of background factors P(U)

I Therefore, restrict attention to qualitative causal information of the model, which
can be encoded by a graph G

I Nodes V : variables in the model
I Directed edges E : causal relationships in the model



Directed Acyclic Graphs

I No functional form or distributional assumptions means that framework remains
fully nonparametric

I Particularly helpful in fields where theory is purely qualitative and no shape
restrictions on can be derived (Matzkin, 2007)

I Z L9999K Y is a shortcut notation for unobserved common causes Z ← U → Y

I Acyclicity
I Directed cycles such as A→ B → C → A are excluded
I This means there are no feedback loops
I Otherwise A could be a cause of itself
I Gives rise to what economists call a recursive model (Wold, 1954)
I Extensions of the SCM framework to cyclic graphs exist (Spirtes et al., 2000; Pearl,

2009)

Structural Econometrics vs. PO Recursive vs. Interdependent Systems



D-Separation

I DAGs are such a useful tool because they are able to efficiently encode conditional
independence relationships:

Chain: A→ B → C ⇒ A 6⊥⊥ C and A ⊥⊥ C |B
Fork: A← B → C ⇒ A 6⊥⊥ C and A ⊥⊥ C |B
Collider: A→ B ← C ⇒ A ⊥⊥ C and A 6⊥⊥ C |B

I The same holds for longer paths in the graph
I Conditioning on a variable along a chain or fork blocks (“d-separates”) the path
I Conditioning on a collider opens the path



Colliders – R example

# C r e a t e two i n d e p e n d e n t n o r m a l l y d i s t r i b u t e d v a r i a b l e s
x <− rnorm (1000)
y <− rnorm (1000)

# C o n s t r u c t z as b e i n g e q u a l to one i f x + y > 0 , and z e r o
o t h e r w i s e

z <− 1∗ ( x + y > 0)

# By d e s i g n , t h e r e i s no c o r r e l a t i o n between x and y
c o r ( x , y )

# But i f we c o n d i t i o n on z==1, we f i n d a n e g a t i v e c o r r e l a t i o n
c o r ( x [ z ==1] , y [ z ==1])



Testable Implications

I D-separation provides testable implications of a model

A

D

B C

E

Testable implications:

A ⊥⊥ B A ⊥⊥ C
A ⊥⊥ E |D B ⊥⊥ E |D
C ⊥⊥ D|B C ⊥⊥ E |D
C ⊥⊥ E |B

I If one of these conditional independence relations do not hold in the data, the
model can be rejected

I “Causal discovery”: try to learn compatible model from conditional independence
relations found in the data



Interventions in Structural Causal Models

z ← fZ (uz)

x ← x0

y ← fY (x , z , uY )
X

x0

Z

Y

I Causal inference , predict the effects of interventions (policy initiatives, social
programs, management initiatives, etc.)

I Interventions in SCMs amount to “wiping out” of causal mechanisms, an idea that
originally came from econometrics (Strotz and Wold, 1960)

I Delete naturally occurring causal mechanism fX (·) from model and set X to
constant value x0

I This operation is denoted by do-operator: do(X = x0)

I Query of interest: post-interventional distribution P(Y = y |do(X = x))



Pre- versus Post-intervention Distribution

Pre-intervention

X Y

Z

Z = fz(uz)

X = fx(Z , ux)

Y = fy (X ,Z , uy )

Post-intervention

X Y

Z

x

Z = fz(uz)

X = x

Y = fy (X ,Z , uy )

I The intervention changes the data-generating process; thus, P(Y |X )
(pre-intervention) is generally not equal to P(Y |do(X )) (post-intervention)



“Correlation doesn’t imply causation” – R example

# C r e a t e background f a c t o r s f o r nodes
e x <− rnorm (10000)
e y <− rnorm (10000)
e z <− rnorm (10000)

# C r e a t e nodes f o r t he DAG: y <− x , y <− z , x <− z
z <− 1∗ ( e z > 0)
x <− 1∗ ( z + e x > 0 . 5 )
y <− 1∗ ( x + z + e y > 2)
y dox <− 1∗ (1 + z + e y > 2)

# We s e e t h a t P( y | do ( x=1) ) i s not e q u a l to P( y | x=1)
mean ( y dox )
mean ( y [ x==1])



Do-Calculus

Theorem: Rules of do Calculus (Pearl, 2009, p. 85)

Let G be the directed acyclic graph associated with a [structural] causal model [...], and let P(·) stand
for the probability distribution induced by that model. For any disjoint subset of variables X , Y , Z ,
and W , we have the following rules.

Rule 1 (Insertion/deletion of observations):

P(y |do(x), z ,w) = P(y |do(x),w) if (Y ⊥⊥ Z |X ,W )GX
.

Rule 2 (Action/observation exchange): Illustration

P(y |do(x), do(z),w) = P(y |do(x), z ,w) if (Y ⊥⊥ Z |X ,W )GXZ
.

Rule 3 (Insertion/deletion of actions):

P(y |do(x), do(z),w) = P(y |do(x),w) if (Y ⊥⊥ Z |X ,W )G
XZ(W )

,

where Z (W ) is the set of Z -nodes that are not ancestors of any W -node in GX .



Do-Calculus

I Do-calculus is a powerful symbolic machinery that provides a set of inference rules
by which sentences involving do-interventions can be transformed into other
sentences (Pearl, 2009; Pearl et al., 2016)

I Apply the rules of do-calculus repeatedly until a do-expression is translated into an
equivalent expression that can be estimated from the data

I It can be shown that do-calculus is complete for many identification tasks
I I.e., if a causal effect is identifiable there exists a sequence of steps applying the

rules of do-calculus that transforms the causal effect formula into an expression that
includes only observable quantities (Shpitser and Pearl, 2006; Huang and Valtorta,
2006)

I Put differently, if do-calculus fails, the causal effect is guaranteed to be
unidentifiable

I Furthermore, it can be shown that many do-calculus tasks can be fully automated
(Bareinboim and Pearl, 2016)



Applications of Do-Calculus

I The three inference rules of do-calculus can be used to solve many recurrent
problems in applied econometric work

1. Dealing with confouding bias
2. Using surrogate experiments to deal with confounding (generalized IV)
3. Recover from selection bias
4. Extrapolate causal knowledge across heterogeneous settings (“external

validity”)

I This also illustrates that all of these problems are essentially causal questions



The Data Fusion Process

Query:
Q	=	Causal	effect	at	target	population

Estimable	exp-
ression of	Q

Causal	Inference	Engine:
Three	inference	rules	of	
do-calculus

Model:

Available	Data:
Observational: P(v)
Experimental:			 P(v	|	do(z))
Selection-biased: P(v	|	S	=	1)	+

P(v	|	do(x),	S	=	1)	
From	different	 P(source)(v	|	do(x))	+	
populations:	 		 observational	studies

(1)

(2)

(3)

Assumptions	need	to	be	strengthened	
(imposing	shape	restrictions,	distri-
butional assumptions,	etc.)

Solution exists? Yes

No



Confounding Bias

Task: Use the rules of do-calculus to transform Q = P(y |do(x)) into an expression
that only contains standard probability objects

I We also call this task “identification” (Pearl, 2009; Matzkin, 2007)

I Take the stylized example of the college wage
premium

I C : college degree
I Y : earnings
I W : occupation
I H: work-related health
I E : other socio-economic factors

C Y

W

H

E



Confounding Bias

I We could find P(y |do(c)) by applying the rules of do-calculus Do-Calculus Derivation

I An easier solution can be found, however, by recognizing that there are only two
backdoor paths that create a spurious association between C and Y

1. C ← E → Y
2. C L9999K E → Y

I We can close both of these backdoor paths by adjusting for E

I The causal effect can then be identified by the adjustment formula

P(Y = y |do(C = c)) =
∑
e

P(Y = y |C = c ,E = e)P(E = e)



Backdoor Adjustment

Definition: The Backdoor Criterion (Pearl et al., 2016, p. 61)

Given an ordered pair of of variables (X ,Y ) in a directed acyclic graph G , a set of
variables Z satisfies the backdoor criterion relative to (X ,Y ) if no node in Z is a
descendant of X , and Z blocks every path between X and Y that contains an arrow
into X .

I Intuition: block all spurious paths between X and Y while leaving direct paths
unperturbed and creating no new spurious paths

I Note how adjusting for occupation W would open up the path C → W L9999K Y
(“collider bias”)

I Finding suitable adjustment sets Z can be easily automated (Textor et al., 2011)



Backdoor Adjustment

X Y

W2

W1

W3

W6

W4

W5

I Minimum sufficient adjustment sets:

Z ={{W2}, {W2,W3}, {W2,W4}, {W3,W4}, {W2,W3,W4}, {W2,W5},
{W2,W3,W5}, {W4,W5}, {W2,W4,W5}, {W3,W4,W5}, {W2,W3,W4,W5}}



Backdoor Adjustment – R example

# D e f i n e DGP as i n p r e v i o u s R example

# Adjustment f o r m u l a : P( y | do ( x=1) ) = P( y | x=1, z=1)∗P( z=1) + P( y | x
=1, z=0)∗P( z=0)

mean ( y [ x==1 & z ==1]) ∗ mean ( z==1) + mean ( y [ x==1 & z ==0]) ∗ mean ( z
==0)

# E s t i m a t i o n v i a i n v e r s e p r o b a b i l i t y w e i g h t i n g
d f <− d f %>% group by ( z ) %>% mutate ( w e i g h t = mean ( x ) )
w e i g h t <− d f $ w e i g h t
y w e i g h t e d <− y / w e i g h t



Identification by Surrogate Experiments

I In many settings, simple covariate adjustment is not
feasible

I At the same time, conducting an RCT in X might
not be feasible

I What if we are able to experimentally manipulate a
third variable Z?

I Surrogate experiments are ubiquitous in economics
I E.g., “encouragement designs” in development

economics (Duflo et al., 2008)

W1 Z

X

Y

W2



Identification by Surrogate Experiments

Task: (z-identification) Use the rules of do-calculus to transform Q = P(y |do(x))
into an expression that only contains standard probability objects and do(Z )

I Do-calculus provides a complete solution for the z-identification problem
(Bareinboim and Pearl, 2012a)

I In the previous graph the solution is given by

P(y |do(x)) =
∑
w1,w2

P(y |do(z), x ,w1,w2)P(w1)P(w2)

I Z-identification implies that the post-intervention distribution is nonparametrically
identified

I No shape restrictions (e.g., monotonicity) or distributional assumptions required
I Standard IV only identifies a LATE (Imbens and Angrist, 1994) zID vs. IV



Selection Bias

I Non-random, selection-biased data is a frequent problem in economics

I For example, Knox et al. (2019) criticize papers that try to measure the degree of
racial-bias in policing with the help of administrative records

I Problem: An individual only appears in the data, if it was stopped by the police
I If there is a racial bais in policing, stopping can be the result of minority status
I There are unobserved confounders, such as officers’ suspicion, between the selection

variable and outcome

Minority Force

Stop



Selection Bias
Task: Use the rules of do-calculus to transform Q = P(y |do(x)) into an expression

that only contains probabilities conditional on S = 1

I There is a principled solution for dealing with selection bias in DAGs based on
do-calculus (Bareinboim and Pearl, 2012b; Bareinboim et al., 2014; Bareinboim
and Tian, 2015) Example Derivation

I Compared to standard approaches in econometrics, these results do not rely on
I functional-form assumptions about the selection propensity score P(S |PA)

(Heckman, 1979)
I or, ignorability of the selection mechanism (Angrist, 1997)

I In addition, there is the possibility to combine biased and unbiased data in order to
increase identifying power (Bareinboim et al., 2014; Correa et al., 2017)

I In many applied settings, unbiased records of covariates are available from
secondary data sources (e.g., census data)



Transportability

I Causal knowledge is usually acquired in different contexts than it is supposed to be
used (e.g., in a laboratory experiment)

I If domains differ structurally in important ways, how can we be sure that causal
knowledge remains valid across contexts?

I This problem is known under the rubric of “transportability” in the causal AI field

I Economists more frequently use the term “external validity”

I Example: Banerjee et al. (2007) study the effect of a randomized remedial
education program for third and fourth graders in two Indian cities: Mumbai and
Vadodara

I They find similar effects on math skills, but effect positive impact on language
proficiency is much smaller in Mumbai compared to Vadodara



Transportability

I Banerjee et al. (2007) explain this result by baseline reading skills that were higher
in Mumbai, because families are wealthier there and schools are better equipped

I What do we do if we do not have a second experiment to validate our results?

I We can incorporate knowledge about structural differences across domains by a
selection node (�) in a causal diagram

I Captures the notion that domains differ either in the distribution of background
factors P(Ui ) or causal mechanisms fi in the underlying structural causal model

S

X Y

Z



Transportability
Task: Use the rules of do-calculus to express causal query Q = P∗(y |do(x)) in

target domain with the help of causal knowledge in a source domain (Pearl
and Bareinboim, 2011)

I Bareinboim and Pearl (2013a) develop a complete nonparametric solution for this
task based on the selection diagram Example

I Moreover, there is the possibility to combine causal knowledge from several
different source domains (Bareinboim and Pearl, 2013b)

I Meta-analyses are becoming increasingly popular in economics (Card et al., 2010;
Dehejia et al., 2015)

I However, by simply averaging out results, they completely disregard potential
domain heterogeneity

I Possibility to combine transportability with idea z-identification to what is called
“mz-transportability” (Bareinboim and Pearl, 2014)



Algrithmatization of Causal Inference

I There exist algorithmic solutions for all the inference tasks just discussed
I Dealing with confounding bias (Tian and Pearl, 2002; Shpitser and Pearl, 2006)
I Z-Identification (Bareinboim and Pearl, 2012a)
I Selection bias (Bareinboim and Tian, 2015)
I Transportability (Bareinboim and Pearl, 2013a, 2014)

I Input:

1. A causal query Q
2. The model in form of a diagram
3. The type of data available

I Output: an estimable expression of Q
I Most algorithms inherit completeness property from do-calculus

I Analyst can fully concentrate on the modeling and the scientific content, the
identification is done automatically



The Data Fusion Process

Query:
Q	=	Causal	effect	at	target	population

Estimable	exp-
ression of	Q

Causal	Inference	Engine:
Three	inference	rules	of	
do-calculus

Model:

Available	Data:
Observational: P(v)
Experimental:			 P(v	|	do(z))
Selection-biased: P(v	|	S	=	1)	+

P(v	|	do(x),	S	=	1)	
From	different	 P(source)(v	|	do(x))	+	
populations:	 		 observational	studies

(1)

(2)

(3)

Assumptions	need	to	be	strengthened	
(imposing	shape	restrictions,	distri-
butional assumptions,	etc.)

Solution exists? Yes

No



Conclusion

I Graphical models of causation provide a unified framework for causal inference that
allow to solve many of the recurrent problems econometricians face

I Unique perspective on many applied problems
I DAGs and do-calculus are a powerful tool for causal inference
I Combine the strengths of both structural econometrics (identifying assumptions are

stated clearly, no “black box” character) and the potential outcomes framework
(fully nonparametric, easy to apply)

I Possibilities to fully automatize the identification task (⇒ “causal AI”)

I Paper: “Causal Inference and Data-Fusion in Econometrics” (Hünermund and
Bareinboim, 2019)

I Teaching material available at: https://p-hunermund.com/teaching/

https://arxiv.org/abs/1912.09104
https://p-hunermund.com/teaching/


Thank you

Personal Website: p-hunermund.com

Twitter: @PHuenermund

Email: p.hunermund@maastrichtuniversity.nl

https://p-hunermund.com/
https://twitter.com/PHuenermund
mailto:p.hunermund@maastrichtuniversity.nl


Structural Econometrics vs. Potential Outcomes

I Econometrics is currently dominated by two competing streams

I Structural econometrics
I In practice, relies on distributional assumptions and (parametric) shape restrictions
I Work by, e.g., Matzkin (2007) that aims to relax parametric assumptions, but

I still relies on (weaker) shape restrictions, and is not widely adopted in applied work

I Potential outcomes framework (Rubin, 1974; Imbens and Rubin, 2015)
I Does impose crucial identifying assumptions (e.g., ignorability) without reference to

an underlying model (“black box character”)
I A feature that has been frequently criticized by the structural camp (e.g., by

Rosenzweig and Wolpin, 2000 and Heckman and Urzua, 2009)

I In practice, causal inference in PO boils down to the four “tricks of the trade”
(matching, IV, RDD, difference-in-differences)

⇒ DAGs are a perfect “middle ground” between structural econometrics and PO

Back



Recursive Versus Interdependent Systems

I DAGs represent recursive systems, but many standard models in economics are
interdependent (Marshallian cross, game theory, etc.)

I This connects to an old debate within econometrics about the causal interpretation
of recursive versus interdependent models that emerged in the aftermath of
Haavelmo’s celebrated 1943 paper

I One central argument (Bentzel and Hansen, 1955; Strotz and Wold, 1960):
I Individual equations in an interdependent model do not have a causal interpretation

in the sense of a stimulus-response relationship (Strotz and Wold, 1960, p. 417)
I Interdependent systems with equilibrium conditions are regarded as a shortcut

(Wold, 1960; Imbens, 2014) description of the underlying dynamic behavioral
processes



Recursive Versus Interdependent Systems

I In this context, Strotz and Wold (1960) discuss the example of the cobweb model:

qh,t−1

pt−1

qh,t

pt

qh,t+1

pt+1

z1,t−1

z2,t−1

z1,t

z2,t

z1,t+1

z2,t+1

qh,t ← γ + δpt−1 + νz1,t + u1,t ,

pt ← α− βqh,t + εz2,t + u2,t .

pt−1 = pt

⇒

qh,t

pt

z1,t

z2,t

qh,t ← γ + δpt + νz1,t + u1,t

pt ← α− βqh,t + εz2,t + u2,t



Recursive Versus Interdependent Systems

I However, equilibrium assumption pt−1 = pt carries no behavioral interpretation

I Individual equations in interdependent system do not represent autonomous causal
relationships in the stimulus-response sense (Heckman and Pinto, 2013)

I Endogenous variables are determined jointly by all equations in the system
(Matzkin, 2013)

I Not possible, e.g., to directly manipulate pt to bring about a desired change in qh,t

I Equilibrium models can of course still be useful for learning about causal parameters

I But, if individual mechanisms are supposed to be interpreted as stimulus-response
relationships, cyclic patterns need to be excluded (Woodward, 2003; Cartwright,
2007)

I For this reason, potential outcomes framework (Rubin, 1974; Imbens and Rubin,
2015) also implicitly maintains the assumption of acyclicity (Heckman and Vytlacil,
2007)

Back



Do-Calculus Rule 2

P(y |do(x), do(z),w) = P(y |do(x), z ,w) if (Y ⊥⊥ Z |X ,W )GXZ

G

W YZ

GZ

W YZ

Assume we are interested in the query
Q = P(y |do(z),w).

Denote the resulting graph when all arrows emitted by
Z in G are deleted by GZ .

In GZ , W blocks the only backdoor path between Z and
Y : Z ←W L9999K Y .

Thus, by d-separation (Y ⊥⊥ Z |W )GZ
and therefore the

second rule of do-calculus applies.

Consequently, we can get rid of the do-operator by
setting P(y |do(z),w) = P(y |z ,w). The latter
expression is estimable from observational data.

Back



Do-Calculus Example

G

C Y

W

H

E

GC

C Y

W

H

E

Consider the causal effect of C on Y in graph G . There
are two backdoor paths in G , which can both be blocked
by E . Conditioning and summing over all values of E
yields

P(y |do(c)) =
∑
e

P(y |do(c), e)P(e|do(c)).

By rule 2 of do-calculus

P(y |do(c), e) = P(y |c , e), since (Y ⊥⊥ C |E )GC
.



Do-Calculus Example

GC

C Y

W

H

E

By rule 3 of do-calculus

P(e|do(c)) = P(e), since (E ⊥⊥ C )GC
.

It follows that

P(y |do(c)) =
∑
e

P(y |c , e)P(e).

The right-hand-side expression is do-free and can
therefore be estimated from observational data.

Back



Z-Identification Versus Instrumental Variables

Y

Z

X

I This is the canonical IV setup with endogenous X (X L9999K Y ), Z is both
relevant (Z → X ) and excludable (Z 6→ Y )

I But effect of X on Y is not z-identifiable (condition (ii) in Theorem 3 of
Bareinboim and Pearl (2012a) is violated)

I IV estimator is not nonparametrically identified (Balke and Pearl, 1995)
I We need to either introduce shape restrictions (e.g., monotonicity; Imbens and

Angrist, 1994) or resort to partial identification (Manski, 1990)
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Selection Bias Example Derivation

Take the following DAG augmented with
selection node S : Z

W

X
Y

S

By the first rule of do-calculus, since (S ,W ⊥⊥ Y ) in GX (the resulting graph when all
incoming arrows in X are deleted),

P(y |do(x)) = P(y |do(x),w , S = 1),

=
∑
z

P(y |do(x), z ,w , S = 1)P(z |do(x),w , S = 1),

where the second line on the previous slide follows from conditioning on Z .



Selection Bias Example Derivation

Applying rule 2, since (Y ⊥⊥ X |W ,Z ) in GX (the resulting graph when all arrows
emitted by X are deleted), we can eliminate the do-operator in the first term

=
∑
z

P(y |x , z ,w , S = 1)P(z |do(x),w , S = 1).

Finally, because (Z ⊥⊥ X |W ) in GX , it follows from rule 3 that

=
∑
z

P(y |x , z ,w , S = 1)P(z |w , S = 1).
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Transportability Example
S

′
S

X YZ

W1

W2

W3

The causal effect of X on Y in the target domain π∗ can be found by the algorithm
developed in Bareinboim and Pearl (2013a) is given by

P∗(y |do(x)) =
∑

z,w2,w3

P(y |do(x), z ,w2,w3)P(z |do(x),w2,w3)P∗(w2,w3)

Back
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