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General Presentation of the Guided Tour
of Artificial Intelligence Research

Artificial Intelligence (AI) is more than sixty years old. It has a singular position in
the vast fields of computer science and engineering. Though AI is nowadays largely
acknowledged for various developments and a number of impressive applications,
its scientific methods, contributions, and tools remain unknown to a large extent,
even in the computer science community. Notwithstanding introductory mono-
graphs, there do not exist treatises offering a detailed, up-to-date, yet organized
overview of the whole range of AI researches. This is why it was important to review
the achievements and take stock of the recent AI works at the international level.
This is the main goal of this A Guided Tour of Artificial Intelligence Research.

This set of books is a fully revised and substantially expanded version, of a
panorama of AI research previously published in French (by Cépaduès, Toulouse,
France, in 2014), with a number of entirely new or renewed chapters. For such a
huge enterprise, we have largely benefited the support and expertise of the
French AI research community, as well as of colleagues from other countries. We
heartily thank all the contributors for their commitments and works, without which
this quite special venture would not have come to an end.

Each chapter is written by one or several specialist(s) of the area considered.
This treatise is organized into three volumes: The first volume gathers twenty-three
chapters dealing with the foundations of knowledge representation and reasoning
formalization including decision and learning; the second volume offers an
algorithm-oriented view of AI, in fourteen chapters; the third volume, in sixteen
chapters, proposes overviews of a large number of research fields that are in relation
to AI at the methodological or at the applicative levels.
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Although each chapter can be read independently from the others, many
cross-references between chapters together with a global index facilitate a nonlinear
reading of the volumes. In any case, we hope that readers will enjoy browsing the
proposed surveys, and that some chapters will tease their curiosity and stimulate
their creativity.

July 2018 Pierre Marquis
Odile Papini
Henri Prade
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Preface: Knowledge Representation, Reasoning
and Learning

Artificial Intelligence (AI) aims to provide machines with abilities to perform
“intelligent” tasks in the sense that they are considered as such by humans. These
tasks take advantage of pieces of information of different nature. They may be
machine- or human-originated, factual or generic, structured or unstructured. Those
pieces of information consist of data issued from sensors, observations, rules, pieces
of belief, pieces of knowledge, preferences, norms, etc. They are often imperfect:
incomplete, imprecise, uncertain, or contradictory. They may involve time, space,
as well as multiple agents. They are about a world which can be static or dynamic.
All those pieces of information must be acquired, learnt, updated. They fuel various
inference and decision machineries. Modeling and representing the available
information in suitable settings, and formalizing learning, reasoning, and decision
processes are fundamental issues in AI, as acknowledged in the foreword of this
volume.

This first volume of this guided tour of AI research focuses on these issues and
aims to present in 23 chapters the main approaches to knowledge representation,
reasoning, and learning developed in AI.

First dreamed before being envisioned, AI was not born ex nihilo. A historical
perspective (Chapter “Elements for a History of Artificial Intelligence”) sketches a
panorama, from the Antiquity to the 1980s, of both the dreams and genuine con-
tributions coming from different scientific fields or cultural productions, and that led
to the final emergence of AI.

The limitations of classical logic for belief and knowledge representation have
motivated the introduction of new logical formalisms, which are presented in
Chapter “Knowledge Representation: Modalities, Conditionals, and Nonmonotonic
Reasoning”. Chapter “Representations of Uncertainty in Artificial Intelligence:
Probability and Possibility” first addresses the issues of imprecision, uncertainty,
gradualness, and granularity and then contrasts probability and possibility theories.
Chapter “Representations of Uncertainty in AI: Beyond Probability and Possibility”
presents extensions of these two frameworks by focusing on evidence theory based
on belief functions and on imprecise probabilities. Chapter “Qualitative Reasoning”
deals with time and space. The representation of ontologies in the setting of
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description logics is the topic of Chapter “Reasoning with Ontologies”. Preference
representation and norm representation are respectively dealt with in Chapter
“Compact Representation of Preferences” and in Chapter “Norms and Deontic
Logic”. Chapter “A Glance at Causality Theories for Artificial Intelligence” dis-
cusses the handling of causality in different approaches. Case-based reasoning,
interpolative reasoning, and analogical reasoning are presented in Chapter “Case-
Based Reasoning, Analogy, and Interpolation”.

The next two chapters are devoted to formal models for machine learning, more
precisely Statistical Computational Learning (Chapter “Statistical Computational
Learning”) and Reinforcement Learning (Chapter “Reinforcement Learning”).

Specific chapters are dedicated to reasoning in the presence of contradiction
(Chapter “Argumentation and Inconsistency-Tolerant Reasoning”), and reasoning
with several sources of information: revising and merging (Chapter “Main Issues in
Belief Revision, Belief Merging and Information Fusion”), as well as updating
(Chapter “Reasoning About Action and Change”).

Several chapters focus on decision making: multicriteria decision (Chapter
“Multicriteria Decision Making”), Decision Under Uncertainty (Chapter “Decision
Under Uncertainty”), and collective decision (Chapter “Collective DecisionMaking”).

The two next chapters respectively deal with agents’ cognitive aspects, such as
trust or emotion (Chapter “Formalization of Cognitive-Agent Systems, Trust,
and Emotions”) and with multiagent systems and interactions (Chapter “Negotiation
and Persuasion Among Agents”). Diagnosis on the one hand and validation and
explanation on the other hand are surveyed respectively in Chapter “Diagnosis and
Supervision: Model-Based Approaches” and Chapter “Validation and Explanation”.
The last chapter of the volume mainly addresses knowledge engineering concerns.
The afterword emphasizes the importance of supplementing inference systems with
trust information.

Lens, France Pierre Marquis
Marseille, France Odile Papini
Toulouse, France Henri Prade
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Foreword: Knowledge Representation
and Formalization of Reasoning

The first volume of the Artificial Intelligence (AI) guided tour describes how one
can enable a computer system to reason. As this book is a guided tour, it considers
the many topics developed by AI researchers. Naturally, this is essential for all
those who want to make progress in our field; however, this does not imply that
reading these books should be restricted to AI scientists. In fact, they do not
describe a succession of achievements, but the general principles that allow the
realization of the most noteworthy results. This overall perspective gives useful
ideas to all scientists, although they do not consider themselves as belonging in the
mainstream of Artificial Intelligence, even if they do not try to solve problems on a
computer.

AI is interested in its main goal: solving problems that were previously only
solved by living beings, and particularly by human ones. However, it turns out that,
while doing so, AI has often discovered methods and ideas useful for other sci-
entific disciplines. Thus, in several domains of Cognitive Science, new approaches
came from ideas widely used in AI: For instance, apart from the statistical
description of the life of an anthill, some have begun to model every ant, considered
as a small automaton. In this book, cognitive scientists will certainly be interested in
the study of trust and emotions for a cognitive agent. For their part, philosophers
and logicians will read the chapter on deontic logics, which specify in a rigorous,
unadorned language, concepts such as obligatory, permissible, optional, and ought.
They could also see how it is possible to reason even when there is contradictory
information. The discovery of a contradiction is not always a total disaster, since it
can come from a small amount of information, where one can clean up the mess.
Belief revision can restore the consistency of knowledge when new data are
inconsistent with what was already known.

Economists and sociologists will look with interest at the methods for collective
decision, where several agents must cooperate to find a common decision; these
methods are very often helpful, for choosing the president of a political party as
well as for the choice of a restaurant by a group of friends. For making such
decisions, IA researchers have experimented with various kinds of votes and auc-
tions; they defined equity in the sharing of resources. They have found methods and
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concepts useful when there are several artificial agents, but these results can also be
used when a group of humans is taking a collective decision. However, I believe
that computer specialists will be the most interested community: For them, nearly
all the chapters of this book will be very useful. Indeed, the distinction between
computer and AI scientists is often very tenuous: AI researchers become computer
specialists when they implement a system that must obtain excellent results.
Conversely, without realizing it, computer specialists may use AI methods when
they are developing a system for solving a particular problem: It is natural to
wonder which methods a human being is using for solving it, and to implement
them in the system.

Several areas of computer science have been developed for the first time by AI
researchers: We consider them because human beings manage to obtain good
results when they use them. For us, the natural approach is to ask: Why can’t a
computer program do the same? For other people, it seems impossible or too
difficult for the present state of the art. Being the first to consider a problem, we
cannot be prevented to find new methods for solving it! It happens that these
methods may be useful in new applications, and the computer scientists should put
them in their tool box, so that they will think about using them when an opportunity
presents itself.

In particular, the beginning of this volume title mentions an important problem
for computer specialists: “Knowledge Representation.” Several aspects of this issue
are considered, such as the representation of preferences and of uncertainty.
Ontologies are very important for semantic Web applications: They provide a
formal knowledge representation for their domain, and they allow their manage-
ment, acquisition, retrieval, etc. Knowledge engineering gives methods for finding
knowledge for a particular problem, especially by a collaboration with human
experts. These chapters can help a computer scientist to find ideas for developing
future systems.

The second part of the title is “Formalization of Reasoning.” This capacity is
important: If a system can reason, it is more general. Indeed, it is no longer nec-
essary to anticipate all the possible situations: By reasoning, a system can auto-
matically find the right action in an unexpected situation. General systems offer a
dual advantage: Firstly, fewer programs must be written; a general system does the
job of several specific systems. Secondly, results are obtained far more quickly: A
general system may be adapted to a new application without the need for writing
more programs. Many kinds of reasoning are presented; I will choose some of them
and show that they are important and go beyond AI.

A powerful AI method is reasoning about action and change: In examining the
changes that should be made in the present state for reaching the target, one finds
the actions that are more likely to succeed. To do that, one models the behavior of a
human expert, and expert systems have often led to useful results. A by-product of
this approach is to help human specialists to improve their own way for solving
these problems. Such knowledge is given in a declarative form, regardless of how it
is used; in this way, it is easier to understand or modify it. This allows a high level
of generality: This knowledge can be used in various contexts, even when they were

xiv Foreword: Knowledge Representation and Formalization of Reasoning



not known by the expert. Moreover, such a system can explain its results: It
indicates the steps of its reasoning. If we agree on the rules, one must agree in the
result. This is essential for the users: They want to make sure that a surprising
decision is not the consequence of a bug.

Furthermore, it is often necessary to take a multicriteria decision, depending
upon numerous factors, where several objectives must be simultaneously met. This
is very difficult; usually, there is no perfect solution: One must find a sensible
compromise between the requirements. The situation is particularly sensitive when
the consequences of a decision depend on events that did not even take place when
this decision must be taken. This happens, for example, when a medical doctor, in a
serious and urgent situation, must prescribe a treatment without the test results. In
particular, diagnostic, for a disease as well as for a mechanical failure, is an
important kind of decision. To do that, one must use a model to the system at fault
in order to understand why an unwanted event happened.

It is very difficult to find knowledge useful for solving a problem; therefore, AI
has always been interested in learning. Many methods have been successfully
experimented; among them, statistical learning discovers regularities in the domain
and uses them for building an efficient solving method. On the contrary, case base
learning compares the present situation with a similar one already experienced; it
tries to adapt the previous solution to the new problem. Learning ability is a key
step toward the realization of general systems.

In promoting the use of declarative knowledge, will not AI lead to the extinction
of computer specialists? On the contrary, reading this book should help them, and
not only AI researchers, to manage their domain better: Computer scientists will
develop more efficient systems more easily. They will implement them so that
knowledge will be easier to give, to understand, to modify, and sometimes will even
be learned by the system itself.

Jacques Pitrat
(1934-2019), formerly with

CNRS-LIP6
Université Paris 6

Paris, France
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Elements for a History of Artificial
Intelligence

Pierre Marquis, Odile Papini and Henri Prade

Abstract Artificial intelligence (AI) is a young scientific field, which like other
domains of information processing sciences, was born in the middle of the XXth
century, with the arrival of the first computers. However, much more long-standing
concerns have contributed to its final emergence. They can be broadly articulated
around twomain issues: the formalization of reasoning and learningmechanisms and
the design of machines having autonomous capabilities in terms of computation and
action. Over time, suchmachines have been first dreamed, before being designed and
made real. The progressive achievements have fed the imagination of philosophers,
but also writers, movie makers, and other artists. This is the reason why in the few
elements of the great historical epic that we sketch here, references to all sectors of
human creativity are involved.
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2 P. Marquis et al.

1 Introduction

Artificial intelligencewas not born ex nihilo during a series ofmeetings in the summer
of 1956 within the framework of a research program with this name,1 involving 10
participants,2 organized at Dartmouth College (Hanover, New Hampshire, USA).
AI has immediate roots in cybernetics (Wiener 1949) and in computer science, but
its emergence is the result of a long and slow process in the history of humanity,
which can be articulated around two main trends: the formalization of reasoning and
learningmechanisms on the one hand and the design ofmachines having autonomous
capabilities in terms of computation and action on the other hand.

There exist a number of valuable books focusing ondifferent aspects of themodern
history of AI (Anderson 1964; McCorduck 1979; Rose 1984; Pratt 1987; Kurzweil
1990; Crevier 1993; Nilsson 2010).3 But what is said about what may be called the
“prehistory” of AI (corresponding roughly speaking to the time period before the
advent of the first computers), is usually very sketchy and sparse, with the mention
of a few names: Aristotle and hisOrganon (Jones 2012) for the (Western) Antiquity,
Ramon Llull and his Ars Magna (1305) (Fidora and Sierra 2011) for the Middle
Ages, Thomas Bayes (1763) and George Boole (1854) for the modern times before
the last century.

In order to structure this historical panorama, several main periods can be roughly
distinguished: the first one goes from Antiquity to the XVIth century, followed by
a transition period toward modernity in the XVIIth century and then in the Age of
Enlightenment in the XVIIIth century, before the mathematization of logic in the
XIXth century, and then the birth of computer science, from computability theory to
cybernetics, in the first half of the XXth century, and finally the development of AI
in the second half of the XXth century.

Although various rarely referred works are mentioned, and some which have
probably never been related to the origins of AI, this panorama should be consid-
ered as a sketch and a draft. The ambition of this chapter is only to provide some
(often forgotten or ignored) elements that may be considered as parts of the slow
emergence of AI concerns during the last centuries. Further in-depth analysis would
be certainly of interest. Even if quite a number of names are cited in the following,
it is very likely that names are missing. This is unavoidable with such an attempt.

1The application for getting a financial support, written in the summer of 1955, and entitled “A
proposal for the Dartmouth summer research project on artificial intelligence” (where the name
of the new research area was already coined!), was signed by John McCarthy, Marvin Minsky,
Nathaniel Rochester and Claude Shannon (McCarthy et al. 2006).
2Apart from the 4 signees of the project appearing in the above footnote, they were Trenchard
More, Allen Newell, Arthur Samuel, Oliver Selfridge, Herbert A. Simon, and Ray Solomonoff.
Interestingly enough, it is worth noticing that these 10 participants were already carriers of the large
variety of research directions that can still be observed in AI.
3A year between parentheses is at the same time a publication date and indicates a reference to a
publication of the author cited just before in the text. Exceptionally for the works from Antiquity
to Middle Ages, the year used in the references is one of a modern edition and not the one of the
first publication.
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Beyond very famous names, most often English or American, the French and Ger-
man domains are somewhat favored, while undoubtedly other names of equivalent
importance from other countries and other languages could be cited. Moreover, we
only indicate the general concerns of the authors cited and the references to their
work, without discussing their contribution in detail (which would have required a
much longer chapter). It should be clear that several works mentioned, which may
be a posteriori related to AI, were only small parts of the production of their authors,
involved in very different scientific fields. As will be seen below, the pieces of work
from which AI emerged were progressively built up over time through a succession
of espistemological ruptures, progressively enriched by new scientific knowledge,
techniques, and technologies.

2 The First Steps: From Antiquity to the XVIth Century

Discussions about patterns of reasoning may be encountered in all the great philoso-
phies. In the following, we mainly focus on Greek philosophy, but Chinese, Indian,
Hebraic, Arab and Persian philosophies should not be ignored. For detailed studies
the reader is referred to the works by Chad Hansen (Chen Hang Sheng) (1983),
Gillon (2010), Sarukkai (2018), Gabbay and Woods (2004a), Abraham et al. (2010,
2013, 2016), Schumann (2012, 2017), Rescher (1963, 1964), and Akrami (2017).

Antiquity

By the scope and the range of the topics addressed in his Organon, which gathers
six treatises on logic (Jones 2012), Aristotle (384–322 BC) appears as the father
of logic, although other Greek philosophers, like the Stoics also contributed to the
first developments of logic (for example, Chrisippus (c. 279–c. 206 BC)). Indeed,
Aristotle contributed to the first analysis of human reasoning, namely in stating the
different forms of syllogisms and in discussing their validity conditions in the First
Analytics and the Second Analytics (see for example (Gochet et al. 1988, 1989;
Blanché 1970)). In On Interpretation, he identified the vertices of the logical square
of opposition generated from the application of an internal negation and an exter-
nal negation over a statement. This square, drawn later in a comment of Aristo-
tle’s text ascribed (but maybe wrongly attributed) to the Numidian Latin writer and
philosopher Apuleius of Madaura (c. 124 c. 170) (Londey and Johanson 1984, 1987;
Gombocz 1990), visualises the oppositions between statements corresponding to its
four vertices (Parsons 2017). In the Topics, Aristotle studied dialectics and describes
elements of argumentation for dealing with uncertain knowledge. Besides, he was
also interested in analogy and analogical proportions. His student, and follower as
head of the Lyceum, Theophrastus (c. 371–c. 287 BC) was bearer of multiple talents:
he was one of the first botanists, his book Characters portrays thirty moral types,
and he was a logician. He developed elements of modal logic (Bocheński 1947),
worked on hypothetical syllogisms (Barnes 1983) and seems to have been the first
one to propose that the trust in the conclusion of a logical chain corresponds to the
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trust in the weakest link (Rescher 1976). Let us also cite Galen of Pergamon (129–
c. 200), the famous Greek physician, surgeon and philosopher who used hypothetical
syllogistic after Aristotle and his school (Bobzien 2004).

In the same time period, Chinese philosophers belonging to Confucius (551–
479 BC)’s school, such as Meng Tzeu (Mencius) (c. 385–c. 301 BC), who was a
contemporary ofAristotle, used argumentation and analogy, butwere not considering
logical issues nor discussing reasoning patterns such as syllogisms, with perhaps
the exception of Gongsun Long (c. 325–250 BC), interested in paradoxes, who was
belonging to another school founded byMozi (c. 468–c. 391 BC). See Guo (2017) on
the discrepancy between Greek and Chinese philosophers with respect to reasoning
issues. The Roman–Greekworld had also supporters of analogical reasoning, like the
Epicurean philosopher Philodemus of Gadara (c. 110–prob. c. 40 BC) also interested
in inductive reasoning (De Lacy and De Lacy 1941).

Logicians and Theologians in Medieval Time

Augustine of Hippo (354–430), in his treatise Contra Academicos (386) against the
skepticism of the neoplatonic Academy, asserts the existence of knowledge; hence he
was certain of logical truths such as “either there is only one world or there is not only
one”, mathematical facts such as “it is necessarily true that three times three equals
nine”, as well as reported perceptions “I do not know how an academician may rebut
a man who says: “I know that this seems white to me; I know that this tone sounds
pleasant to my ears, this has a pleasant smell for me, this tastes wonderful, this is
still cold for me” ” (Augustine of Hippo 1995; Smalbrugge 1986; Curley 1996). The
Aristotelian legacy of syllogisms and of the square of oppositionwas reworked during
the Middle Ages from Boethius (c. 477–524) to William of Sherwood (c. 1200–
c. 1272) (1966). This English logician who taught at the University of Paris and
was the author of one of the four main textbooks on logics in his century; the three
others were authored by Lambert of Auxerre (or Lambert of Lagny) (XIIIth century)
(2015), Peter of Spain (XIIIth century) (2014), andRogerBacon (c. 1219/20–c. 1292)
(2009). Jean Buridan (1292–1363), professor at Sorbonne in Paris, seems to be one
of the very first who attempted to separate logic from theology (see (Read 2012) for a
presentation and a discussion of his work on syllogisms, and (Hughes 1982) on self-
reference). Indeed, the interest for logic at that time was closely related to various
theological issues, among which the proofs of the existence of God, such as the one
of Anselm of Cantorbery (1033–1109) (2001) (this ontological proof was shortly
challenged by Gaunilo of Marmoutiers (c. 990–c.1083) who dared substitute the
“Lost Island” for God in the proof and introduced a distinction between “(rational)
thinking” (“cogitare”) and “knowing by intelligence” (“intelligere”)).4 The main
scholastic philosophers, PierreAbélard (1079–1142),ThomasAquinas (1224–1274),

4Arguments for and against the existence of God, and their discussions have a very long history from
Anselm to Kurt Gödel (1995) (his proof is stated in second-order modal logic); see the monograph
by Sobel (2004) for a complete exposition of these arguments. Thomas Aquinas (1975, 2006)
himself disputes Anselm’s ontological argument (see (Sousa Silvestre 2015) for a modern logical
discussion) and proposed five other proofs (Aquinas 1975, 2006); see also Mavrodes (1963), Wade
(1967) on logical accounts of God omnipotence paradoxes.
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JeanDunsScot (1266–1308) are logicians and theologians.AsThomasAquinas, their
interests also included issues connected with argumentation or even analogy.

Aristotle was the main non-Christian philosopher to influence the above medieval
philosophers, in particular thanks to the comments of Muslim philosophers such as
the Persian polymath Avicenna (Ibn Sīnā) (980–1037) and the Andalusian thinker
Averroes (Ibn Rushd) (1126–1198). Originally Arabic logic was developed by a
school centered at Baghdad, where Abū Bishr Mattã ibn Yūnus (c. 870–940) was
the first logician to write in Arabic, to translate Aristotle, and to write commentaries.
Works on modalities, in particular temporal ones, have been developed early by
Arabic logicians (Rescher 1967) continuing the works initiated by Al-Fârâbî (872–
950), himself influenced by Aristotle, and “perhaps the most important logician of
Islam” (Rescher 1963). Let us also mention Yahyā ibn ‘Adī (893–974), a Nestorian
Christian like Abū Bishr, who studied logic and philosophy with both previously
mentioned scholars, and translated a number of works of Greek philosophy into
Arabic; his teaching was especially influential (“virtually half of the Arabic logicians
of the Xth century are his pupils” Rescher 1963). It has been recently advocated that
the idea of diagrammatic reasoning can be already found in Abū al-Barakāt (c.1080–
1164/1165)’s writings, as well as the definition of model-theoretical consequence,
which as its roots before in works by Ibn Sīnā and even before by Paul the Persian
(VIth century),5 see Hodges (2018) for details.

In old Indian logic (Gillon 2010; Sarukkai 2018), theNyāya school is known for its
development of the first elements of logic. Later, Dignāga (c. 480–c. 540), a Buddhist
scholar, renewed inferential reasoning and provided a list of valid arguments, while
Bhāviveka, (c. 500–c. 578), another Buddhist scholar, is usually credited as being
one the first to use formal syllogisms.

The argumentation issue is one of the main topics in the protean work of the
Catalan mystic, writer, theologian and philosopher, Ramon Llull (1232–1316), who
designed a “logical machine” for arguing, his Ars Magna, in order to establish the
truth of statements from rules of combinations of symbols (Fidora and Sierra 2011;
Crossley 2005).

Finally, let us also mention Guillaume d’Ockham (c. 1285–1347), logician and
philosopher, whose principle of parsimony (known as “Ockham’s razor”) expresses
that the simplest sufficient hypotheses for explaining a situation must be the most
likely ones. One may also cite the fourteenth century author Roger Swyneshed,
credited with logical works on insolubles (Spade 1979; Spade and Read 2018) and
on obligations (De insolubilibus and De obligationibus), as well as some of the
members of the “Calculators’s group” at Merton College in Oxford, who were pri-
marily interested in kinematics and mechanics, such as William Heytesbury (before
1313–1372/3), also known for his Rules for Solving Sophismata (1335), or Thomas

5Paul the Persian is an East Syrian theologian and philosopher who worked at the court of the
Sassanid king Khosrow I (501–579), and wrote several treatises and commentaries on Aristotle
(Teixidor 2003), which had some influence on medieval Islamic philosophy.
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Bradwardine (c. 1290–1300–1349) who also contributed to the medieval insolubilia
(insolubles) literature (Read 2010) (dealing with the liar paradox, among other top-
ics), or Richard Swineshead (mid 1300s) known for The Book of Calculationswhere
logic and mathematics began to move physics outside natural philosophy. Let us also
mention Paul of Venice (c. 1369–1429) who dealt with the problem of the meaning
and truth of sentences in his Logica Magna (Conti 2017), while Charles de Bovelles
(c. 1475–after 1566), a French mathematician and philosopher, was the author of
an Ars oppositorum (1510), a treatise of logic where the idea of opposition plays a
central role.

Hence, for nearly 1900 years, logics and the art of reasoning mainly remained
on the path set by Aristotle, mainly motivated in the Middle Ages by theological
concerns. We have limited this brief overview of medieval logic to the mention of
the main authors and to the concerns on which their speculations were based, without
attempting to detail their contributions in the context of AI today. For introductory
overviews, the reader is referred to Uckelman (2017), Hubien (1977), and for more
detailed surveys, the reader should consult (Dutilh Novaes and Read 2016; Gabbay
and Woods 2008b; Dubucs and Sandu 2005; Busquets 2006).

Dreams and Machines

Besides, artificial creatures populate our collective psyche since Antiquity, as it is
reflected in many myths, fairy tales and literary works in most of the cultures. We
limit ourselves to somegreat figures, for further details the readermay consult (Cohen
1968; Chassay 2010). Homer (1984) describes, in the bookXVIII of the IIiad the god
Héphaïstos’ creations, in particular, twenty autonomous tripods equipped with gold
wheels for carrying theproducts of his forgery, or the twogolden servants able to assist
him.Apollonios ofRhodes (IIIrd centuryBC) in theArgonautica (II, 4) (1959) relates
the creation of a giant bronze statue, named Talos, by Héphaïstos, which he offers to
Minos in order to defend Crete against invaders. Ovid (43 BC–17/18 AD) reports the
myth of Pygmalion in the book X ofMetamorphoses (Ovid 1998). Pygmalion carved
an ivory statue of a woman Galatea, to which the goddess Venus gives life. These
few examples illustrate recurring themes that are later found in the literature of the
XIXth and XXth centuries, long before the first robots: the desire for escaping from
the labour servitude, the satisfaction of love or erotic fantasies, the use of artificial
creatures for warlike use. Hence, these legends and myths, rooted into the reality of
their time, imagine the production of prophetic and articulated statues or masks. For
example, the Bible refers to teraphim oracle figurines that Nabuchodonosor consults
for querying the fate Ezechiel (XXI, 26). All these creatures refer to the fabulous;
however other kinds of mechanisms and machines are designed for utilitarian or
ludic ends, such as the invention of the pulley and the screw ascribed to Archytas
(IVth century BC), or the clepsydras from Ctesibios (IIIrd century BC) and Philo of
Byzantium (end of IIIrd century BC), considered as the first fully automatic devices,
or even the pneumatic machines and the automata from Hero of Alexandria (1st
century). Let us also mention Petronius (14–66) who in the Satyricon (book XXXIV)
(1969) describes a silver articulated skeleton able to take up various positions. Later,
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Ismail al-Jazari (1136–1206), amechanical inventor, built musical automata powered
by water.

Regarding the idea of mechanizing reasoning, we can hardly mention the logical
machine proposed by Ramon Llull (1232–1315), described in Ars Magna (1305)
(2011). This machine, consisting of paper disks swivelling on an axis, is a tool
intended for reasoning assistance in order to answer theological queries, in particular
with the goal ... of converting Muslims to christianity on a rational basis. In the field
of arithmetics, it is worth mentioning the Chinese abacus which appears in its final
form in the XIIth century.

Literature

TheMedieval chivalric romance, permeatedwith the fabulous, often refers to animate
statues. For example, in theRoman de Tristan fromThomas ofBritain (XIIth century)
(1969), Tristan, thanks to the giantMoldagog, erects wonderful statues among which
is the statue of Yseult. During this period some narratives witness of the construction
of automata, however they are considered as devilish and sacrilege by the ecclesial
authorities. An important myth that transcends the centuries is the one of Golem, an
artificial creature created from clay. It yet appears in the Talmud and is pointed out in
the Bible (Psalm 139 : 16). In the Middle Ages, an ashkenazi esoteric text, the Sefer
Yetsirah gives a detailed description of the creation of a Golem, however it is only
from the XVIth century onwards that a Golem becomes a servant who discharges
his creator of heavy works until he gets far beyond his control. Several versions of
the myth circulated in central Europa. According to the Polish version reported by
the German storyteller Jacob Grimm in the Zeitung für Einsiedler (“Newspaper for
Hermits”) in 1808, the Rabbi Chelm would have given life to a clay Golem writing
the word truth in hebrew on his forehead. According to the version from Prague, the
Rabbi Loew would have given life to a Golem by putting on his mouth a paper on
which is written the name of God. The latter will be popularized in the XXth century
by the eponymous novel.

3 The XVIIth Century: Preliminary Steps Towards
Modernity

The time period that starts with the beginning of the XVIIth century exhibits a slow
transition towards the birth of modern logic 250 years later with the funding works of
George Boole, as well as it shows the first developments of probability. This is also
the time of the emergence of the first machines.6 As already said, we try to indicate
names (and facts) having a significant relation with some concerns of AI, some being
better known for other issues not related to AI, others being just forgotten.

6A version of this section and of the next two sections has already appeared inMarquis et al. (2014).
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Treatises of Logic

In philosophy of knowledge, Francis Bacon (1561–1626) promotes the inductive
method based on observation for scientific discovery (Bacon 1605), at the beginning
of the XVIIth century. Besides, in 1603 the first treatise of logic in French is pub-
lished (Dupleix 1603). It is written by Scipion Dupleix (1569–1661), a preceptor of a
son of the king Henri IV. His course of philosophy also includes a Physique, aMéta-
physique, and an Ethique. His Logique is a vast compilation of previous knowledge,
and deals, among other issues, with the square of oppositions, modalities, syllogisms,
incomplete syllogisms (patterns of default reasoning called enthymems), sorites, and
argumentation, all topics inherited from Aristotle and from his followers during the
Antiquity and the Middle-Age. In the middle of the XVIIth century, Le Philosophe
François (De Ceriziers 1650) written by René de Ceriziers (1603–1662), includes
a large section devoted to logic where argumentation is developed in great detail.
This is also the time where the modern history of legal reasoning (Kalinowski 1982)
starts. Let us also mention the Essai de Logique (Mariotte 1678) by the physicist
Edme Mariotte (c.1620–1684), which discusses issues about proofs in geometry,
reasoning about the physical world, and deontic reasoning.7

Prescience

Thomas Hobbes (1588–1679) seems to be the first to explicitly link the symbolic
manipulation of terms in logic to the idea of mathematical calculation. Indeed, he
wrote “Per ratiocinationem autem intelligo computationem.” (or in English one
year later “ By ratiocination I mean computation.”)8 in his De Corpore (Hobbes

7Some other authors would be also worth mentioning, such as the Flemish philosopher Arnold
Geulincx (1624–1669), author of treatises of logic entitled Logica fundamentis suis restituta (1662)
and Methodus inveniendi argumenta (1663).
8The text continues with “Now to compute, is either to collect the sum of many things that are added
together, or to know what remains when one thing is taken out of another. Ratiocination, therefore,
is the same with addition and subtraction;” (or in Latin: “Computare vero est plurium rerum simul
additarum summam colligere, vel una re ab alia detracta cognoscere residuum. Ratiocinari igitur
idem est quod addere and subtrahere”). One page after one reads: “We must not therefore think
that computation, that is, ratiocination, has place only in numbers, as if man were distinguished
from other living creatures (which is said to have been the opinion of Pythagoras) by nothing but
the faculty of numbering; for magnitude, body, motion, time, degrees of quality, action, conception,
proportion, speech and names (in which all the kinds of philosophy consist) are capable of addi-
tion and subtraction.” (or in Latin: “Non ergo putandum est computationi, id est, ratiocinationi
in numeris tantum locum esse, tanquam homo a caeteris animantibus (quod censuisse narratur
Pythagoras) sola numerandi facultate distinctus esset, nam and magnitudo magnitudini, corpus
corpori, motus motui, tempus tempori, gradus gradui, actio actioni, conceptus conceptui, propor-
tio proportioni, oratio orationi, nomen, nomini (in quibus omne Philosophiae genus continetur)
adjici adimique potest.”). In fact, the anecdote reported does not concern Pythagore, but Platon,
see Hobbes of Malmesbury (1655) note p. 13. Moreover, as early as 1651 (Hobbes of Malmesbury
1651) in chapter V (Of Reason and Science) of Of Man, the first part of his Leviathan, Hobbes had
given a preliminary version whose beginning was “When a man ‘reasoneth’ he does nothing else
but conceive a sum total, from ‘addition’ of parcels, or conceive a remainder, from ‘subtraction’
of one sum from another; which, if it be done by words, is conceiving of the consequence of the
names of all the parts, to the name of the whole; or from the names of the whole and one part, to
the name of the other part.”
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of Malmesbury 1655), whose reputation was unfortunately somewhat damaged by
the inclusion of a tentative proof of the squaring of the circle, even if Hobbes will
acknowledge its falsity later.

It is also interesting to mention here a passage of the fifth part of the “Discours de
la Méthode” (Descartes 1637), where René Descartes (1596–1650) who advocates
a conception of animals as beings with a complete lack of reason, similar in that
respect to machines, shows a remarkable prescience with respect to the discussion
about how to distinguish humans from machines and the Turing test.9

Reasoning and Probability

The Logic of Port-Royal (1662) by Antoine Arnauld (1612–1694) and Pierre Nicole
(1625–1695), initiates a theory of sign and representation for about two centuries,
and is a landmark in the history of philosophy of language and in logic, which
however still remains here somewhat connected to issues in theology. The book is
organized in fourmain parts corresponding respectively to the faculties of conceiving,
of judging, of reasoning (deductively through syllogisms), the last part discussing
methodological questions. The mathematics are here the reference that should be
transposed to the study of language statements, and reasoning. Lastly, the idea of
probability is here, apparently for the first time, associated not with the combi-
natorics of games of chance, but with the evaluation of the confidence that can
be attached to testimonies. Jacques Bernoulli (1654–1705), in his Ars conjectandi
published only in 1713, proposes distinct calculi for these two types of uncer-
tain situations (Shafer 1978). Close to Port-Royal people, let us recall that Blaise
Pascal (1623–1662) is, among many contributions, both a pioneer of probabilities
(in communication through letters on this topic with Pierre de Fermat (c. 1605–
1665)), and the inventor (in 1642) of a mechanical computation machine called
Machine arithmétique able to perform additions and subtractions.

This is the Dutch mathematician and physicist Christian Huyghens (1629–1695)
who publishes the first treatise on the probability calculus (Bessot et al. 2006) and

9“I worked especially hard to show that if any such machines had the organs and outward shape of
a monkey or of some other animal that doesn’t have reason, we couldn’t tell that they didn’t possess
entirely the same nature as these animals; whereas if any such machines bore a resemblance to our
bodies and imitated as many of our actions as was practically possible, we would still have two
very sure signs that they were nevertheless not real men. The first is that they could never use words
or other constructed signs, as we do to declare our thoughts to others. We can easily conceive of a
machine so constructed that it utters words, and even utters words that correspond to bodily actions
that will cause a change in its organs (touch it in one spot and it asks “What do you mean?”, touch
it in another and it cries out “That hurts!”, and so on); but not that such a machine should produce
different sequences of words so as to give an appropriately meaningful answer to whatever is said
in its presence - which is something that the dullest of men can do. Secondly, even though such
machines might do some things as well as we do them, or perhaps even better, they would be bound
to fail in others; and that would show us that they weren’t acting through understanding but only
from the disposition of their organs. For whereas reason is a universal instrument that can be used
in all kinds of situations, these organs need some particular disposition for each particular action;
hence it is practically impossible for a machine to have enough different organs to make it act in all
the contingencies of life in the way our reason makes us act.” (Transl. J. Bennett).
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introduces the notion of expectation in an uncertain situation, among multiple scien-
tific contributions including the improvement of clocks. Then this will be followed by
the works of Abraham de Moivre (1667–1754) who will propose the first definition
of statistical independence (De Moivre 1718). However, it seems that people had
started to be interested in questions about uncertainty and risk (Meusnier and Piron
2007) before the beginning of the XVIIth century. Indeed, it has been discovered that
a Latin text, the De Vetula (in English On the Old Woman), a pseudo-Ovidian poem
attributed to the philosopher and poet Richard de Fournival (1201–1260), which was
widely circulated in its time, was containing probability calculations on the throw
of three dice (Bellhouse 2000); see more generally (Bru and Bru 2018) and (Shafer
2018) for the history of the counting of chances in dice games and the estimation
of fair price when dividing the stakes in a prematurely halted game, which started
much before Fermat and Pascal.

4 The XVIIIth Century: The Age of Enlightenment

Progresses in logic and probability remain slow in the XVIIIth century, although
philosophers develop concerns about human understanding.

Philosophers

At the transition between the two centuries, GottfriedWilhelm Leibniz (1646–1716)
has not only been the philosopher that everybody heard about, and one of the fathers
of the infinitesimal calculus (without mentioning many other works in mathematics,
in physics, and in history). Indeed he also has an important role in the evolution
of logic (see for example Gochet et al. 1988, 1989), which has been rediscovered
lately (Couturat 1901, 1903), due in particular to his search for a universal language
(the lingua characteristica universalis) that enables the formalization of the thought
and an algorithmic logical calculus (calculus ratiocinator), thus anticipating the
project of Frege. He is also at the origin of the idea of “possible worlds”, and was
interested in issues in legal and deontic reasoning. Another slightly later attempt
at developing a logical formalism is the one by Gottfried Ploucquet (1716–1790)
(Ploucquet 2006). Leibniz (1703) is also the first to imagine the binary numeration.
Moreover he proposed a machine able to perform the four arithmetic operations
in 1673 (finally recognized as imperfect). Let us also add that Leibniz was a good
chess player who was also interested in the scientific understanding of the game.
The reader is referred to Lenzen (2016) for a recent study of Leibniz’s algebra
of concepts, which anticipates some aspects of modern formal concept analysis.
Another German philosopher, Christian Wolff (1679–1754), should be mentioned
for his treatise (1713) of logic, translated in French and English. More generally, the
reader is referred to Gabbay and Woods (2004b) on the rise of modern logic after
Leibniz. A particular mention should be made for Johann Christian Lange (1669–
1756) who invented a tree-like diagram for solving syllogisms (1714); see Lemanski
(2018).

Let us also particularly mention another philosopher as a forerunner of different
AI concerns: David Hume (1711–1776), for whom the origin of our knowledge
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comes from experience (Hume 1748), and ideas are not innate (as already for John
Locke (1632–1704) (Locke 1690) or George Berkeley (1685–1753)). He establishes
a distinction between first “impressions”, and “ideas” which are weakened images,
synthesized from impressions; for him, ideas are associated by different relations
such as resemblance, (temporal or spatial) contiguity, or causality (a relation that
he has especially analyzed). He also makes a distinction between logical truths and
empirical truths which cannot be certain, but only probable, and points out that
induction cannot lead to any certainty. He has also discussed analogical arguments.

Logic and Probability

The name of the Swiss mathematician Gabriel Cramer (1704–1752) is especially
attached to the resolution of linear equation systems. But if his presence is relevant
in this overview of the prehistory of AI, it is because of his course of logic (Cramer
1745; Martin 2006a), remained unpublished until now, that he wrote in 1745 as
a preceptor in a rich family. In his introduction, he makes a distinction between
the logique naturelle (the one used spontaneously in reasoning) and the logique
artificielle (the one that is founded on principles and rules). The presentation of this
latter topic is developed along twomain parts of approximately equal importance, one
dedicated to the search for truth and the understanding of “how human mind forms
ideas, compare them in order to state judgements and to chain them for deductive
purposes”,10 and the other devoted to the study of probabilities as measures of the
likelihood of the propositions or judgements about events. Thus, in a certain way,
this Cours could be compared in its intention to the Laws of Thought by George
Boole who, a little more than a century later, devotes parts of equal length to what
will be called later Boolean logic, and to probabilistic reasoning under uncertainty.
It seems by the way that Cramer’s Cours would be the anonymous source of the
article Probabilité (attributed to Benjamin de Langes de Lubières (1714–1790), see
(Candaux1993)) in theEncyclopédiebyDenisDiderot (1713–1784) and Jean leRond
D’Alembert (1717–1783) (edited from 1751 to 1772). Moreover let us indicate that
the article (also anonymous) Logique in the Encyclopédie also contrasts natural logic
and artificial logic and refers for this latter to the article Syllogisme also anonymous.

Let us also mention the Alsatian mathematician Johann-Heinrich Lambert (1728–
1777) who in his Neues Organon (Lambert 1764) develops a probabilistic theory of
syllogisms, with application to the handling of the probability of testimonies (Shafer
1978; Martin 2006b, 2011). Lambert, as the article Probabilité in the Encyclopédie,
proposes a reinforcement rule of the confidence in corroborating testimonies, which
may retrospectively appear as a particular case of the combination rule in Dempster–
Shafer belief function theory. Besides, a landmark work in probability is the posthu-
mous article by Reverend Thomas Bayes (1702–1761), communicated by his friend
Richard Price (1723–1791), about the famous theorem of the computation of the a
posteriori probability from priors and conditional probability (Bayes 1763), result

10In French: “comment l’esprit humain se forme des idées, les compare pour en porter des jugements
et enchaîner ces jugements pour déduire les uns des autres”.
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found again by Pierre-Simon Laplace (1749–1827) in his works on probability and
induction (Laplace 1814).

Some other names are alsoworthmentioning, on different issues. The grammarian
César Chesneau Du Marsais (1676–1756), also a contributor to the Encyclopédie,
studies the patterns in rhetorics in his Traité des Tropes (Dumarsais 1730), and has
concerns that might still have some relevance in automated treatment of languages
and in argumentation in natural language. Besides, the philosopher and mathemati-
cian Nicolas de Condorcet (1743–1794), probabilist, pioneer in statistics, studied the
representativity of voting systems (as also his contemporary Jean-Charles de Borda
(1733–1799), mathematician, physicist, and sailor De Borda 1781), and stated the
famous paradox on the possible intransitivity of majoritarian relative preferences
(Condorcet 1785).

Literature

The Age of Enlightenment, a century of progress towards reason and rationality, is
also marked by literary works that contribute to feed our collective psyche. Jonathan
Swift (1667–1745), in his novelGulliver’s travels (Swift 1726), develops an ironical
criticism of the society of his time and intends to show the inadequation of humans
with reason.More particularly, during the fourth travel, Gulliver stays with theHouy-
hnhnms, which are “reasonable” animals ignoring contradiction and argumentation
(chap. VIII) and whose language does not include any word for expressing lies, since
saying something false would be betraying the functions of language (chap. III and
IV). During a previous trip to Laputa, Gulliver visits the Academy of Lagado (chap.
V) where he sees a machine that generates sentences for helping to write books.

Automata

The XVIIIth century is also marked by the automata built by Jacques Vaucanson
(1709–1782), such as his Tambourine Player (Vaucanson 1738), or his Digesting
Duck (1744). These automata are in some way echoing the mechanical view of
human (La Mettrie (Offray de) 1747) supported by the philosopher Julien Offray de
LaMettrie (1709–1751). These automata impressed theminds of the contemporaries.
For instance, Mrs de Genlis, born Stéphanie-Félicité Du Crest (1746–1830), in one
her educative and moral tale (Du Crest, comtesse de Genlis 1797) stages two child
automata, onemaking drawings and the other playingmusic. The idea of an animated
toy may fuel all the fantasies, like in the novel Pigmalion (Boureau-Deslandes
1742) by André-François Boureau-Deslandes (1690–1757), or in the novel (Galli
de Bibiena 1747) by Jean Galli de Bibiena (1709–c.1779), where the narrator is
fascinated by a doll found in a store and later discovers that it is a sylph! Shortly
after, in 1769, the Hungarian JohannWolfgang van Kempelem (1734–1804), born in
Slovakia, built an automaton, attracting considerable attention, a Mechanical Turk
or Automaton Chess Player, able to answer questions. This “Turk” has opponents as
famous as Catherine the Great, Napoleon Bonaparte, or Benjamin Franklin. Resold
at the death of vanKempelem, it had a long career, and it took time before discovering
how a man could be hidden in the “machine”, but van Kempelem was in spite of
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that the author of a genuine vocal synthetizer (in 1791)! The chess player from van
Kempelem has fascinated and inspired several novels in the next centuries.

Another famous opponent to this false automaton (againstwhomhe lost two times)
is Charles Babbage (1791–1891), who later in 1837, designed the first programmable
computer (with punched cards) having a memory, the Analytical Engine, and for
which Ada Lovelace (1815–1852) (the daughter of the poet George Byron) wrote
the first programmed algorithm.

5 The XIXth Century: The Rise of Modern Logic

After some isolated attempts at formalizing syllogisms at the very beginning of the
XIXth century, modern logic finally appears in the middle of the century.

Pioneers of Formal Logic

The beginning of XIXe century is marked by the publication of some isolated works
which may retrospectively appear as important milestones between the theory of
syllogisms inherited from Aristotle and modern logic. Thus, Frédéric de Castillon
(1747–1814) proposed a formal calculus for solving syllogisms (De Castillon 1804,
1805). Besides, starting from the idea of set diagrams, beautifully introduced by
Leonhard Euler (1707–1783) for visualizing syllogistic reasoning (in seven of his
famous Lettres à une Princesse d’Allemagne sur Divers Sujets de Physique & de
Philosophie Euler 1761, publ. 176811), Joseph D. Gergonne (1771–1859), a French
mathematician, mainly known as a geometer, published an article (Gergonne 1816b;
Giard 1972) in 1816where he identified the five possible relations between two sets,12

and characterized the valid syllogisms for the first time. A modern counterpart of
this work can be found in Faris (1955). Besides, Gergonne has also proposed poly-
nomial regression, and was interested in the rule of three (Gergonne 1815, 1816a).
Quite ironically, although he was a geometer, Gergonne emphasized, as early as
1813, the interest of algebraic methods in mathematics (algebra was at that time
mainly restricted to operations on the reals) (Dahan-Dalmedico 1986), but this is
George Boole (1815–1864) who will be the first to apply this idea to logic. In other
respects, Bernard Bolzano (1781–1848), a German-speaking mathematician, logi-
cian, philosopher and theologian is also worth-mentioning here as a precursor of

11Although researchers nowadays speak of ‘Euler diagrams’, similar diagrams have already been
used by many authors before (Lemanski 2017). Among others, the diagrams of Juan Luis Vives
(1493–1540) (who used a ‘V’-like nested representation for the three items in the syllogism in
Barbara “Any B is a C, but any A is a B, therefore any A is a C ”, in a treatise entitled De Censura
Veri, part of his encyclopedic compendium De Disciplinis Libri), as well as those of Nicolaus
ReimarusUrsus (NicolausReimers) (1551–1600) in hisMetamorphosis Logicae (Strasbourg,1589),
of ErhardWeigel (1625–1699) in his PhilosophiaMathematica, Theologia Naturalis Solida (1693),
of JohannChristophSturm (1635–1703) in theUniversalia Euclidea (1661), or still those of Leibniz,
and Johann Christian Lange (1669–1756) can be mentioned as precursors of the logic diagrams
used by Euler.
12This result was already anticipated in the line diagrams (using pairs of segments) by Abū
al-Barakāt; see Hodges (2018).
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predicate logic, for his original view of logic in terms of variations (where different
types of propositions are defined depending on the ways changes in their truth value
can occur), and for the analysis of five meanings that the words ‘true’ and ‘truth’
may have in different uses (1837).

Boole, De Morgan and Their Time

The middle of the XIXth century is marked by the publication of the founding works
of Boole and Augustus De Morgan (1806–1871) on the mathematisation of reason-
ing (Boole 1847; De Morgan 1847). Boole develops a symbolic view of logic, and
an equational theory of deduction, based on the binary algebra named from him. It
is quite noticeable that both Boole and De Morgan were interested both in logic and
probability in their works, which enables them to have a renewed approach of syl-
logisms (Boole 1854; De Morgan 1868). Indeed logic and probability have a pretty
much equal place in the celebrated book by Boole (1854) An Investigation of The
Laws of Thought on which are founded the mathematical theories of logic and prob-
abilities. It should be also emphasized that studies on logic and the laws of thought
had become a topic relatively popular at that time with the books of the archibish-
ops Richard Whately (1787–1863) and William Thomson (1819–1890), and of the
philosopher John Stuart Mill (1806–1873)13 (Whately 1826; Thomson 1842; Stuart
Mill 1843), published before the first works of Boole and De Morgan on this topic.
The final version, substantially expanded (which even includes an appendix on the
logic in India) of the Outline of The Laws of Thought (Thomson 1857) by Thomson
pays an homage to De Morgan in turn. Let us also note that Stuart Mill presents new
views on induction in his book amongother things, and proposes five qualitative infer-
ence rules for causal reasoning. In a more amusing style, Lewis Carroll (1832–1898),
the author of Alice’s Adventures in Wonderland, under his nom de plume, actually
wrote a treatise of symbolic logic (Carroll 1896; Braithwaite 1932) (where he is
using an original diagrammatic representation), with many exercises and problems
presented in a funny way. The subtitle of his book was indeed “A fascinating mental
recreation for the young”! See Moretti (2014) for a discussion of ‘logical diagrams’
and ‘logical charts’ that can be found in this treatise. Besides, under his patronymic
name Charles L. Dodgson, Lewis Carroll had also refined a voting method due to
Condorcet (Dodgson 2001; Ratliff 2010) some twenty years before.Morematerial on
the richness of British logic in the XIXth century can be found in Gabbay andWoods
(2008a). Lastly, more perhaps as a curiosity than as influential contributions, two
books by the Irish engineer and mathematician Oliver Byrne (1810–1880) are worth
mentioningwhere he respectively dealt with analogical proportions in a pre-symbolic
manner (1841) andwith colored diagrams and symbols for helping the understanding
of proofs (1847). Besides, the German philosopher Christoph von Sigwart (1830–
1904) examined English induction theories in his Logik (1873–1878), while Joseph
Delbœuf (1831–1896), a Belgian psychologist and philosopher outlines a “Logique

13Stuart Mill is perhaps better known as an economist, and a strong advocate of utilitarism (Stuart
Mill 1863), following Jérémy Bentham (1748–1832), i.e. a consequentialist approach to decision
making.
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Algorithmique” based on algebra (1876), somewhat departing from Boole’s work, of
which he had a limited knowledge coming from a teaching monograph by the Scot-
tish philosopher Alexander Bain (1818–1903) (1870) containing some account of
the novel schemes of De Morgan and Boole. Bain was a follower of Stuart Mill, and
William Hamilton (1788–1856), another Scottish philosopher (not to be confused
with the Irish mathematician who invented quaternions), who worked on syllogisms
(1859–1860) (Pratt-Hartmann 2011).

Further Developments in Logic

As a following of Boole’s andDeMorgan’sworks, the algebra of logicwas developed
by Ernst Schröder inGermany (Schröder 1890), Charles Sanders Peirce (1839–1914)
(Peirce 1870, 1880, 1885, 1931, 1955) and his followers Oscar Howard Mitchell
(1851–1889) (Mitchell 1883) andChristine Ladd-Franklin (1847–1930) (Ladd 1883)
in the United States, and in France (Couturat 1905) by Louis Couturat (1868–1914),
who was also a great specialist of the logic of Leibniz. The Euler set diagrams were
improved by John Venn (1834–1923) who shaded the empty parts of his diagrams
rather than representing the sets in the exact configuration where they are supposed
to be (Venn 1880, 1881), and by Peirce for taking into account existential statements
and disjunctive information (Shin and Lemon 2008). Besides, Venn in the multiple
editions of his book The Logic of Chance also developed probabilistic aspects of
reasoning, privileging the frequentist interpretation (Venn 1866).

William Stanley Jevons (1835–1882), who wrote one of the most popular intro-
ductory text to Boolean logic in his time (Jeavons 1870), also built a logic machine
in 1869, called “Logic Piano”, based on a substitution principle (Jeavons 1869),
which was able to draw conclusions mechanically from premisses. In a quite dif-
ferent perspective, automata are built during the XIXth century. Let us mention the
speaking head made by Joseph Faber (1800–1850) named “Euphonia”, able to artic-
ulate words, the speaking doll of Thomas Edison (1847–1931) commercialized in
1889, the “Steam-Men” of the American Zadock Dederick in 1868 and of the Cana-
dian George Moore, which walked in 1893 at the speed of 8 km/h, and closer to us,
the automaton by Leonardo Torres y Quevedo (1852–1936) which in 1914 was able
to automatically play a king and rook endgame against king from any position; see
Vigneron (1914) for a detailed description.

Literature

In relation with the romantic movement, and in reaction to the rationality of the
previous century, the beginning of the XIXth century sees the emergence of fantasy
literaturewith the development of gothic fiction. One of the classics isMary Shelley’s
(1797–1851) famous novel Frankenstein or the Modern Prometheus (1818). Victor
Frankenstein, throughout his investigations, succeeds in discovering the secret of
life and creates a superhuman artificial man whose terrifying appearance scares him
away. Left on her own, this creature learns to speak by observing humans and tries to
make contact with them, but she is rejected by the fright she inspires. Suffering from
isolation, she has a fierce hatred of her creator on whom she wants to take revenge.
Even today this novel has achieved widespread popularity and inspired many movie
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adaptations since the beginning of moving pictures. Other authors carry on known
themes of previous centuries. Hence, Prosper Mérimée (1803–1870) reuses the old
theme of the animated statue in La Vénus d’Ille (1837), Edgar Allan Poe (1809–1849)
takes his inspiration from automata with Maelzel’s chess player (1836), or Gustav
Meyrink (1868–1932) revisits the myth ofGolem with the eponymous novel (1915).
The scientific and technological developments in the context of early industrialization
inspire literary creation. The artificial creatures are no longer purely mechanical,
thus electricity and electromagnetism play a major role in L’Eve future (1886) by
Auguste deVilliers deL’Isle-Adam (1838–1889), the human-machines (engine-men)
or “steam-human” in the novel Ignis (1883) by the less well-known writer, Didier de
Chousy (1834–1895), or even the “rammer” (in French,“hie” or “dame”), professor
Cantarel’s mechanical “young lady” in Locus Solus (1914) by Raymond Roussel
(1877–1933) (in the same spirit, see also Clair and Szeemann (1975)). In addition,
let us mention the president-automaton who operates with three keys held by the
president of the Chamber of deputies, the president of the Senate and the president
of the Council respectively (1883) by Albert Robida (1848–1926).

6 The First Half of the XXth Century: From Mathematical
Logic to Cybernetics

The beginning of the XXth century, regarding logic, is principally marked by the
development of predicate logic, after the seminal works by Gottlob Frege (1848–
1925), with the introduction of quantifiers (also (re)discovered independently by
O. H. Mitchell, already cited, see (Dipert 1994)). A logical system is then thought
both as a representation language, and a formal system for deduction (Geach and
Black 1980; Gochet et al. 1988, 1989). This has led to a series of very important
developments which have primarily concerned the foundations of mathematics like
the Principia Mathematica (1910) by Alfred North Whitehead (1861–1947) and
Bertrand Russell (1872–1970), or in 1931 the Kurt Gödel’s (1906–1978) incom-
pleteness theorems (Nagel and Newman 1958). We owe the notations (completed
by Whitehead and Russell) of modern logic to the mathematician Giuseppe Peano
(1858–1932). It is not the place here for presenting an history nor to even sketch a
panorama of modern mathematical logic. We just cite some names, closely related
to:

• the foundations of computability theory like Alonzo Church (1903–1995) and
Alan Turing (1912–1954) whose research works first concern the foundations of
computer science;

• the development of intuitionistic logic, which rejects the law of excluded middle,
thanks to the works (1956) of Arend Heyting (1898–1980), following the con-
structivist approach to mathematics advocated by Luitzen Egbertus Jan Brouwer
(1881–1966);

• the deduction theory in classical logic like those of Leopold Löwenheim (1878–
1957), Thoralf Skolem (1887–1963), JacquesHerbrand (1908–1931), andGerhard
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Gentzen (1909–1945) for natural deduction and sequent calculus (about them
consult (Largeault 1972; Herbrand 1968; Gentzen 1969)). These are the starting
points of the seminal works on logical deduction of Martin Davis (born in 1928)
and Hilary Putnam (1926–2016) (1960) and John Alan Robinson (1928–2016)
(1965);

• the concept of truth, semantics and model theory with Alfred Tarski (1902–1983)
(1956).

Philosophy and Cognitive Aspects

The above listed works aroused many philosophical echoes or counterpoints. Con-
cerning the first half of theXXth century, they can be found particularlywithBertrand
Russell (1956) (see also (Vuillemin 1971)), with Ludwig Wittgenstein (1889–1951)
(1921; 1969), or even with Willard Van Orman Quine (1908–2000) (Quine 1941),
or with Rudolf Carnap (1891–1970) (Carnap 1942), the latter was interested both
in logic and probability,14 like Hans Reichenbach (1891–1953). Let us also mention
Carl Gustav Hempel (1905–1997), who, like the last two authors, was a significant
representative of logical empiricism and who proposed a model for scientific expla-
nation; he left his name associated with a paradox about confirmation, “the raven
paradox” (Hempel 1965) (seeing a black raven can be taken as a confirmation that
all ravens are black, while seeing a white swan does not confirm it, although equiv-
alently all non black things are non ravens). Karl Popper (1902–1994) emphasized
the idea that a scientific theory can be falsified by one counterexample, while it can
never be proven, but only indirectly supported by the observation of consequences.
Other worth citing philosophers are John Langshaw Austin (1911–1960) for his
works on speech acts (Austin 1955) (but also on the language of perception), Paul
Grice (1913–1988) on linguistic pragmatics and dialogue (1957), and Stephen Toul-
min (1922–2009) on argumentation (1958). All these writings have indirectly later
influenced various research works in artificial intelligence, even if they first concern
the philosophy of mathematics, the philosophy of spirit, the epistemology, or the
philosophy of language.

Gregorius Itelson (1852–1926), André Lalande (1867–1963) and Louis Coutu-
rat at the IInd international congress of philosophy in Geneva in 1904 (Collective
1904) observed that they had been independently led to propose the French term
“logistique” to refer to symbolic logic in its new algebraic and mostly algorithmic
developments, and decided to adopt this new term. The term “logistique” in this
sense is now completely disused. However it is worth noticing that it was still in use
until the sixties by authors still inspired by The Laws of Thought by George Boole,
who proposed treaties on “operational logistics”, like the psychologist Jean Piaget
(1896–1980), or the physicist Augustin Sesmat (1885–1957), or even the logician
and philosopher Robert Blanché (1898–1975) (Piaget 1949; Sesmat 1951; Blanché
1970). This school of thought has been focusing not only on the formal dimension

14Carnap (1930) also underlines that from the tautological nature of deduction in modern logic
“results the impossibility of any metaphysics which could pretend to conclude from experience to
transcendent”.
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of reasoning, but also on cognitive aspects, common sense reasoning, plausible rea-
soning, argumentative reasoning, and has continued with the works of Jean-Blaise
Grize (1922–2013), or even Nicholas Rescher (born in 1928) (Blanché 1966, 1973;
Rescher 1976; Grize 1982). On the cognitive side, let us also cite the books by the
mathematician Georg Polya (1887–1885) (1945, 1954) that analyze the discovery
process of the solution of a mathematical problem, and emphasize the role played, in
particular, by analogical reasoning. Besides, Kenneth Craik (1914–1947), a philoso-
pher and a psychologist, first proposed the concept of mental models (1943). Finally,
let us also name the American logician Jon Barwise (1942–2000) as a pioneer for
advocating the cognitive interest of logical reasoningwith diagrams in formal proofs,
see, e.g., Takemura (2013).

Non-classical Logics

The first half of the XXth century also saw the introduction of various non-
classical logics: multiple-valued, modal or probabilistic logics. These topics, already
addressed in the pioneering works of a Scottish-born, French logician, Hugh Mac-
Coll (1837–1909) (Rahman and Redmond 2007), have been significantly developed
during this period. Multiple-valued logics introduce new truth values for in partic-
ular reflecting the ideas of possibly, unknown, contradictory, or not applicable, or
use intermediary truth values between true and false. Among the main contributors
in this period, let us cite Jan Łukasiewicz (1878–1956) (Łukasiewicz 1913, 1930),
Nicolai A. Vasiliev (1880–1940), Emil L. Post (1897–1954), Dmitrii A. Bochvar
(1903–1990) (Bochvar 1984), Stephen ColeKleene (1909–1994) (Kleene 1952), and
GregoreMoisil (1906–1973) (Moisil 1972).15 Let us alsomention themathematician
Karl Menger (1902–1985), who in his works on stochastic geometry introduced a
family of associative aggregation operators, called “triangular norms” (1942), which
had a significant impact on multi-valued and fuzzy logics especially. Besides, the
systematic study of modal logics starts with the works of Clarence Irving Lewis
(1883–1964), before being equipped with a semantics in terms of possible worlds
and accessibility relations by Saul Kripke (born in 1940) (Kripke 1959, 1963) and
JaakoHintikka (1929–2015) (Hintikka 1962). Georg vonWright (1916–2003) inves-
tigated their modeling capacity for many topics such as deontic logic or logic of
action (von Wright 1951). Stanisław Leśniewski (1886–1939) coined “mereology”
in 1927 to refer to a formal theory of part-whole relationships (Leśniewski 1992),
while another Polish logician, RomanSuszko (1919–1979) introduced a non-Fregean
logic (1968), inspired by Wittgenstein’s Tractatus, which is a first order modal logic
where ‘situations’ and ‘facts’ are not handled as predicates.

15Incidentally, it is notable that the first issue of one of the very first journals in computer sci-
ence (Collective 1952), a journal dedicated to both computational machinery and theoretical logic,
included in its table of contents a paper on a tri-valued logic by Bolesław Sobociński (1906–1980),
which has turned out to be the logic of conditional objects (see chapter “Representations of Uncer-
tainty in Artificial Intelligence: Probability and Possibility” in this volume).
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Probability, Decision Theory, Entropy

Regarding probability and decision theory, the period from the twenties to the sixties
of the past century16 saw a great deal of important works. Let us cite the economist
John Maynard Keynes (1883–1946) supporter of a non-frequentist vision of proba-
bility closer to logic (1921),17 the engineer Richard vonMises (1883–1953) defender
of the frequentist point of view, themathematicians AndreïMarkov (1856–1922) and
AndreïKolmogorov (1903–1987) for theirworks respectively on stochastic processes
and on the formalization of probability theory, Frank P. Ramsey (1903–1930) friend
and translator of Wittgenstein, for his works on the decision problem in first-order
logic and on the idea of subjective probability stemming from the idea of gamble
(1931), Bruno De Finetti (1906–1985) who developed (independently from the pre-
vious one) the theory of subjective probability (1937, 1974) which is at the basis of
Leonard Savage’s (1917–1971) decision theory (1954) grounded in an axiomatic jus-
tification of expected utility, the statistician I. J. Good (1916–2009) whoworked with
Turing in cryptology during the SecondWorldWar and contributed to many subjects
such as causality modeling, imprecise probability, or the possibility of constructing
intelligent machines (Good 1961, 1962a, b, 1965), the mathematician, physicist and
economist John von Neumann (1903–1957) (von Neumann 1958) who with Oskar
Morgenstern (1902–1977) modeled decision making under risk and founded game
theory (von Neumann and Morgenstern 1944), and the mathematician John Forbes
Nash (1928–2015) for his equilibrium theory in non-cooperative games (Nash 1951)
who received the Nobel Memorial Prize together with the economist John Harsanyi
(1920–2000) especially known for his analysis of games of incomplete information
(1967). Another Nobel laureate in economics, Kenneth Arrow (1921–2017) estab-
lished an impossibility theorem (1951) of a collective, democratic and rational choice
in social choice theory, providing a broader framework to Condorcet’s paradox. We
should also mention the economists Maurice Allais (1911–2010), Gérard Debreu
(1921–2004), Lloyd Shapley (1923–2017) and Robert Aumann (born in 1930), the
three latter being primarily mathematicians, who by some of their results in decision
theory or in game theory have later impacted research on AI. Finally, beyond prob-
ability, the economist George L. S. Shackle (1903–1992), influenced by Keynes,
has proposed a non-additive approach to decision under uncertainty (1949, 1961)
based on the notion of degree of surprise (which will turn out to be an impossibil-

16In the previous period, some economists such as Léon Walras (1834–1910) and Carl Menger
(1840–1921) (Karl Menger’s father), as well as the logician William Stanley Jevons, introduce the
notion ofmarginal utility in value theory for reflecting the interest a particular agent takes in a good or
service, while Vilfredo Pareto (1848–1923), who advocated an ordinal view of utility, characterized
situations where one cannot increase an agent’s well-being without decreasing another agent’s one,
giving rise to the notion of optimum which bears his name; besides, he makes a distinction between
logic actions like the ones studied in economy and non-logical actions studied in sociology (Pareto
1961).
17His father was also a distinguished economist, fond of logic (Keynes 1900).
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ity degree in the sense of possibility theory18), while the philosopher L. Jonathan
Cohen (1923–2006) has advocated a theory of “Baconian probabilities” in terms
of measures of inductive support, which can be seen as a counterpart of possibility
theory (1970). In addition, let us cite two philosophers of probability, Henry Kyburg
(1928–2007), inventor of the so-called lottery paradox, and supporter of a logical
standpoint of probability stemming from the notion of reference class, and Isaac Levi
(born in 1930), defender of Shackle, and pioneer of belief revision and imprecise
probabilities.

Entropy is a basic notion that can be encountered in different fields. Indeed
there exists a parallel between entropy in statistical thermodynamics (as estab-
lished by Ludwig Boltzmann (1844–1906) and J. Willard Gibbs (1839–1903)), and
information-theoretic entropy (as proposed later by Ralph Hartley (1888–1970) and
by Claude Shannon (1916–2001) the founder of information theory). Edwin Thomp-
son Jaynes (1922–1998), who extensively contributed to the foundations of probabil-
ity and statistical inference, initiated the maximum entropy interpretation of thermo-
dynamics (Jaynes 1957). A measure of relative entropy, called Kullback–Leibler
divergence (1951) (introduced by Solomon Kullback (1907–1994) and Richard
Leibler (1914–2003)) is a key notion for evaluating the similarity between prob-
ability distributions. Besides, the idea of structural equations, an instrumental notion
in the probabilistic analysis of causality, has emerged from thework of SewallWright
(1889–1988) (Wright 1921), a geneticist and a statistician, before being fully the-
orized by the Nobel laureate economist Trygve Haavelmo (1911–1999) (Haavelmo
1943).

Cybernetics

In another vein, cybernetics (Wiener 1949) has emerged in the forties and the fifties
as a new transdisciplinary field of research, under the leadership of Norbert Wiener
(1899–1969) who considered it as “the scientific study of control and communication
in the animal and the machine”, where ideas coming from mechanics, biology and
electronics interact (Rosenblueth et al. 1943). This field of investigation has been
influenced by works in neurology which led Warren McCulloch (1898–1969) and
Walter Pitts (1923–1969) (McCulloch and Pitts 1943) to propose the first model of
formal neuron19 (able to implement monotonic logical functions). Besides, the role
of neurons in learning mechanisms was highlighted by the neuro-psychologist Don-
ald O. Hebb (1904–1985) (Hebb 1949). The perceptron (1962), invented in 1957 by
Frank Rosenblatt (1928–1971) can be seen as the simplest type of formal neurons
network (perceptrons had one layer). Questioning the possibility of a Boolean repre-
sentation of human intelligence activities, Rosenblatt’s approach was sidelined for a
while after the limited capabilities of perceptrons were discovered and emphasized
by Marvin Minsky (1927–2016) and Seymour Papert (1928–2016) (1969).

18This theory was rediscovered independently by Lotfi Zadeh (1921–2017) in his approach to the
representation of linguistic information, and for its qualitative counterpart, by the philosopher David
Lewis (1941–2001) in his work on counterfactuals (1973).
19The neurons as basic units of the nervous system were discovered by the neuro-anatomist
S. Ramon y Cajal (1852–1934) in the late1880’s.
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In Great Britain, William Ross Ashby (1903–1972), a psychiatrist and one of
the main cyberneticists (1952, 1956), constructed a system called “homéostat” in
1948, which was made of interconnected control modules, able of self-adaptation
with respect to its environment, and equipped with reinforcement learning capabil-
ities. Besides, the neuro-physiologist William Grey Walter (1910–1977) built two
“tortoises” robots (named “Elsie” and “Elmer”), capable of adaptative behavior in
response to light stimuli. Let us also cite Gregory Bateson (1904–1980) for his
hierarchical view of learning, influenced by cybernetics (1972). In Germany, cyber-
netics was supported by the philosopher and logician Gotthard Günther (1900–1984)
(Günther 1957), and in France by Louis Couffignal (1902–1967) who, as a special-
ist in machine-based computation, became highly interested in the idea of “thinking
machines” (1952), aftermeetingswith the neuro-physiologist Louis Lapicque (1866–
1952) (1943). Let us note that from the beginning researchworks in cybernetics raised
great interest and questions well beyond laboratories (Wiener 1950; De Latil 1953;
Delpech 1972; Dubarle 1948), on the use of science, while others, more radically,
already worried about the dangers for humanity caused by the development “with a
frightening speed” of “the civilization of machines” (Bernanos 1947).

Information Theory and Computability

Apart from the boom of cybernetics, landmark works in the years preceding the
official birth of AI are those of Claude Shannon (1916–2001) on the foundation of
information theory (after his pioneering works on the use of algebra and logic for
describing relay and switching circuits (Shannon 1938)), those of John vonNeumann
(1903–1957) on the architecture of computer systems and on the theory of automata
(1966), and those of Alan Turing (1912–1954) on the functions that can be computed
by machine. These three authors were also much involved in discussing questions
related, on the one hand, to the possibility of building “thinking machines”, and, on
the other hand, to the comparison of the functioning of human brain with the first
computers that just came out at that time and were essentially devoted to numerical
computing (Shannon 1950, 1956; vonNeumann 1956; Turing 1950, 1956). The year
1950 sees the publication of several papers referring to the idea of thinkingmachines:
those just cited, by Shannon (on the basic principle of chess game programming),
and by Turing (where his famous test is proposed for determining whether a machine
demonstrates intelligence or not), but also a paper (1950), by the young Lotfi Zadeh,
future father of fuzzy logic. Let us also have a particular mention for Konrad Zuse
(1910–1995), German pioneer of the transition from mechanical calculators to mod-
ern computers, and author in 1945 of a computing program for chess game, and the
English computer scientist Christopher Strachey (1916–1975), author in 1951 of a
program able to play checkers (Link 2012; Strachey 1952).

Let us also emphasize thatAlanTuring, apart his famous “Turing test”, foresaw the
importance ofmachine learning (especially reinforcement learning) in his 1950 paper
(and in a report before, see (Turing 1948)). Alan Turing, who died two years before
the first AI meetings at Dartmouth College, may be certainly regarded as the main
grandfather of AI. At that time, the intelligence of a machine was mainly considered
in terms of computation and memory capabilities required for its implementation,
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or is influenced by cybernetics, as for example in the work on the representation of
events in neuronal networks by Stephen Kleene (1956) (who contributed before to
the characterization of recursive functions).

The 1950s also saw the very beginning of research on automatic translation with
Yehoshua Bar-Hillel (1915–1975), linguist (1954) and mathematician, student of
Carnap (1952), who organized in 1952 the first International Conference onMachine
Translation; he also pioneered information retrieval (1963) (of which, since 1945,
the engineer Vannevar Bush (1890–1974) prophesied the rise with the advent of
computers 1945).

Literature and Cinema

Before coming to modern AI, let us end this section by mentioning the impact of
machines and computer science on literature and cinema. At the beginning of the
XXth century, while the role of machines in industry was increasing, robots started to
appear in literature. For instance, the protagonist of a short story (1913) by the human-
istic philosopher Miguel de Unamuno (1864–1936), visits a city, “Mecanópolis”,
exclusively inhabited by machines. This narrative is in line with the novel Erewhon
(1872) by the English writer Samuel Butler (1835–1902); it is a satire of the Victo-
rian era where the author imagines that machines could develop consciousness by
a kind of Darwinian selection. Another example is provided by the play Poupées
Électriques, (i.e., “Electric Dolls”) published in French, with two puppet characters
(in French, “fantoche”), where the Italian writer Filippo Tommaso Marinetti (1876–
1944), founder of the Futurist movement (1909), has sketched a parallel between
humans and the electric puppets, able to react, built by one of the characters of the
play. The term “robot” (coming from Czech “robota”, which means “heavy work”)
was used for the first time byKarel C̃apek (1890–1938) in his playR.U. R. (Rossum’s
Universal Robots) (1921). The robots have then inspired a whole trend in science
fiction literature starting, in particular, with the I. Asimov’s (1920–1992) collection
of short stories I, Robot (1950). Besides, the effervescence of discussions aroused
by cybernetics inspired writers such as Elsa Triolet (1896–1970) in her novel L’âme
(1963), or Henry Certigny (1919–1995) who in Les automates (1954), both renewing
the tradition of animated doll stories of the XVIIIth century in different manners.
Marvin Minsky (1927–2016), one of the fathers of AI, has also contributed later to
this literary trend (Harrison and Minsky 1992). Mentioning the influence of cyber-
netics and AI on more contemporary science fiction literature is outside the scope of
this brief historical overview.20

From a completely different viewpoint, works on combinatorial reasoning and
advances in computer science have offered new opportunities to literary creation.
Thus, the writer Raymond Queneau (1903–1976) and François Le Lionnais (1901–
1984), engineer by training, created a research group, the OULIPO (“OUvroir de
Littérature POtentielle”)21 in 1960,which developedworks in experimental literature

20The reader could consult the website http://en.wikipedia.org/wiki/Artificial_intelligence_
in_fiction.
21http://www.oulipo.net/.
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that rely on the use of syntactic and semantic constraints. It is worth noticing that
from its beginning, this group included writers such as Italo Calvino (1925–1985)
or Georges Perec (1936–1982), but also scientists such as the mathematician Claude
Berge (1926–2002), one of the modern founders of combinatorics and graph theory.
This group later inspired the birth of another group named ALAMO (“Atelier de
Littérature assistée par la Mathématique et les Ordinateurs”),22 founded in 1981
by Paul Braffort (1923–2018),23 engineer in cybernetics and by the poet Jacques
Roubaud (born in 1932), andmore oriented towards computer-aided literary creation.

From the very beginning of cinema, fantasy and science fiction literatures inspired
numerous movie adaptations. We limit ourselves to some emblematic movies.24

Among the first adaptations, let us cite Gulliver’s Travels Among the Lilliputians
and the Giants (1902) by G. Méliès (1861–1938), Frankenstein (1910) by J. S.
Dawley (1877–1949), Fritz Lang’s (1890–1976) Métropolis (1927) adapted from
the Thea von Harbou’s (1888–1954) eponymous novel (1926). The transition to
talking pictures generated further adaptations such as Frankenstein (1931) and then
Bride of Frankenstein (1935) by J. Whale (1889–1957), parodied in M. Brooks’
(born in 1926) Young Frankenstein (1974), Pinocchio (1940) by W. Disney (1901–
1966), S. Kubrik’s (1928–1999) 2001: A Space Odyssey (1968), inspired from the
A. C. Clarke’s (1917–2008) short story The sentinel (1951), R. Scott’s (born in
1937) Blade Runner (1982) adapted from the Ph. K. Dick’s (1928–1982) novel Do
AndroidsDreamof Electric Sheep? (1968), S. Spielberg’s (born in 1946)AI. Artificial
Intelligence (2001) inspired from the B. Aldiss’ (1925–2017) short story Supertoys
Last All Summer Long - and Other Stories of Future Time (2001).

7 The Beginnings of the AI Era

As already said in the introduction of this chapter, the birth certificate of Artificial
Intelligence corresponds to a two-month meeting program with ten participants held
at Dartmouth College (Hanover, New Hampshire, USA) in the summer of 1956, led
by two young researchers25 who, for different reasons, would then strongly mark

22http://www.alamo.free.fr/.
23Paul Braffort has also been the author of the first French monograph on AI (1968). We are very
glad that he kindly accepted to write the foreword of the Volume 3 of this treatise.
24For more details, the reader may, for example, consult the website http://homepages.inf.ed.ac.uk/
rbf/AIMOVIES/AImovai.htm.
25With the help of Claude Shannon and Nathaniel Rochester (1919–2001). The latter was the
designer of the IBM701 computer and the author of the first program in assembly language, and had
interests close toAI (Rochester et al. 1956). The request for support, already titled “Aproposal for the
Dartmouth summer research project onArtificial Intelligence” dates back from the previous summer
and was jointly signed by McCarthy, Minsky, Rochester and Shannon (McCarthy et al. 2006). The
six other participants were TrenchardMore, AllenNewell, Arthur Samuel, Oliver Selfridge, Herbert
A. Simon, and Ray Solomonoff (1926–2009). This last researcher, who was a pioneer of the concept
of algorithmic probability, circulated a report (1956) the same year, which was the beginning of his
future theory of universal inductive inference and one of the first approaches to probability-based

http://www.alamo.free.fr/
http://homepages.inf.ed.ac.uk/rbf/AIMOVIES/AImovai.htm
http://homepages.inf.ed.ac.uk/rbf/AIMOVIES/AImovai.htm
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the development of the discipline: John McCarthy (1927–2011) and Marvin Minsky
(1927–2016), the former advocating a purely logical view of knowledge represen-
tation (1996, 1990), the latter coming from neural nets and reinforcement learning
(1954) and favoring the use of structured representations of stereotypes of situations
(alias “frames” (Minsky 1975)) that may include different types of information. It
was during these meetings that the expression “Artificial Intelligence” (defended
by McCarthy) was used for the first time in a systematic way to designate the new
field of research. However, it was far from being a consensual term, some of the
researchers participating in the program seeing there a complex processing of infor-
mation, and nothing more. Among themwere Alan Newell (1927–1992) and Herbert
Simon (1916–2001), who, as well, were going to have a significant impact on the
development of AI.

First AI Programs

It was indeed in 1956 that Newell and Simon, in collaboration with John Cliff Shaw
(1922–1991), presented a first computer program, the “Logic Theorist” capable of
demonstrating logical theorems (such as those appearing at the beginning of the
Principia Mathematica ofWhitehead and Russell) (Newell and Simon 1956; Newell
et al. 1957), before presenting a “General Problem Solver”, or “GPS”) (Newell et al.
1959) based on the evaluation of the difference between the situation at which the
solver has arrived and the goal it has to achieve (aka means-end analysis). Another
participant in the Dartmouth encounters, Oliver Selfridge (1926–2008) is a pioneer
(already cited) of pattern recognition26 and machine learning (1959) (see also his
work with Minsky, see (Minsky and Selfridge 1961)). He has also been at the origin
of the notions of “pattern matching” (Selfridge 1959) and “daemon” (which allows
us to associate some pieces of code with the filtering process), two notions that have
proven very useful for knowledge-based systems. Herbert Gelernter (1929–2015)
achieved the first automated theoremprover (“GTP”) in elementary geometry (1959).
At the same time, Robert Lindsay developed SADSAM (which stands for “Syntactic
Appraiser and Diagrammer Semantic Analyzing Machine”), a program capable of
establishing and reasoning on relations between items in a speech (1963), while
James Slagle (born in 1934) conceived a symbolic integration program (SAINT for
“Symbolic Automatic INTegrator”) (1963), and the program “Student” developed by
Daniel Bobrow (1935–2017) solved elementary problems of arithmetic, expressed
in natural language (1964). For more details, one can find a collection of articles
representative of early works inAI until the early 1960’s in Feigenbaum and Feldman
(1963). InUnitedKingdom,DonaldMichie (1923–2007), a biologist and a pioneer of
artificial intelligence, developed theMachine EducableNoughtsAndCrosses Engine

machine learning in artificial intelligence (this latter phrase is used in his report of August 1956!).
As to Trenchard More, he was preparing a thesis on the concept of natural deduction which he later
defended (1962).
26Pattern recognition is born in the same time as AI (Dinneen 1955; Selfridge 1955; Clark and
Farley 1955). Moreover Selfridge’s work has in turn influenced the work of the cyberneticians
Jerome Lettvin (1920–2011), Humberto Maturana (born in 1928), Warren McCulloch, and Walter
Pitts (Lettvin et al. 1959).



Elements for a History of Artificial Intelligence 25

(MENACE), one of the first programs capable of learning to play the gameofTic-Tac-
Toe (1963). He was also the founder and editor-in-chief of theMachine Intelligence
series, of which nineteen volumes were published,27 which was especially influential
in the late sixties and seventies (Collins and Michie 1967; Dale and Michie 1968;
Meltzer and Michie 1968–1972; Elcock and Michie 1977; Hayes et al. 1979).

Among the different works thatmarked the beginnings ofAI, one can still mention
the program “Analogy” (1964) developed by Thomas G. Evans (born in 1934), that
was capable to find out, as in a IQ test, the fourth geometrical figure among several
possible choices in order to complete a series of three (which required a conceptual
representation of the figures). Processing texts or dialogues in natural language also
concerned AI very early, either for trying to understand something of their contents,
or for generating sentences automatically. The program “ELIZA” (1966) by Joseph
Weizenbaum (1923–2008), was able in 1965 to dialogue in natural language by
identifyingkeyphrases in sentences and reconstructing sentences from thembyfilling
in ready-made structures (it succeeded for a moment in duping some human users
who thought they were dealing with a human!). Yet “ELIZA” did not construct any
representation of the sentences of the dialogue and therefore had no understanding
of the dialogue at all. The program “SHRDLU” (1971) by Terry Winograd (born in
1946) was the first to construct such representations and to exploit them in dialogues
concerning the relative positions of blocks in a simplified block world.

Programming Languages

In order to write such programs more easily, programming languages devoted to the
symbolic processing of information were necessary. Specified as early as 1958 by
McCarthy, and inspired from the λ-calculus of Alonzo Church, LISP (for “LISt Pro-
cessing”) developed in the 1960s (McCarthy et al. 1962) quickly became a reference
language for AI programming. While LISP is a functional programming language,
PROLOG (for PROgramming in LOGic) is, as its name suggests it, a logic pro-
gramming language (it is based on the first-order predicate calculus) (Colmerauer
1978; Colmerauer and Roussel 1992). PROLOG appeared in the 1970s and became
another key language for AI programming.28 Other pioneering works such as Carl
Hewitt’s one about the actor model of computation (1969, 2009) also contributed
to the development of AI programming. This period was also marked by a certain
amount of research which based knowledge representation on logic. Let us mention
the situation calculus (McCarthy andHayes 1979), a formal framework for reasoning
on dynamic worlds, the application of automated theorem proving to query answer-
ing systems (Green 1979), and the STRIPS (“STanford Research Institute Problem
Solver”) language for planning, and its algorithm based on the means-end analysis
(as in the already mentioned “General Problem Solver”) (Fikes and Nilsson 1971).
Let us not forget the progress achieved during this period in automated theorem
proving (1971), especially with the work of Woodrow Bledsoe (1921–1995).

27http://www.doc.ic.ac.uk/~shm/MI/mi.html.
28Alain Colmerauer (1941–2017), the father of the PROLOG programming language, was also the
inventor of the founding principles of constraint logic programming.We are very glad that he kindly
accepted to write the foreword of the Volume 2 of this treatise.

http://www.doc.ic.ac.uk/~shm/MI/mi.html
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Problem Solving and Cognitive Issues

While logic plays a key role in knowledge representation, problem solving has been
influenced by cognitive psychology (Newell and Simon 1972). The psychologist
Roger Schank (born in 1946) is in particular at the origin of the idea of case-based
reasoning (Schank and Abelson 1977). The need of control structures for solving
problems in order to avoid a scattered search, or, on the contrary, to go too far into
a dead end, led to the use of if-then rules and sophisticated filtering procedures
(see for instance Moore and Newell 1974). Newell was also influenced by George
Pólya (1887–1985) and the importance of the concept of analogy in the search for
solutions (Newell 1981). Let us also mention the “Logo” programming language
(created in 1967 by D. Bobrow, W. Feurzeig, S. Papert and C. Solomon), related to
LISP and conceived as an interactive learning tool for children (a small turtle-robot
allowed them to visualize the result of actions) (Papert 1980), a project inspired
by the works of Jean Piaget. Another lasting influence on AI (and on Theoretical
Computer Science) was the one of the linguist Noam Chomsky (born in 1928) in the
field of formal language structures and grammars.

Checkers and Chess

As has been said, AI was interested, even before its name had been found, by the
development of programs capable of playing checkers or chess. The first programs,
notably those by Arthur Samuel (1901–1990) for the checkers (1959),29 and by
Alex Bernstein (1958) for chess, appeared in the early 1960s. Over the decades,
such programs, such as the “MacHack” program by Richard Greenblatt (born in
1944) in the late 1960s, succeeded in beating players of increasingly higher levels.
In the 1970s, research in this field (Berliner et al. 1977) is marked by the idea of
endowing the computers with capacities for the implementation of sophisticated
strategies, evolving dynamically (as in the work of Hans Berliner (1929–2017)).30

However, it is first and foremost the computational power of a computer capable of
exploring gigantic combinatorial spaces that finally overcome the world champion
of the discipline (victory of the Deep Blue computer on Gary Kasparov in 1997).

Expert Systems

The 1970s and early 1980s were marked by the achievement of many expert systems
(Smith 1984) where pieces of knowledge about a specialized field were expressed
as if-then rules, and applied to any set of facts describing a situation on which the
system must produce conclusions. The first ones were DENDRAL in organic chem-
istry (Lindsay et al. 1980), MYCIN in medicine (Buchanan and Shortliffe 1984),
HEARSAY-II in speech understanding (Erman et al. 1980), PROSPECTOR in geol-
ogy (Duda et al. 1976, 1981). Alongside the mainstream of AI, let us mention the

29Samuel’s program initiated the use of tree-pruning procedures of alpha-beta type, and already
had skills to learn its cost function.
30In relation to theorem proving and then to chess, let us also cite Jacques Pitrat (1970, 1977), who
among other things highlighted the role of metacognition in problem solving and learning processes
(2000). We are very glad that he kindly accepted to write the foreword of this volume.
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parallel development of “fuzzy” rule-based systems, in particular for interpolation
purposes, where rules have a graded applicability due to their representation based
on fuzzy sets (Zadeh 1965). The proper handling of such rules are part of a theory
of approximate reasoning, itself based on the possibility theory by Zadeh (1978).
Fuzzy rule-based systems quickly found applications for the automatic control of
many different devices, thanks to the pioneeringwork of E.H.Mamdani (1942–2010)
(Mamdani andAssilian 1975;Dubois and Prade 2012) (fuzzy ruleswere representing
expertise in piloting the device under consideration, in case no mathematical model
was available).

Constraints, Vision and Natural Language

Among the remarkable advances of the 1970s, let us also cite heuristic search algo-
rithms (Hart et al. 1968), and systems exploiting constraints by propagating them, as
in the approach of DavidWaltz (1943–2012) to recognize in a picture the lines corre-
sponding to the edges of solids and their relative positions (1975), which would later
extend to many other domains where constraint representation is naturally required.
It was also the beginnings of the research activities in computer vision, marked by the
work (1982) of DavidMarr (1945–1980), in collaboration with Tomaso Poggio (born
in 1947). In this work, vision is understood as an information processing process with
three distinct, yet complementary levels of analysis (a computational level, an algo-
rithmic / representational level, and an implementational / physical level). Another
research area, directly related to AI, and for which some important achievements
have been got during this period, is that of natural language understanding, with
the works of Robert Schank (already cited) (1973), William Woods (born in 1942)
(1975), Yorick Wilks (born in 1939) (1972), and the controversy about procedural
semantics (Fodor 1978; Johnson-Laird 1978).

Mobile Robots and Planning

The 1970s were also the years of the first experiments with mobile robots (espe-
cially, the “Shakey” robot at SRI (Menlo Park, Ca), see (Raphael 1976)), which
jointly posed problems of computer vision (Nevatia and Binford 1977), knowledge
representation, and motion planning.31 This was the period when the first theoreti-
cal works on planning appeared, such as those of Earl D. Sacerdoti (born in 1948)
(1977). Ten years later, at MIT, Rodney Brooks (born in 1954), has been interested
in the design of robots that are reactive to their immediate environment, but act with-
out using a representation of the world in which they live (1989). This research is
contemporaneous with the development of the study of multi-agent systems in AI,
the premises of which being in Minsky’s writings (1986), see also Georgeff (1983).

In the 1970’s, the first academic and institutional criticisms of AI also emerged in
the United States and in Great Britain (Lighthill 1973; Hendler 2008), and this has
had a significant impact for a decade on the funding of AI research. AI was accused

31Other experiments with mobile robots of that time are the Stanford “Cart” project in the late
1960s, and a bit later the French “HILARE” project (Giralt et al. 1979) and the Carnegie Mellon
University rover (Moravec 1982).
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of not keeping the excessive promises made at the beginning, because of the very
limited power of the computers and also of the lack of maturity of the area.32

This historical tour stops voluntarily at the beginning of the 1980s, considering
that the reader will be able to find additional elements for the more recent history
of each of the many facets of AI in the different chapters of this book. For a global
picture of AI research in the 1980s, let us also mention (Barr and Feigenbaum 1981,
1982; Cohen and Feigenbaum 1986, 1990; Grimson and Patil 1987). As can be seen
in this brief historical overview, AI has developed largely in the United States, before
becoming a research area in Europe in the 70s (even in the 60s for the UK), and then
in Asia.

8 Conclusion

There exist a number of books and documents relating various aspects of the history
of AI, including the modern one, to which the interested reader is referred for further
details (Anderson 1964; McCorduck 1979; Rose 1984; Pratt 1987; Kurzweil 1990;
Crevier 1993; Nilsson 2010; Buchanan 2005; Buchanan et al. 2013). However, this
chapter substantially departs from the above references by attempting to draw a large
historical picture of the many events that led to the emergence of AI. It is clear that
such an entreprise, done for the first time (as far as we know) faces unavoidably the
risk of missing noticeable names. We apologize in advance for such omissions.

AI is not just a matter of technology. As any science, its concerns have roots far
away in the past. Our objective was to give here a picture of AI rooted in a long tradi-
tion of research, and to show the synergies that are still at work between imagination,
science and technology. It is in this will that the main originality of this chapter lies.
It may be important to know the history of AI for better understanding from where
it comes and where it goes, especially if we consider the present effervescence, and
the questions and fears that are induced.

Acknowledgements The authors are especially indebted to Jens Lemanski who provided them
with valuable references and comments, in particular on Johann Christian Lange and the history of
Euler-type diagrams.

32In one of the answers to this report, that of Christopher Longuet-Higgins (1923–2004), one can
find for the first time, the expression “cognitive science (s)” (Hünefeldt andBrunetti 2004). Longuet-
Higgins was a co-founder with Richard Gregory (1923–2010) and Donald Michie (1923–2007) of
the Department of Machine Intelligence and Perception of the University of Edinburgh in 1967.
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Knowledge Representation: Modalities,
Conditionals, and Nonmonotonic
Reasoning

Andreas Herzig and Philippe Besnard

Abstract The aim of the present chapter is to overview three important tools for
knowledge representation that are strongly interrelated. All three can be traced back
to a fundamental limitation of classical logic: its connectives are truth-functional,
which does not allow to reason about some concepts such as modalities and “if-
then” relationships between propositions. To witness, most of the students in an
introductory course on logic have a hard time to accept that the implication “if A then
B” should be identified with “A is false or B is true”. Indeed, such an identification
leads to validities that are rather counter-intuitive, such as “B implies A implies B”
or “A implies B, or B implies A”. In introductory courses it is often omitted that
the above interpretation of the so-called material implication was subject of much
concern among scholars in the past. Their work led to the development of several
families of formalisms thatwill be presented in this chapter:modal logics, conditional
logics, and nonmonotonic formalisms. The next three sections detail the definitions
of each of these: the modal logics K and S5, the conditional logics due to Stalnaker
and Lewis, and the preferential and rational nonmonotonic reasoning formalisms.
We then study the relationship between conditional logics and dynamic epistemic
logics. The latter are a family of modal logics that got popular recently. We show
that they can be viewed as particular logics of indicative conditionals: they are in the
Stalnaker family and violate all of Lewis’s principles.

1 Introduction

The program of the logical approach to AI is to develop methods for the represen-
tation of knowledge by means of logical formulas in order to enable the inference
of conclusions from these formulas. Scholars first focussed on classical logic. The
language of that logic provides logical operators whose most important are negation
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(¬), conjunction (∧), disjunction (∨), material implication (→) and equivalence
(↔). These operators are all truth-functional. For example, the truth value of the
implication A → B is a function of the truth value of A and the truth value of B,
given that A → B is true if and only if A is false or B is true.

However, it became clear rather quickly that truth-functional operators do not
allow us to work with some concepts that are important in knowledge representation.
Here are three examples of such concepts:

• necessity and possibility;
• an agent’s knowledge and belief1;
• conditionals “if-then”.

For example, when A is false there are two possibilities: either A is necessarily
false, or A is not necessarily false, and therefore possibly true. The same distinction
applies when A is true. This shows that the truth value of “necessarily A” cannot be
a function of the truth value of A.

Similarly, when some agent believes that A is true then A can be either true or
false.

As to conditionals, one may criticise the truth-functionality of the material impli-
cation itself: the formula ¬A → (A → B) being valid in classical logic, falsehood
of A is enough for the implicational link between A and B. This is however not how
things work when we use the “if-then” construction in natural language. An example
that can be found in several variations in the literature is obtained by reading A as
“the moon is made of green cheese” and B as “Earth is flat”: it sounds odd to say that
A implies B, but this is nevertheless true in classical logic given that A is (believed
to be) false. What we would like to have is an operator “⇒” such that falsehood of
A is not enough to establish an implicational link between A and B. Formally, we
are looking for a semantics where ¬A → (A ⇒ B) fails to be valid.2

The problem of truth-functionality of the classical operators was studied by
philosophers well before the beginnings of AI. They proposed extensions of classical
propositional logic by non truth-functional concepts:

• modal logics in order to reason about necessity andpossibility (Lewis andLangford
1959);

• epistemic logics to reason about knowledge and belief (Hintikka 1962),

1We note that knowledge and belief are part of an agent’s mental attitudes. Other such attitudes
exist and cannot be represented by means of truth-functional operators either. These attitudes are
presented in detail in chapter “,Formalization of Cognitive-Agent Systems, Trust, and Emotions”
of this volume.
2Note that one might as well wish to avoid validity of the nested conditional formula ¬A ⇒ (A ⇒
B). Such a project does not require a material implication, which amounts to studying ⇒ as a ‘full-
fledged’ implication operator that is an alternative to →. This can e.g. be done in a logical language
with operators ⇒, ¬, ∧ and ∨. This leads us to so-called substructural logics such as intuitionistic
logic or linear logic (Troelstra 1992). However, most researchers in AI tend a less radical position
and study extensions of classical logic by a further logical operator ⇒. We consequently restrict
our presentation to such approaches.
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• conditional logics to reason about implications other than material implication
(Stalnaker 1968; Lewis 1979).

Taking advantage of the invention of a simple and intuitive possible worlds semantics
by the end of the 1950s by Saul Kripke (1963), the so-called non-classical logics
found numerous applications both in philosophy and in AI.

Let us have a closer look at the properties of the material implication →. Beyond
truth-functionality it has other properties that are considered undesirable by many:

1. Monotony: if A → B then (A ∧ A′) → B, for every A′;
2. Contraposition: if A → B then ¬B → ¬A;
3. Transitivity: if A → B and B → C then A → C ;
4. Simplification of disjunctive antecedents: if (A ∨ A′) → B then A → B and

A′ → B.

It was shown that these properties are related (Nute 1980, 1984). A classical counter-
example against monotony is the proposition “if I pour sugar in my coffee (A) then
I like my coffee (B)” which does not license the conclusion “if I pour sugar in my
coffee (A) and I pour diesel in my coffee (A′) then I like my coffee (B)”.3

In AI, scholars focussed on the monotony property, notwithstanding the fact that
the four undesirable properties of material implication are related, as we have said
above.4 They aimed at a conditional differing from material implication not only by
the absence of truth-functionality, but also by the absence of monotony.

Let us inspect monotony and contraposition in more detail. Each of them can be
formulated in two different ways, viz. as axioms:

(A → B) → ((A ∧ A′) → B) and (A → B) → (¬B → ¬A)

and as inference rules:

“if |= A → B then |= (A ∧ A′) → B” and “if |= A → B then |= ¬B → ¬A”.

The requirements of absence of monotony and contraposition can therefore be for-
mulated in two different ways. The first leads to the study of logics of the operator
⇒ that fail to validate the formulas

(A ⇒ B) → ((A ∧ A′) ⇒ B) and (A ⇒ B) → (¬B ⇒ ¬A).

3The example is Goodman’s (1947), who proposes the requirement that A′ should be cotenable
with A for such an inference. His paper is dedicated to the quest of a definition of such a conditional;
however, having discussed several unsatisfactory proposals he ends up defining cotenability in terms
of the conditional, thus resulting in a circular definition.
4Precisely, for Nute’s weak conditional logic W the following holds: “Any �	-normal extension of
the conditional logicWwhich is closed under one, is closed under all” (Nute 1980). It is however not
the case that the principles are always equivalent: for example, in System C of Sect. 4.1, monotony
and transitivity are equivalent, but monotony does not imply contraposition.
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In the second perspective, wemay reformulate the two properties using the deduction
theorem as follows:

“if A |= B then A ∧ A′ |= B” and “if A |= B then ¬B |= ¬A”

Then the object of study is no longer an operator of the object language, but rather
a relation of logical consequence that is not in the object language but rather in the
metalanguage. We are then interested in logical consequence relations |≈ that have
none of the following properties:

“if A |≈ B then A ∧ A′ |≈ B” and “if A |≈ B then ¬B |≈ ¬A”

While the conditional operator ⇒ was mainly studied by philosophers, the symbol
of nonmonotonic consequence |≈ was introduced by researchers in AI. The main
difference is that just as the operator of necessity �	 and the epistemic operator K
(“the agent knows”), ⇒ is an object language operator, while |≈ is a metalanguage
relation. Just as the symbol of logical consequence |=, it is therefore not part of the
logical language. The operator ⇒ is a weakening of →, while the operator |≈ is
a weakening of |=. The term “weakening” has to be understood as “weakening of
the logical properties”. Somewhat in contrast with that, in set-theoretic terms the
relation |≈ is a superset of the relation |=. Indeed, the nonmonotonic deduction is
supposed to “go beyond” monotonic deduction: from the same hypotheses B, |≈
should allow us to deduce more than |=. For each nonmonotonic relation |≈ , we
expect that B |= C implies B |≈ C . This postulate is called supra-classicality.5

The property of nonmonotony that is shared by ⇒ and |≈ takes two different
forms: for ⇒, it corresponds to the non-validity (falsifiability) of the axiom schema

(A ⇒ B) → ((A ∧ A′) ⇒ B).

For |≈ , it corresponds to the fact that there are A, A′ and B such that A |≈ B and
A ∧ A′ |�≈ B. The rejection of monotony of the relation |≈ is illustrated by resorting
to similar counter-examples. The classical example inAI is the proposition “if Tweety
is a bird (A) then Tweety flies (B)” which should not allow us to conclude that “if
Tweety is a bird (A) and Tweety is a penguin (A′) then Tweety flies (B)”.

In the next three sections we introduce the three families of formalisms that
we have mentioned above: modal logics (Sect. 2), epistemic logics (Sect. 3), and
conditional logics (Sect. 4). For each family we give two important formalisms. In
the last Sect. 5 we revisit conditional logics in the light of a family of logics called
dynamic epistemic logics (DEL), which are modal logics that became popular about
20 years ago. Just as the conditional operator, their dynamic operator is a binary

5The terms ‘postulate’ and ‘axiom’ both designate formal properties that are desired to hold. As
customary we call such a property ‘axiom’ when it is formulated in the object language and ‘postu-
late’ when it is formulated in the metalanguage (see e.g. the AGM revision postulates Alchourrón
et al. 1985). Inference rules are therefore particular postulates having one or more object language
formulas as premisses and a single object language formula as conclusion.
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modal operator (relating two formulas). In its most basic form it is written [A!]B
and is read “after the public announcement of A, B is the case”. It can be viewed
as a subjective, epistemic version of a conditional operator that is evaluated w.r.t.
an agent’s beliefs. This becomes clear when one reads [A!]B as “if the agent learns
that A then B will be the case”. We study the logical properties of this operator from
the conditional logic perspective: somewhat surprisingly, it will turn out that while
the principles of the basic conditional logic CK are valid, almost all the principles
beyond those of CK are invalid. As we will see, most of them fail when A has the
form of particular epistemic formulas, the so-called “Moore sentences”. The latter
are formulas of the form A ∧ ¬KA (“A is true and the agent does not know this”).

2 Two Basic Modal Logics

We now present the basic modal logic K and its extension S5. The latter has been
chosen by many as the logic of knowledge.

Formulas are built from a countable set of propositional variables Prp and the
operators ¬ and ∧ of propositional logic, plus the modal operator �	. Formally, the
modal language is defined by the following grammar:

A ::= p | ¬A | A ∧ A | �	A

where p is a propositional variable. The formula �	A is read “A is necessary”. We
use A, B, C ,…, to denote formulas.

Here are some examples of formulas: A = �	p → p, read “if p is necessary then p
is true” and B = �	p → �	�	p, read “if p is necessary then p is necessarily necessary”.
We will see that neither of these formulas is valid in the modal logic K, while both
are valid in modal logic S5. Finally, the formula C = p → �	p (“if p is true then p
is necessarily true”) will be invalid in both K and S5.

The operators�,∨,→ and↔ are defined as usual by the following abbreviations:
� is p ∨ ¬p, for some arbitrary propositional variable p; A ∨ B is ¬(¬A ∧ ¬B),
A → B is ¬A ∨ B, and A ↔ B is (A → B) ∧ (B → A). Finally, the formula ♦A
abbreviates ¬�	¬A. It can be read “A is possible”.

2.1 The Modal Logic K

We now briefly present the semantics and the axiomatisation of the basic normal
modal logic K (whose name honours its inventor Saul Kripke).

The models of K are triples of the form M = 〈W, R, V 〉 whereW is a non-empty
set (“the possible worlds”), R ⊆ W × W is a binary relation on W (“the accessibil-
ity relation”), and V : Prp −→ 2W is a valuation associating to each propositional
variable p its extension V (p) ⊆ W : the set of possible worlds where p is true.
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Fig. 1 An example Kripke
model M

Figure1 provides an example model M . Its set of possible worlds is W =
{w0, . . . ,w4}, the accessibility relation is

R = {(w0,w1), (w0,w2), (w0,w4), (w1,w2), (w2,w3)}

and the valuation V is such that V (p) = {w1,w2,w4} and V (q) = {w2,w3}.
The satisfaction relation � determines whether a formula is true in a world of a

model. M,w � A reads “in M , A is true at w” and is defined recursively as follows:

M,w � p iff w ∈ V (p), for p ∈ Prp
M,w � ¬A iff M,w � A
M,w � A ∧ B iff M,w � A and M,w � B
M,w � �	A iff M, v � A for every v such that (w, v) ∈ R

In the model M of Fig. 1 we have for example M,w0 � ¬p ∧ �	p ∧ ¬�	¬p,
M,w0 � ¬�	q ∧ ¬�	¬q, M,w0 � ¬�	(p ∧ q), M,w0 � �	(�	q → p).

A formula A is valid in K if and only if M,w � A for every world w of every
model M of K. The formula A is satisfiable in K if its negation ¬A is not valid
in K. The model M of Fig. 1 illustrates that the formula �	A → A is not valid
in K: indeed, M,w0 � ¬p ∧ �	p; and as—by the properties of material implica-
tion of classical logic—the formula ¬p ∧ �	p is equivalent to ¬(�	p → p) we have
that M,w0 � �	p → p. This also illustrates that the formula ¬p ∧ �	p is satisfiable
in K.

Here is the axiomatisation of the set of formulas that are valid in K (Chellas 1980):

(Class) every axiom schema of propositional logic
(M) �	(A1 ∧ A2) → (�	A1 ∧ �	A2)

(C) (�	A1 ∧ �	A2) → �	(A1 ∧ A2)

(N) �	�
(R.MP) A A → B

B
(R.E) A1 ↔ A2�	A1 ↔ �	A2

(M) is called the axiom of monotony and its converse direction (C) is called the
axiom for the conjunction. (N) is called the axiom of necessity. (R.MP) and (R.E)
are respectively the rules of modus ponens and equivalence.
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We observe that the inference rule of monotony

(R.M) A → B�	A → �	B
is derivable from (M) by the rule (R.E).

A formula is provablemodal logic K if it is derivable from instances of the axioms
(Class), (M), (C) and (N), by the inference rules (R.MP) and (R.E).

Our axiomatisation is sound: every provable formula is valid. It is also complete:
every valid formula is provable.

2.2 The Modal Logic S5

The models of S5 are a sub-class of the class of models of K: the class of models
where the accessibility relation is an equivalence relation. The formulas that are valid
in that class of models can be characterised by adding three further axioms to the
axiomatisation of K6:

(T) �	A → A
(4) �	A → �	�	A
(5) ¬�	A → �	¬�	A

The logic S5 is considered by many philosophers as the logic of necessity. It is
also considered in AI as the logic of knowledge. Let us however observe that its
omniscience properties can be criticised as being too strong: while a ‘real’ agent
typically does not know all the logical consequences of her knowledge, the rule
of monotony (R.M) stipulates exactly that. A realistic agent also does not know
everything she knows, and a fortiori she does not know everything she does not
know. These two principles are called positive and negative introspection, and are
expressed by the axioms (4) and (5).

In place of�	, themodal operator of knowledge is often notedK (from “know”).Up
to now we have only considered the case of a single agent; it is possible to index the
operatorK by the nameof an agent and towrite e.g.K1 p ∧ ¬K2 p to express that agent
1 knows that p and that agent 2 does not know that p. In an epistemic interpretation
the axiom schemas (4) and (5) express what is called positive introspection (“I know
what I know”) and negative introspection (“I know what I don’t know”). The schema
(T) says that knowledge is true, which distinguishes it from beliefs (which in the
case of a wrong belief is false).

The concept of knowledge that is captured here is binary: either the agent knows
that A, or she does not know it. There are some approaches in the literature equipping
the modal operator with degrees in order to express more fine-grained distinctions.
For example, the logic proposed by Noël Laverny and Jérôme Lang (2005) possesses

6Actually axiom (4) is superfluous: it can be derived from (T) and (5).
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operators of belief K≥k , and K≥k A reads “A is true for the agent with a degree of at
least k”.7

Numerous other interpretations of the operator �	 exist. For example, the for-
mula �	A can be read “the agent intends that A” or “it is obligatory that A”. We
refer readers to the presentation of these modalities in chapter “Qualitative Reason-
ing” of this volume (Qualitative reasoning about time and space), chapter “Norms
and Deontic Logic” of this volume (Norms and deontic logic), chapter “Reasoning
about Action and Change” of this volume (Reasoning about action and change), and
chapter “Formalization of Cognitive-Agent Systems, Trust, and Emotions” of this
volume (Formalization of cognitive-agent systems, trust and emotions).

3 Two Logics of Conditionals

Our presentation of conditional logics is essentially syntactical: we focus on the
reasoning principles and only give the basics of the semantics. The formulas of the
language of conditional logics are built froma countable set of propositional variables
together with the operators ¬ and ∧ of propositional logic, plus the conditional
operator ⇒. Precisely, the language is defined by the following grammar:

A ::= p | ¬A | A ∧ A | A ⇒ A

where p is a propositional variable. The formula A ⇒ C is read “if A then C”.
Throughout the chapter, we are going to use A for the antecedent and C for the
consequent of a conditional.

We economise parentheses by considering that ⇒ binds weaker than ¬ and
stronger than the other operators. Therefore ¬A ⇒ C ∧ B is ((¬A) ⇒ C) ∧ B and
A ⇒ C → B is (A ⇒ C) → B.

3.1 The Normal Conditional Logic CK and Its Extensions

The semantics of normal conditional logics is due to Stalnaker (1968) and is based
on selection functions. The basic logic is called CK, “C” standing for “conditional”
and “K” standing for “Kripke”.

A model of CK is a triple of the form 〈W, f, V 〉 where W is a set of possible
worlds (just as in the logic K), f : (W × 2W ) −→ 2W is a mapping—called selec-
tion function—associating every ‘world/set of worlds’ couple with a set of worlds:
intuitively, f (w,U ) is the set of those worlds of U that are most similar to w. (We
note that this intuition should not be taken too literally: the basic logic CK allows
for models where the set f (w,U ) is not contained inU , as well as for models where

7We have adapted the original notation.
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f (w,U ) contains worlds v where no propositional variable has the same truth value
at w and v. Just as in logic K, the function V : Prp −→ 2W is a valuation.

The satisfaction relation� links amodel, a world of that model and a formula. The
definition is recursive. The cases of propositional variables, negation and conjunction
are as for K, while the case of the conditional operator is:

M,w � A ⇒ C iff M, v � C for every v ∈ f (w, ||A||M)

where ||A||M is the set of A-worlds ofM , defined as: ||A||M = {v | M, v � A}. Thus,
f (w, ||A||M) provides the set of A-worlds that are most similar to w (with the above
proviso about the notion of similarity in logic K).

Just as for the logic K, a formula A is valid in CK if and only if M,w � A for
every world w of every model M .

Here is the axiomatisation of the set of valid formulas in the basic conditional
logic CK (Chellas 1975, 1980).

(Class) every axiom schema of propositional logic
(C.M) A ⇒ (C1 ∧ C2) → (A ⇒ C1 ∧ A ⇒ C2)

(C.C) (A ⇒ C1 ∧ A ⇒ C2) → A ⇒ (C1 ∧ C2)

(C.N) A ⇒ �
(R.MP) A A → C

C
(RC.EA) A1 ↔ A2

A1 ⇒ C ↔ A2 ⇒ C

(RC.EC) C1 ↔ C2
A ⇒ C1 ↔ A ⇒ C2

(C.M) is called the axiom of monotony (for the consequent of the conditional)
and the symmetric (C.C) is called the axiom for conjunction; (C.N) is the axiom of
necessity. The reader may observe the symmetry of these axioms with the axioms
(C), (M), and (N) for modal logic K of Sect. 2.1. (R.MP), (RC.EA) and (RC.EC)
are respectively the rules of modus ponens, of equivalence in the antecedent and of
equivalence in the consequent.

Just as for modal logics, a formula is provable in CK if it is derivable from axiom
instances by the inference rules.

The axiomatisation above is sound and complete: every theorem of CK is valid in
the models of CK, and every formula that is valid in the models of CK is a theorem
of CK.

Similarly to the logic K, the inference rule

(RC.M) C1 → C2
A ⇒ C1 → A ⇒ C2

is derivable from (C.M) by the rule (RC.EC).
The logic CK is a rather weak logic: even a reasonably-looking principle such as

(C.ID) A ⇒ A

cannot be proved in CK. One can however guarantee the validity of this schema by
modifying the semantics of CK: it suffices to evaluate the validity of formulas only
in those models where f (w,U ) ⊆ U for every w and U .
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Fig. 2 The similarity relation determines a selection function

The above observation about the derivability of (RC.M) allows us to prove that
the extension of the logic CK by the axiom (C.ID) satisfies the supra-classicality
postulate. The latter here takes the form of the inference rule

A → C

A ⇒ C

that can be derived by deducing in a first step A ⇒ A → A ⇒ C from the hypothesis
A → C ; then, from (C.ID) and A ⇒ A → A ⇒ C one deduces A ⇒ C by the rule
of modus ponens (R.MP).

Several principles were discussed in the literature. We are going to overview them
in the next section.

3.2 The Logic of Lewis–Burgess CL and Its Extensions

David Lewis (1973) proposed to replace Stalnaker’s selection functions by a more
sophisticated construction that he called a system of spheres: to each possible world
there is associated a set of nested spheres. Burgess generalised sphere systems to
partial preorders associated to worlds: such preorders also allow to compare which
of two worlds is most similar to a given world. These preorders can be viewed as
orders of plausibility or orders of comparative possibility.8 In the case of a total
order we retrieve qualitative possibility orderings (Fariñas del Cerro and Herzig
1991). Given a partial preorder, we can build a selection function, as illustrated in
Fig. 2. The converse fails to hold.

There is no established name for the basic conditional logic of the sphere seman-
tics. We here call it CL, where “L” is in honour of David Lewis.

8The link with theories of uncertainty is deepened in chapter “Representations of Uncertainty in
Artificial Intelligence: Probability and Possibility” of this volume.
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A model of CL is a triple of the form M = 〈W, {≤w: w ∈ W }, V 〉, where W is
a non-empty set of possible worlds and V is a valuation as before. Every ≤w is a
binary relation on W .9

Let Sw = {u | ∃v u ≤w v} for every w ∈ W . The elements of Sw can be seen as
worlds that are accessible from w. M has to satisfy the following conditions:

• for every w, the restriction of ≤w to Sw is a partial preorder on Sw (so ≤w ∩ (Sw ×
Sw) is a reflexive and transitive relation).

• for every w ∈ W , ≤w satisfies the “limit assumption”: for every formula A and
worlds w, v ∈ W , if v ∈ ||A||M ∩ Sw then there is a u ∈ ||A||M such that u ≤w v,
and for every u′ ∈ ||A||M , u′ ≤w u implies u ≤w u′.

Then f (w,U ) can be defined as the set of elements of U that are both in Sw and
minimal w.r.t. ≤w:

f (w,U ) = min≤w

(U ∩ Sw)

The limit assumption guarantees that f (w, ||A||M) = min≤w (||A||M ∩ Sw) is non-
empty as soon as ||A||M ∩ Sw is so.

Given the above definition of the selection function, the satisfaction relation can
be defined just as for CK.

We have seen that from the relations≤w one can always build a selection function.
Therefore the set of valid formulas of the logic CL contains those of the logic CK.
Thus, an axiomatisation of CL can be obtained by adding to the axiomatisation of
CK the following axiom schemas (see Herzig 1998).

(ID) A ⇒ A
(CA) (A1 ⇒ C ∧ A2 ⇒ C) → (A1 ∨ A2) ⇒ C
(CSO) (A1 ⇒ A2 ∧ A2 ⇒ A1) → (A1 ⇒ C ↔ A2 ⇒ C)

(MOD0) A ⇒ ⊥ → (A ∧ A′) ⇒ ⊥
(MOD) ¬A ⇒ A → A′ ⇒ A
(ASC) (A ⇒ A′ ∧ A ⇒ C) → (A ∧ A′) ⇒ C
(RT) (A ⇒ A′ ∧ (A ∧ A′) ⇒ C) → A ⇒ C

(ID) is the axiom of identity. (CA) means “conjunction of antecedents”. (ASC) is
sometimes called cautious monotony and (RT) is restricted transitivity. (ASC) and
(RT) are symmetric; the cumulativity axiom

(CUM) A ⇒ A′ → (A ⇒ C ↔ (A ∧ A′) ⇒ C)

combines them in a single axiom.
Remember that Lewis’ sphere systems are nested: they are total preorders. The

class of all these CL-models can be axiomatised by adding to the axiomatisation of
CL the following axiom schema:

(CV) (A ⇒ C ∧ ¬(A ⇒ ¬A′)) → (A ∧ A′) ⇒ C

9As noted in Makinson (1993), the condition of transitivity that was initially imposed by Burgess
can be abandoned. One might as well restrict the ≤w to strict preorders.
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Observe that this axiom is stronger than CL’s axiom (ASC): instead of A ⇒ A′ we
have the weaker ¬(A ⇒ ¬A′).10 Let us interpret the axioms (ASC) and (CA) in the
light of Goodman’s cotenability: according to (ASC), everything that follows from
the antecedent (w.r.t. ⇒) is cotenable with it; according to (CV), everything that is
consistent with the antecedent (w.r.t. ⇒) is cotenable with it.

Let us end this section by noting that conditional logics are close to logics of update
via what is called theRamsey Test (Herzig 1998). If B � A denotes the update of B by
A then (B � A) → C is valid if and only if B → (A ⇒ C) is valid. Exploiting that
correspondence one can almost systematically translate each axiom, in both senses
(Ryan and Schobbens 1997).

4 From Default Logic to Two Classes of Nonmonotonic
Formalisms

Right from the start of AI there was an agreement in the community that common-
sense reasoning requires default reasoning and that the latter is by nature nonmono-
tonic: the fact that the premise A allows to inferC does not guarantee that the premise
A ∧ A′ allows to infer C .

Default logic (Reiter 1980) was one of the first nonmonotonic formalisms and is
certainly themost popular one. The idea underlying default logic can be related to the
expression “unless proven otherwise”, meaning that one holds the conclusion true
unless it causes a contradiction with what is known. A standard example associated
to default logic is the piece of information according to which “birds normally fly”
(where “fly” is understood as “able to fly”). Indeed, this piece of information can
be represented according to the schema “a bird flies, unless proven otherwise”. In
default logic, this is formally translated by a default rule

bird(x) : f lies(x)

f lies(x)

Intuitively the rule tells us: if x is a bird and it is not contradictory to infer that it flies
then infer that it flies.

We obviously have to clarify some points, first and foremost what “contradictory”
refers to. But let us begin by the basic definitions.

A default rule (or, for short, a default) is defined as an expression

A : B1, . . . , Bn

C

where A, B1, . . . , Bn and C are formulas of first-order predicate logic.

10Indeed, the first implies the second in presence of the axiom (MOD0).
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A default theory is a couple (W, D) where W is a set of formulas of first-order
predicate logic and D is a set of defaults without free variables.11 Intuitively, W
expresses what is certain and D expresses laws allowing for exceptions. Here is an
illustration.

W =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cat (Sylvester),
bird(Tweety),
bird(T yty),

ostrich(T yty),
∀x ostrich(x) → ¬ f lies(x)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

and D =
{
bird(x) : f lies(x)

f lies(x)

}

This default theory allows, among others, to conclude f lies(Tweety) and ¬ f lies
(T yty) (but neither f lies(T yty) nor f lies(Sylvester)).

Formally, the consequences of a default theory (i.e., the conclusions that one can
deduce from it) are grouped into extensions that are defined as follows:

A set of formulas E is an extension of a default theory (W, D) if and only if
E = ⋃∞

i=0 Ei where

E0 = W

Ei+1 = Th(Ei ) ∪
{

C | A : B1, . . . , Bn

C
∈ D such that A ∈ Ei and ¬B1 /∈ E, . . . ,¬Bn /∈ E

}

where Th is the consequence operator of classical logic.
Beware: there is no typo, the tests of non-contradiction ¬Bm /∈ E are indeed per-

formed w.r.t. E and not w.r.t. Ei . So the computation of extensions is not constructive
because it appeals to the result of the computation. Actually extensions are defined
as solutions of a fixed-point equation; however, the above characterisation is much
more popular.

Let us come back to our example. The computation starts by E0 = W . Then, at
the level of E1, we check whether we can “apply” the default

bird(Tweety) : f lies(Tweety)

f lies(Tweety)

because bird(Tweety) is in E0 and ¬ f lies(Tweety) is “felt” as being obtainable
neither now nor later in the sequence E2, E3, . . .. The application of the default
thus introduces f lies(Tweety) into E1. On the contrary, f lies(T yty) is not intro-
duced because ¬ f lies(T yty) belongs to E (indeed, ¬ f lies(T yty) is a classical
consequence of W , and therefore of E0, which makes ¬ f lies(T yty) belong to E1;
however, E1 is included in E by construction). In other words, the default

bird(T yty) : f lies(T yty)

f lies(T yty)

11Actually defaults with free variables are considered to be abbreviations to be replaced by their
closed instances.
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fails to apply. And the default

bird(Sylvester) : f lies(Sylvester)

f lies(Sylvester)

does not apply either because bird(Sylvester) is neither a classical consequence
of E0, nor of any other Ei ). To sum it up, our default theory has an extension that
contains W together with f lies(ti ti) and their classical consequences.

Default logic determines a kind of nonmonotonic inference because the supple-
mentary formulas of W may block the application of a default. In our example, if
ostrich(Tweety) is added to W then f lies(Tweety) can no longer be inferred.

From the point of view of knowledge representation, default logic has some par-
ticular features (Besnard 1989). On the one hand, a default theorymay have zero, one,
or several extensions. These extensions intuitively stand for alternative collections of
conclusions. Clearly, the existence of cases where there is no conclusion is a serious
problem, and several approaches tried to delimit classes of default theories where
either the existence of an extension is guaranteed (e.g. Etherington 1987), or where
the definition of extensions is modified (e.g. Delgrande et al. 1994). On the other
hand, some reasoning schemas are not preserved. One example is contraposition:
“If A then, unless proven otherwise, C” allows—except if there is a contradiction—
to conclude C when A is established, but does not necessarily allow to infer ¬A
when ¬C is established. Finally, defaults are not expressions of the language: it is
impossible to deduce a default, to negate a default,…(see Doherty and Łukaszewicz
1992).

The 1980s saw a series of propositions of alternative definitions, in particular
circumscription (McCarthy 1980; McDermott and Doyle 1980; McCarthy 1986,
1990) and autoepistemic logic (Moore 1985; Konolige 1995). Several contributions
proved the equivalence of fragments of default logic and other nonmonotonic for-
malisms (e.g. Marek and Truszczynski 1989). The book Léa Sombé (1994) contains
an overview and comparisons of the literature existing at that time.

It is only by the end of the 1980s that Gabbay, Lehmann and others proposed to
complete these concrete consequence relations by a study of their general properties
(Gabbay 1985; Bell 1990; Kraus et al. 1990; Stalnaker 1992; Lehmann and Magidor
1992; Arló Costa and Shapiro 1992; Crocco and Lamarre 1992; Makinson 1994;
Gärdenfors and Makinson 1994; Crocco et al. 1995; Levi 1996). These scholars
opted for a research avenue that differs from conditional logics: as we have said in
the introduction, they opted for a nonmonotonic consequence relation |≈ that is part
of themetalanguage, and is therefore different in nature from the operator conditional
⇒ that is part of the object language. However, the postulates for |≈ where much
inspired by the axioms for conditionals that were studied more than 10 years ago.
The 1980s and 1990s saw an extensive debate about the desiderata for relations
|≈ . It turned out that default logic violates almost all of these desiderata. This then
motivated the elaboration of new, concrete nonmonotonic inferencemechanisms such
as variants of default logic (see Brewka 1991 for systems satisfying cumulativity).
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We here note that there is a link between the postulates for nonmonotonic con-
sequence relations and the AGM postulates for revision operators. The latter allow
to revise a belief base K B by a new piece of information A. The result of that revi-
sion is noted K B ∗ A.12 For a fixed belief base K B, A |≈ C can be identified with
K B ∗ A |= C .

In the rest of this section we present two systems of nonmonotonic consequence:
preferential formalisms and rational formalisms.

4.1 Preferential Formalisms

Here are the postulates for cumulative inference relations: the so-called system C.
We stick to the nomenclature of conditional logics in order to highlight the tight links
between the two families of formalisms.

(P-RC.EA) if A |= A′ and A′ |= A then (A |≈ C iff A′ |≈ C)
(P-RC.M) if C |= C ′ and A |≈ C then A |≈ C ′
(P-ID) A |≈ A
(P-ASC) if A |≈ A′ and A |≈ C then A ∧ A′ |≈ C
(P-RT) if A |≈ A′ and A ∧ A′ |≈ C then A |≈ C

The following names for the above postulates can be found in the literature: ‘left
logical equivalence’ for (P-RC.EA); ‘right weakening’ for (P-RC.M); ‘reflexivity’
for (P-ID); ‘cautious monotony’ for (P-ASC); ‘cautious cut’ for (P-RT). Just as for
conditionals, the cumulativity postulate combines cautious monotony and cautious
cut:

(P-CUM) if A |≈ A′ then (A |≈ C iff A ∧ A′ |≈ C)

Preferential inference relations moreover satisfy the following postulate:

(P-CA) if A1 |≈ C and A2 |≈ C then A1 ∨ A2 |≈ C

This postulate is called ‘or rule’ in the literature, and the formalism is called systemP.
The semantics of system P is in terms of partial preorders and correspond with

that of the conditional logic CL of Sect. 3.2 (Kraus et al. 1990).

4.2 Rational Formalisms

A further postulate corresponding to the axiom (CV) of conditional logics has been
studied. It is not necessarily satisfied by preferential relations.

12We refer to chapter “Main Issues in Belief Revision, Belief Merging and Information Fusion” of
this volume for an exposition of AGM theory.
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(CV) if A |≈ C and A |�≈ ¬A′ then A ∧ A′ |≈ C

The dedicated term in the literature for that postulate is ‘rational monotony’.
Preferential inference relations moreover satisfying postulate (CV) are called ratio-
nal inference relations. Such relations are the ‘strongest’ nonmonotonic systems, in
the sense that they satisfy ‘as much as possible’ of the properties of the classical
consequence relation |=: intuitively, if we add any other interesting property of the
classical inference relation to the list of postulates of system P plus (CV) then the
resulting set of postulates only allows for monotonic inference relations.

The semantics of rational formalisms is in terms of total preorders (Kraus et al.
1990) and corresponds to the extension of the conditional logic CL by the axiom
(CV) that we have presented in the end of Sect. 3.2.

Several experimental verifications of the psychological plausibility of the postu-
lates have been undertaken, see e.g. Neves et al. (2002), Benferhat et al. (2004). They
have by and large confirmed the psychological validity of these inference rules.

5 Conditional Logics in the Light of Dynamic Epistemic
Logics

Dynamic epistemic logics were introduced almost 30 years ago (Plaza 1989) and
were intensely investigated since about 20 years ago. (Gerbrandy and Groeneveld
1997; Gerbrandy 1999; van Ditmarsch 2000; van Benthem 2006). We here consider
the simplest dynamic epistemic logic: Public Announcement Logic (PAL). For our
purposes it will be enough to consider the case of a single agent.

The language of PAL is defined by the following grammar:

A ::= p | ¬A | A ∧ A | KA | [A!]A

The formula KA reads “the agent knows that A”, and the formula [A!]C reads “if A
is publicly announced then B will be the case afterwards”.

Given their reading, formulas of the form [A!]C are therefore particular condition-
als; given the presence of the operator K one may call them epistemic conditionals.
In the present section we are going to explore that perspective. We start by showing
that the fundamental requirements for conditional operators are fulfilled: absence
of monotony and of contraposition; we are then going to examine the status of the
axioms for conditionals that we have seen in Sect. 3.

5.1 Dynamic Epistemic Logics: Public Announcement Logic

The models of PAL are nothing but the models of (single-agent) S5 that we have
seen in Sect. 2. The epistemic operator K is interpreted in the same way as the modal
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operator �	, while the dynamic operator [A!] is interpreted by a restriction of the
model to worlds where A is true.

M,w � KA iff M, v � A for every v such that (w, v) ∈ R

M,w � [A!]C iff M,w � A or MA,w � C

The model MA = 〈W A, RA, V A〉 is the restriction of M to the set of worlds of M
where A is true and is defined as follows.

W A =||A||M
RA =R ∩ (||A||M × ||A||M)

V A(p) =V (p) ∩ ||A||M
We are not going to give the axiomatisation of PAL here because it does not

serve our purposes and refer the reader to the literature we have cited above. We
just mention that the dynamic operator [A!] is a normal modal operator and that the
following inference rule (which resembles the rule for conditional logics (RC.EA))
is admissible:

(RA.EA) A1 ↔ A2[A1!]C ↔ [A2!]C
Observe that the schema [A!]A is invalid. To see this it suffices to replace A by

the so-calledMoore sentence p ∧ ¬K p: the formula [[p ∧ ¬K p!]](p ∧ ¬K p) is not
valid.

5.2 Public Announcement Logic as a Conditional Logic

Which of the axioms for conditionals of Sect. 3 are satisfied by the dynamic operators
[A!] of PAL?

Let us start by observing that the principles that are rejected by conditional logics
are not validated by PAL either. Consider first monotony [A!]C → [A ∧ A′!]C and
replace A and C by ¬K p and A′ by p: then the formula [¬K p!]¬K p is valid, while
[¬K p ∧ p!]¬K p is not. As to contraposition [A!]C → [¬C !]¬A, replace A by the
propositional variable p and C by K p: then the formula [p!]K p is valid in PAL,
while [¬K p!]¬p is not.

The logic PAL is therefore a serious candidate for a conditional logic according to
the criteria proposed by Donald Nute (1984). As it allows us to reason about knowl-
edge thanks to the epistemic operator K, PAL can be considered to be an interesting
basis for a logic of so-called epistemic conditionals (Lindström and Rabinowicz
1995; Arló Costa 1995).

Our next observation is that all the principles for the basic conditional logic CK are
valid. This is the case because, on the one hand, the [A!] are normal modal operators;
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and on the other hand, identifying A ⇒ C with [A!]C , the inference rule (RA.EA)
of PAL is nothing but the inference rule (RC.EA) of CK.

What about the other principles such as A ⇒ A?

Theorem 1 The formula schema (MOD0): [A!]⊥ → [A ∧ A′!]⊥ is valid in PAL.

Proof Consider an arbitrary model M and worldw of M . Then M,w � [A!]⊥ if and
only if M,w � A. Hence M,w � A ∧ A′, and therefore M,w � [A ∧ A′!]⊥.

What about the other principles?We have already observed that [A!]A is not valid
in PAL. But the situation is more dramatic than that: as it turns out, all the axioms
that are proper to CL other than (MOD0) are invalid in PAL.

Theorem 2 The following formula schemas are invalid in PAL.

1. [A!]A
2. ([A1!]C ∧ [A2!]C) → [A1 ∨ A2!]C
3. ([A1!]A2 ∧ [A2!]A1) → ([A1!]C ↔ [A2!]C)

4. ¬[A!]A → [A′!]A
5. ([A!]A′ ∧ [A!]C) → [A ∧ A′!]C
6. ([A!]A′ ∧ [A ∧ A′!]C) → [A!]C
Proof Almost all non-validities can be established by means of a Moore sentence.

1. As said above, it suffices to replace A by the Moore sentence p ∧ ¬K p to see
that the schema (ID): [A!]A is invalid.

2. In the schema (CA), replace A1 by p, A2 by ¬p and C by K p ∨ K¬p. Then on
the left side, both [A1!]C = [p!](K p ∨ K¬p) and [A2!]C = [¬p!](K p ∨ K¬p)
are valid in PAL, while on the right side, [A1 ∨ A2!]C = [p ∨ ¬p!](K p ∨ K¬p)
is equivalent to [�!](K p ∨ K¬p) (by the inference rule (RA.EA)), which is not
valid.

3. In the schema (CSO), replace A1 by p, A2 by q (for some p, q such that p �= q)
andC byK p. Then [A1!]A2 ∧ [A2!]A1 = [p!]q ∧ [q!]p is equivalent to p ↔ q,
and the latter formula does not imply [A1!]C ↔ [A2!]C = [p!]K p ↔ [q!]K p.

4. In the schema (MOD), replace A by p ∧ ¬K p and A′ by �. Then the for-
mula ¬[A!]A = ¬[p ∧ ¬K p!](p ∧ ¬K p) is valid in PAL. However, [A′!]A =
[�!](p ∧ ¬K p) is not.

5. In the last but one schema (ASC), replace A by ¬K p, A′ by p and C by
¬K p. Take a model M and a world w of M such that M,w � p ∧ ¬K p.
Then M,w � [A!]A′ = [¬K p!]p and M,w � [A!]C = [¬K p!]¬K p, but
M,w � [A ∧ A′!]C = [¬K p ∧ p!]¬K p.

6. In the last schema of restricted transitivity (RT), replace A by p ∧ ¬K p, A′ by
K p and C by ⊥. Then the two conjuncts on the left are valid:

[A!]A′ = [p ∧ ¬K p!]K p

[A ∧ A′!]C = [p ∧ ¬K p ∧ K p!]⊥
↔ [⊥!]⊥ (by (RA.EA))
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However, [A!]C = [p ∧ ¬K p!]⊥ is not valid.

To sum it up, among the principles for conditional logics beyond CK that were
proposed and much discussed in the literature, only (MOD0) is valid in PAL. The
counter-examples for (ID), (MOD), (ASC) and (RT) make use of the famous Moore
sentences. It seems to us that our negative result might shed a new light on the debate
about reasoning principles associated to “if…then…” constructions.

Let us note that apart fromMoore sentences—where ‘successful’ formula schemas
(such as [A!]A) and self-defeating schemas (such as [A!]¬A) were studied—, the
PAL literature focussed on valid formula instances and not on valid axiom schemas
as it is customary in logic. The only article undertaking a schematic study is Holliday
et al. (2011).

5.3 Discussion

One may object to our analysis that PAL provides a very special kind of conditionals
because announcements have to be truthful. Thus, if A is false then A cannot be
announced: the formula ¬A → (A ⇒ ⊥) is valid. Therefore, what cannot be anal-
ysed in PAL are counterfactual conditionals: sentences of the form “if A then C”
whose antecedent A is false. However, our analysis applies to open conditionals:
conditionals where it is unknown whether the antecedent is true or not. Beyond that,
we observe that one can as well reason about announcements that are not necessarily
truthful: it suffices to adopt a variant of the semantics of PAL that is due to Jelle Ger-
brandy (1999) and that was studied further by Barteld Kooi (2007). These authors
redefine the truth condition unconditionally as:

M,w � [A!]C iff MA,w � C

where the restriction MA = 〈W A, RA, V A〉 of M to the set of worlds of M where
the announcement A is true is defined as follows: W A = W , V A = V and

RA = R ∩ (W × ||A||M)

In the restricted model the worlds where the announcement is false are therefore no
longer eliminated from the model. Thus ¬A → [A!]⊥ is no longer valid. This said,
it has to be noted that the announcement still has to be compatible with the agent’s
beliefs (otherwise the agent’s beliefs would become inconsistent). This variant per-
haps better corresponds to an open conditional: the agent entertaining it among her
beliefs ignores whether the antecedent is true or not. Other variants of the truth
condition are studied in Balbiani et al. (2012).
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6 Conclusion

In this chapter we have seen three fundamental concepts in knowledge representa-
tion: the dual modalities “necessary” (�	) and “possible” (♦) and two concepts of the
“if…then…” kind: conditionals (⇒) and nonmonotonic inference relations ( |≈ ).
By turning our attention towards dynamic epistemic logics and in particular PAL
we have obtained a new view of conditional logics (and, mutatis mutandis, of non-
monotonic inference relations): somewhat surprisingly, almost all the axioms that
were introduced and debated as reasonable principles for conditionals turned out to
be untenable in the epistemic framework of PAL.

Overall, the field of conditional and nonmonotonic reasoning has not changed
a lot during the last 20 years. The biannual Nonmonotonic Reasoning workshop
series (NMR) is mainly affiliated with the Knowledge Representation and Reasoning
conference (KR) (Kern-Isberner and Wassermann 2016). One may also note the
more recent annual InternationalWorkshop onDefeasible andAmpliative Reasoning
(DARe) series (Booth et al. 2017). A recent regain of interest can also be observed in
philosophy (Pfeifer 2014; Bradley and Stefánsson 2017; Alenda et al. 2016; Girlando
et al. 2016; Cross 2016; Douven 2016; Koutras and Rantsoudis 2017).

A domain of AI that gets more and more interested in nonmonotonic reason-
ing is description logics (presented in chapter “Reasoning with Ontologies” of this
volume); indeed, many of the papers at the NMR and DARe workshops concern
that topic. In these logics, a knowledge base is a couple K B = 〈T, A〉 where T is
an ontology or terminology (‘the TBox’) and A is a set of facts or assertions (‘the
ABox’). The TBox is made up of concept inclusions of the form C � D, such as
Student � ¬Prof expressing that students and professors are disjoint. Suppose we
would like to allow exceptions: a few students (such as PhD students acting as teach-
ing assistants) are also professors. Several authors proposed to extend description
logics by nonmonotonic reasoning mechanisms, starting with Reiter’s default logic
(Baader and Hollunder 1995) or with nonmonotonic modal extensions (Donini et al.
2002). The resulting formalisms were however criticised as being difficult to under-
stand and having bad computational properties: they are often undecidable, which
conflicts with the ‘presupposition’ underlying research in description logics that their
raison d’être is to provide decidable formalisms. A new way of representing such
ontologies was recently proposed by Giordano et al. (2013). Their extension of the
basic description logic ALC contains an operator of typicalityT, allowing us to write
T(Student) � ¬Prof : typical students are non-professors. Their logic has a seman-
tics in terms of preferred models that generalises that for preferential formalisms of
Sect. 4.1, and they show that it is characterised by the same postulates. They also
show that their logic is decidable and that the problem of deciding the satisfiabil-
ity of a knowledge base is EXPTIME complete. Given that that problem is already
EXPTIME hard for the underlying monotonic logic ALC and given the criticisms of
nonmonotonic extensions of ALC that we have reported this has to be considered as
an interesting result.

Beyond description logics, nonmonotonic inference relations were studied in the
domain of hybrid knowledge bases. These are formalisms merging knowledge bases
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in the TBox+ABox form (just as description logics) with rules (just as logic pro-
gramming) (Donini et al. 2002). The integration of the non-classical semantics of
rules into description logics comes with new, interesting problems.

Finally, it is often considered that one of the most interesting forms of nonmono-
tonic reasoning is answer set programming (ASP) (Lifschitz 2008). The latter is a
rather recent branch of logic programming providing a logically solid answer to the
long-standing problem of the semantics of negation by failure (see chapter “Logic
Programming” of volume 2 for an overview of logic programming). The associ-
ated inference relation typically allows to infer ¬p from an empty program, for any
atomic formula p. The underlying order thus gives priority to negative information.
The bi-annual Logic Programming and Nonmonotonic Reasoning conference series
(LPNMR) is dedicated to that topic (Balduccini and Janhunen 2017).
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Representations of Uncertainty
in Artificial Intelligence: Probability
and Possibility

Thierry Denœux, Didier Dubois and Henri Prade

Abstract Due to its major focus on knowledge representation and reasoning, arti-
ficial intelligence was bound to deal with various frameworks for the handling of
uncertainty: probability theory, but more recent approaches as well: possibility the-
ory, evidence theory, and imprecise probabilities. The aim of this chapter is to provide
an introductive survey that lays bare specific features of two basic frameworks for
representing uncertainty: probability theory and possibility theory, while highlight-
ing the main issues that the task of representing uncertainty is faced with. This
purpose also provides the opportunity to position related topics, such as rough sets
and fuzzy sets, respectively motivated by the need to account for the granularity of
representations as induced by the choice of a language, and the gradual nature of
natural language predicates. Moreover, this overview includes concise presentations
of yet other theoretical representation frameworks such as formal concept analysis,
conditional events and ranking functions, and also possibilistic logic, in connection
with the uncertainty frameworks addressed here. The next chapter in this volume is
devoted to more complex frameworks: belief functions and imprecise probabilities.

1 Introduction

The question of including, hence modeling, uncertainty in scientific matters is not
specific to the field of artificial intelligence. Historically, this concern already appears
in the XVIIth century, with pioneering works of Huyghens, Pascal, chevalier de
Méré, and Jacques Bernoulli. There existed at that time a major distinction between
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the objective notion of chance in connection with the study of games (of chance),
and the subjective notion of probability in connection with the issue of unreliable
testimonies at courts of law. With J. Bernoulli, chances are related to frequencies of
events and are naturally additive, while subjective probabilities are not supposed to
be so. This view is still present in the middle of the XVIIIth century with the works
of Lambert. He proposed a combination rule which turns out to be a special case
of Dempster’s rule of combination; see (Shafer 1978), (Martin 2006), and chapter
“Representations of Uncertainty in AI: Beyond Probability and Possibility” of this
volume. However, with the rapid development of physics and actuarial sciences later
on, the interest for the non-additive side of probability eventually waned and the issue
was forgotten for almost two centuries, while the additive view became prominent,
with the works of Laplace, whether the focus was on frequentist probability or not.
Noticeably, in the middle of the XXth century, in economics, not only the main
approach to decision under (frequentist) risk after (von Neumann and Morgenstern
1944), but also the mainstream theory of decision under (subjective) uncertainty
relied on additive probability.

It is the emergence of computer sciences that brought issues related to knowledge
representation and reasoning in the presence of imprecision, uncertainty, and con-
flicting information to the front. This went on till the 1980’s almost independently of
probability theory and the issue of decision-making. Instead, artificial intelligence
first put the emphasis on logical and qualitative formalisms, as well as the modeling
of linguistic information (in trends of research such as fuzzy set theory).

Indeed, the available information to be stored in a computer is often unreliable, as
is human knowledge, so that reasoning is based on rules that may lead to uncertain
conclusions even starting from sure premises. The need to handle uncertainty arose
in fact with the emergence of the first expert systems at the beginning of the 1970’s.
One of the first and best known expert rule-based system, namelyMYCIN (Shortliffe
1976; Buchanam and Shortliffe eds.1984), already proposed an ad hoc, entirely orig-
inal, technique for uncertainty propagation based on degrees of belief and disbelief.
This method will not be described here for lack of space, and because it is now totally
outdated, especially due to its improper handling of exceptions in if-then rules. But
the uncertainty propagation technique of MYCIN pioneered the new, more rigorous
frameworks for uncertainty modeling that would appear soon after. On this point,
see (Dubois and Prade 1989), and (Lucas and van der Gaag 1991) as well.

This chapter is structured in four sections. In Sect. 2, basic notions useful for
describing the imperfection of information are defined and discussed. Section3 deals
with probability theory, focusing on the possible meanings of probability and the dif-
ficulty to handle plain incomplete information with probability distributions, as well
as the connections between conditioning and logic. Section4 deals with set func-
tions extending the modalities of possibility and necessity, distinguishing between
qualitative and quantitative approaches, and describing connections with reasoning
tolerant to exceptions, formal concept analysis, probability and statistics. Section5
explains the links between uncertain reasoning and Aristotelian logic, generalizing
the square of opposition.
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2 Imprecision, Contradiction, Uncertainty, Gradualness,
and Granularity

Before presenting various representation frameworks (see (Halpern 2003), (Dubois
and Prade 2009), (Liu 2001), (Parsons 2001) for interesting focused overviews), it
is useful to somewhat clarify the terminology. We call information item any col-
lection of symbols or signs produced by observing natural or artificial phenomena,
or by human cognitive activity, whose purpose is communication. Several distinc-
tions are in order. First, one must separate so-called objective information items,
coming from sensor measurements or direct observations of the world, from sub-
jective ones, expressed by individuals and possibly generated without using direct
observations of the outside world. Information items may be couched in numerical
formats, especially objective ones (sensor measurements, counting processes), or in
qualitative or symbolic formats (especially subjective ones, in natural language for
instance). However the dichotomy objective numerical vs. subjective qualitative is
not so clearcut. A subjective information item can be numerical, and objective obser-
vations can be qualitative (like a color perceived by a symbolic sensor, for instance).
Numerical information can take various forms: integers, real numbers, intervals,
real-valued functions, etc. Symbolic information is often structured and encoded in
logical or graphical representations. There are also hybrid representation formats,
like Bayesian networks (Pearl 1988). Finally, another important distinction should
be made between singular and generic information. Singular information refers to
particular facts and results from an observation or a testimony. Generic information
pertains to a class of situations and expresses knowledge about it: it can be a law of
physics, a statistical model stemming from a representative sample of observations,
or yet commonsense statements such as “birds fly” (in this latter case the underlying
class of situations is not precise: is it here a zoological definition, or the birds of any
epoch, or of any place, etc.?).

2.1 Imprecise Information

To represent the epistemic state of an agent, one must beforehand possess a language
for representing the states of the world under interest, according to the agent, that is,
model relevant aspects by means of suitable attributes. Let v be a vector of attribute
variables1 relevant for the agent, and let S be its domain (possibly not described in
extension). S is then the set of (precise descriptions) of the set of possible states of
affairs. A subset A of S is viewed as an event, or as a proposition that asserts v ∈ A.

An information item v ∈ A possessed by an agent is said to be imprecise if it is not
sufficient to enable the agent to answer a question of interest about v. Imprecision

1In fact, in this chapter, v denotes an ill-known entity that may be for instance a random variable
in a probabilistic setting, or rather an imprecisely known entity but which does not vary strictly
speaking.
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corresponds to the idea of incomplete or even missing information. The question
to which the agent tries to answer is of the form what is the value of v, or more
generally does v satisfy a certain property B, given that v ∈ A is known? The notion
of imprecision is not absolute. When concerned with the age of a person, the term
minor is precise if the referential set is S = {minor,major} and the question is: has
this person the right of vote? In contrast if the question is to determine the age of this
person and S = {0, 1, . . . , 150} (in years), the term minor is very imprecise.

The standard format of an imprecise information item is v ∈ Awhere A is a subset
of S containing more that one element. An important remark is that elements of A,
seen as possible values of v are mutually exclusive (since the entity v possesses only
one value). So, an imprecise information item takes the form of a disjunction of
mutually exclusive values. For instance, to say that John is between 20 and 22 years
old, that is, v = age(John) ∈ {20, 21, 22} means to assume that v = 20 or v = 21 or
v = 22. An extreme form of imprecise information is total ignorance: the value of v
is completely unknown. In classical logic, imprecision explicitly takes the form of a
disjunction (stating that A ∨ B is true is less precise than stating that A is true). The
set A representing an information item is called an epistemic set.

Two imprecise information items can be compared in terms of informational
content: an information item v ∈ A1 is said to be more specific than another infor-
mation item v ∈ A2 if and only if A1 is a proper subset of A2.

The disjunctive view of sets used to represent imprecision contrasts with the more
usual conjunctive view of a set as a collection of items forming a certain complex
entity. It then represents a precise information item. For instance, consider the set
of languages that John can speak, say v = Lang(John). This variable is set-valued
and stating that Lang(John) = {English, French} is a precise information item, as
it means that John can speak English and French only. In contrast, the variable
v′ = NL(John) representing the native language of John is single-valued and the
statement NL(John) ∈ {English, French} is imprecise. The domain of v′ is the set
of all spoken languages while the domain of v is its power set. In the latter case, an
imprecise information item pertaining to a set-valued variable is represented by a
(disjunctive) set of (conjunctive) subsets.

2.2 Contradictory Information

An information item is said to be contradictory if it is of the form v ∈ A, where
A = ∅. Under this form there is not much we can do with such an information item.
In mathematics, the presence of a contradiction ruins any form of reasoning, and
it is only used to prove claims by refutation (a claim is true because assuming its
falsity leads to a contradiction). In artificial intelligence, contradiction often stems
from the conflict between several information items, e.g., v ∈ A and v ∈ B where
A ∩ B = ∅. It is thus a natural situation that is to be expected each time there are
several sources, and more generally if collected information items are numerous.
Another cause of conflicting information is the presence of exceptions in generic
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information items such as rules, which may lead to simultaneously infer opposite
conclusions. There are several approaches in the literature that aim at coping with
contradictory information, and that are studied in this book:

• information fusion techniques that aim at restoring consistency, by deleting unre-
liable information items, taking into account the sources that deliver them, and
analyzing the structure of the conflict between them. See chapter “Main Issues in
Belief Revision, Belief Merging and Information Fusion” in this volume.

• argumentation methods that discuss the pros and the cons of deriving a proposition
v ∈ A using a graph-theoretic representation of an attack relation between con-
flicting arguments. See chapter “Argumentation and Inconsistency-tolerant Rea-
soning” in this volume.

• paraconsistent logics that try to prevent the infection of the contradiction affect-
ing some variables or some subgroups of information items to other ones,
by for instance changing the inference relation, thus avoiding the explosive
nature of standard inference from inconsistent bases in classical logic. See
chapter “Argumentation and Inconsistency-tolerant Reasoning” in this volume.

• nonmonotonic reasoning formalisms that try to cope with exceptions in rules by
giving priority to conclusions of the most specific ones. See chapter “Knowledge
Representation: Modalities, Conditionals, and Nonmonotonic Reasoning” in this
volume.

2.3 Uncertain Information

An information item is said to be uncertain for an agent if the latter does not know
whether it is true or false. If an elementary information item of the form of a propo-
sition v ∈ A, where A contains a set of non-impossible values for v, is tainted with
uncertainty, a token of uncertainty is attached to it. This token is a qualifier situ-
ated at the meta-level with respect to the information item. It can be numerical or
symbolic: compare statements expressing uncertainty such as The task will take at
least one hour, with probability 0.7, and It is not fully sure that John comes to the
meeting. Uncertainty has two main origins: the lack of information, or the presence
of conflicting information. A special case of the latter is aleatory uncertainty, where
due to the variability of an observed phenomenon, it is difficult to predict the next
event, hence the information item v ∈ A that may describe it.

Themost usual representation of uncertainty consists in assigning to each proposi-
tion v ∈ A or event A ⊆ S, a number g(A) in the unit interval. This number expresses
the agent’s confidence in the truth of the proposition v ∈ A. Note that this proposition
is ultimately only true or false, but the agent may currently ignore what its actual
truth-value is. Natural conditions are required for the set function g:

g(∅) = 0; g(S) = 1; if A ⊆ B then g(A) ≤ g(B). (1)
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Indeed the contradictory proposition v ∈ ∅ is impossible, and the tautological propo-
sition v ∈ S is certainly true.Moreover, if A is more specific than B (and thus implies
B), a rational agent cannot trust v ∈ Amore than v ∈ B. When S is infinite, one must
add suitable continuity properties with respect to monotonic sequences of subsets.
Such a function g is often called a capacity (Choquet 1953), or fuzzymeasure (Sugeno
1977), or yet plausibility function (Halpern 2001) (not to be confused with the dual
to belief functions, defined in the next chapter in this volume). An important conse-
quence of (1) is in the form of two inequalities:

g(A ∩ B) ≤ min(g(A), g(B)); g(A ∪ B) ≥ max(g(A), g(B)). (2)

These inequalities suggest to consider extreme confidence measures g such that one
of these inequalities is an equality, and more generally, when A and B are mutually
exclusive, assume that g(A ∪ B) only depends on g(A) and g(B) (Dubois and Prade
1982), i.e.,

if A ∩ B = ∅ then g(A ∪ B) = g(A) ⊕ g(B). (3)

for some binary operation ⊕ on [0, 1].
The conjugate set function, defined by g(A) = 1 − g(A), then satisfies the dual

property g(A ∩ B) = g(A)⊥g(B) if A ∪ B = S where a⊥b = 1 − (1 − a) ⊕ (1 −
b) (Dubois and Prade 1982). The set functions g and g are said to be decompos-
able. Compatibility constraints with the Boolean algebra of events suggests con-
sidering operations ⊕ and ⊥ that are associative, which leads to choose ⊥ and
⊕ among triangular norms and co-norms (Klement et al. 2000) (they get their
name from their role in the expression of the triangular inequality in stochas-
tic geometry (Schweizer and Sklar 1963)). The main possible choices for a⊥b
(resp. a ⊕ b) are the operators minimum min(a, b), product (a × b), and trun-
cated addition max(0, a + b − 1) (resp. maximum max(a, b), probabilistic sum
a + b − a × b, and bounded sum min(1, a + b)). Probability measures are recov-
ered by defining a ⊕ b = min(1, a + b) (equivalently a⊥b = max(0, a + b − 1)),
and possibility measures and necessity respectively for a ⊕ b = max(a, b) and for
a⊥b = min(a, b). The use ofmore complex operators (like ordinal sums of the above
ones) may make sense (Dubois et al. 2000b).

2.4 Graduality and Fuzzy Sets

Representing a proposition in the form of a statement that can only be true or false
(or an event that occurs or not) is but a convenient convention. It is not always
an ideal one. Some information items are not easily amenable to respecting this
convention. This is especially the case for statements involving gradual properties,
like in the proposition John is young, that may sometimes be neither completely true
nor completely false: it is clearly more true if John is 20 than if he is 30, even if
in the latter case, John is still young to some extent. Predicates like young can be
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modified by linguistic hedges. It makes sense to say very young, not so young, etc.
Such linguistic hedges cannot be applied to Boolean predicates, like single. In other
words, the proposition John is young is not Boolean, which denotes the presence of
an ordering between age values to which it refers. This type of information can be
taken into account by means of fuzzy sets (Zadeh 1965). A fuzzy set F is a mapping
from S to a totally ordered set L often chosen to be the unit interval [0, 1]. The value
F(s) is the membership degree of the element s in F . It evaluates the compatibility
between the situation s and the predicate F .

Fuzzy sets are useful to dealwith information items in natural language referring to
a clear numerical attribute. Zadeh (1975) introduced the notion of linguistic variable
with values in a linearly ordered linguistic term set. Each of these terms represents
a subset of the numerical domain of the attribute, and these subsets correspond to
a partition of this domain. For instance, the set of terms T = {young, adult, old}
forms the domain of the linguistic variable age(John) and partitions the domain of
this attribute. Nevertheless it is not surprising to admit that the transitions between
the ranges covered by the linguistic terms are gradual rather than abrupt. And in
this situation, it sounds counterintuitive to set precise thresholds separating these
continuous ranges. Namely, it sounds absurd to define the set F =young ∈ T by a
precise threshold s� such that F(s) = 0 if s > s� and F(s) = 1 otherwise, beyond
which an individual suddenly ceases to be young. The membership function of the
fuzzy set valued in the scale [0, 1], representing here the gradual property young,
is but a direct reflection of the continuous domain of the attribute (here the age).
This also leads to the idea of a fuzzy partition made of non-empty fuzzy subsets
F1, · · · , Fn , often defined by the constraint ∀s, �i=1,n Fi (s) = 1 (Ruspini 1970).

If we admit that some sets are fuzzy and membership to them is a matter of
degree, one issue is to extend the set-theoretical operations of union, intersection
and complementation to fuzzy sets. This can be done in a natural way, letting

(F ∪ G)(s) = F(s) ⊕ G(s); (F ∩ G)(s) = F(s)⊥G(s); F(s) = 1 − F(s),

where ⊕ and ⊥ are triangular co-norms and norms already encountered in the pre-
vious subsection. The choice ⊕ = max and ⊥ = min is the most common. With
such connectives, the De Morgan property between ∪ and ∩ are preserved, as well
as their idempotence and their mutual distributivity. However, the excluded middle
(A ∪ A = S) and contradiction laws (A ∩ A = ∅) fail. Choosing ⊕ = min(1, · + ·)
and ⊥ = max(0, · + · − 1) re-installs these two laws, at the cost of losing idempo-
tence and mutual distributivity of ∪ and ∩. As to fuzzy set inclusion, it is oftentimes
defined by the condition F ⊆ G ⇔ ∀s, F(s) ≤ G(s). Amore drastic notion of inclu-
sion requires the inclusion of the support of F (elements s such that F(s) > 0) in
the core of G (elements s such that G(s) = 1). In agreement with the spirit of fuzzy
sets, inclusion can also be a matter of degree. There are various forms of inclusion
indices, of the form d(F ⊆ G) = mins F(s) → G(s), where → is a many-valued
implication connective.

Fuzzy sets led to a theory of approximate reasoning and the reader is referred to
a section dedicated to interpolation in chapter “Case-Based Reasoning, Analogical
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Reasoning, and Interpolation” of this volume. Besides, since the mid-1990’s, there
has been a considerable development of formal fuzzy logics, understood as syntactic
logical systems whose semantics is in terms of fuzzy sets. These works, triggered by
the book by Hájek (1998), considerably improved the state of the art in many-valued
logics developed in the first half of the XXth century (see (Dubois et al. 2007)) for
a detailed survey of both approximate reasoning and formal fuzzy logic.)

2.5 Degree of Truth Versus Degree of Certainty: A
Dangerous Confusion

It is very crucial to see the difference between the degree of adequacy between a
state of affairs and an information item (often called degree of truth) and a degree of
certainty (confidence).Already, in natural language, sentences like John is very young
and John is probably young do not mean the same. The first sentence expresses the
fact that the degree ofmembership of age(John) (e.g., age(John) = 22) to the fuzzy set
of young ages is for sure high. The degree of membership F(s) evaluates the degree
of adequacy between a state of affairs s0, e.g., s0 = 22, and the fuzzy category F =
young. According to the second sentence, it is not ruled out that John is not young
at all.

Degrees of truth and degrees of certainty correspond to distinct notions that occur
in distinct situations with unrelated semantic contents. Moreover they are driven
by mathematical frameworks that should not be confused despite their superficial
resemblances as to the involved connectives. Indeed, as seen earlier in this text, truth
degrees are usually assumed to be compositional with respect to all connectives like
conjunction, disjunction, and negation (respectively corresponding to intersection,
union, and complementation of fuzzy sets). However, full-fledged compositionality
is impossible for degrees of certainty. This is because the Boolean algebra of standard
events is not compatible with the structure of the unit interval, nor any finite totally
ordered set withmore than 2 elements (Dubois and Prade 2001): they are not Boolean
algebras. For instance, probability is compositional only for negation (Prob(A) =
1 − Prob(A)), and as we shall see later on, possibility (resp. necessity) measures
are compositional only for disjonction (resp. conjonction). For instance one can be
sure that v ∈ A ∪ B is true (especially if B = A !), without being sure at all that any
of v ∈ A, and v ∈ B is true.

A typical situation where certainty and truth tend to be confused is when using a
three-valued logic to capture partial information, changing Boolean interpretations
of a language into three-valued ones. The usual truth set {0, 1} is turned into, say,
{0, 1/2, 1}, with the idea that 1/2 stands for unknown as in Kleene logic (Kleene
1952). Now the problem is that under the proposed calculus by Kleene with con-
junction, disjunction and negation expressed by operations min, max and 1 − (·),
respectively, the excluded middle law is lost. This is a paradox here as, since a
proposition v ∈ A can only be true or false, the composite proposition v ∈ A or
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v /∈ A is always valid while, in the three-valued setting, it will have truth value 1/2
if v ∈ A is set to unknown. The way out of the paradox consists in noticing that the
negation of unknown is known, actually known to be true or known to be false. So
the three alleged truth-values {0, 1/2, 1} are degrees of certainty, and actually stand
for the three non-empty subsets of {0, 1}, 1/2 standing for the hesitation between
true and false, namely {0, 1}. And then it becomes clear the statement either v ∈ A
is known to be true or v ∈ A is known to be false is not a tautology.

TheKleene approach to ignorance has been extended byBelnap (1977a; 1977b) to
include contradictory information stemming fromconflicting sources, adding a fourth
truth value expressing contradiction. The 4-valued truth set forms a bilattice structure
and is isomorphic to the four subsets of {0, 1} (now including ∅), equipped with two
partial orderings: the truth-ordering (where the two new truth-values are incompara-
ble and lie between true and false) and the information ordering (that coincides with
inclusion of subsets in {0, 1}). These “epistemic truth-values” are attached to atomic
propositions, and truth-tables in agreement with the bilattice structure enable the
epistemic status of complex propositions to be computed. The same kind of analysis
as above applies regarding the use of compositional truth values in this logic (e.g.,
true in the sense of Belnap means approved by some source and disapproved by
none, an epistemic stance). See Dubois (2012) for a discussion. Besides, Ginsberg
(1990) used Belnap bilattices to propose a unified semantic view for various forms
of non-monotonic inferences (see chapter “Knowledge Representation: Modalities,
Conditionals, and Nonmonotonic Reasoning” in this volume and the Sect. 4.2.1 in
this chapter).

2.6 Granularity and Rough Sets

In the preceding sections, we did not question the assumptions that underlie the def-
inition of the set S of states of the world. It should not be taken for granted, as it
presupposes the definition of a language. The logical approach to Artificial Intelli-
gence often starts from a set of statements expressed in a propositional language,
to which it may assign degrees of confidence. Then the set S is the set of states or
interpretations generated by these propositions (mathematically, the subsets of S are
the smallest Boolean algebra supporting these propositions). This view has important
consequences for the representation and the updating of bodies of information items.
For instance, a new information item may lead to a refinement of S: this is called a
change of granularity of the representation.

The simplest case of change of granularity is when the basic propositions are
taken as atomic ones, or more generally when describing objects by attributes. Let
Ω be a set of objects described by attributes v1, v2, . . . , vk with respective domains
D1, D2, . . . , Dk . Then S is theCartesian product D1 × D2 × · · · × Dk . Each element
of S can be refined into several ones if a (k + 1)th attribute is added. Clearly, nothing
prevents distinct objects from having the same description in terms of such attributes.
Then they are indiscernible by means of this language of description.
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Consider a subset Θ of objects in Ω . It follows from the above remark, that in
general Θ cannot be described precisely using such an attribute-based language.
Indeed let R be an equivalence relation on Ω clustering objects having the same
description: ω1Rω2 if and only if vi (ω1) = vi (ω2),∀i = 1, . . . , k. Let [ω]R be the
equivalence class of object ω. We only have such equivalence classes to describe the
set Θ , so only approximate descriptions of it can be used. The only thing we can do
is to build upper and lower approximations Θ∗ and Θ∗ defined as follows:

Θ∗ = {ω ∈ Ω : [ω]R ∩ Θ �= ∅}; Θ∗ = {ω ∈ Ω : [ω]R ⊆ Θ} (4)

The pair (Θ∗,Θ∗) is called a rough set (Pawlak 1991; Pawlak and Skowron 2007).
Only subsets of objects such as Θ∗ and Θ∗ can be accurately described by means of
combinations of attribute values of v1, v2, . . . , vk .

There are various examples of situations where rough sets implicitly appear, for
instance histograms or digital images correspond to the same notions of indiscern-
ability and granularity, where equivalence classes correspond, respectively, to the
bins of the histograms and to pixels.

The concept of rough set is thus related to the ones of indiscernibility and granu-
larity, while the concept of fuzzy set is related to gradualness. It it is possible to build
concepts where these two dimensions are at work, when the set to be approximated
or the equivalence relation become fuzzy (Dubois and Prade 1992). Rough sets are
also useful in machine learning to extract rules from incomplete data (Grzymala-
Busse 1988; Hong et al. 2002), as well as fuzzy decision rules (Greco et al. 2006)
(see chapter “Designing Algorithms for Machine Learning and Data Mining” in
Volume 2).

3 Uncertainty: The Probabilistic Framework

Probability theory is the oldest uncertainty theory and, as such, the best developed
mathematically. Probability theory can be envisaged as a chapter of mathematics. In
that case, we consider a probability space, made of a set Ω (called a sample space)
and an application v from Ω to S (called random variable), where oftentimes S is
taken as the real line. In the simplest case S is a finite set which determines via v
a finite partition of Ω . If B is the Boolean algebra generated by this partition, a
probability space is actually the triple (Ω,B,P), and P is a probability measure,
i.e., an application fromB to [0, 1] such that:

P(∅) = 0; P(Ω) = 1; (5)

if A ∩ B = ∅ then P(A ∪ B) = P(A) + P(B). (6)

Elements of B are called measurable subsets of Ω . The probability distribution
induced by v on S is then characterized by a set of weights p1, p2, . . . , pcard(S),
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defined by pi = P(v−1(si )), and such that

card(S)∑

i=1

pi = 1.

Probabilities of events can be extended to fuzzy events by considering the expectation
of their membership functions (Zadeh 1968), which indeed generalizes the usual
expression P(A) = ∑

si∈A pi of a classical event.
Beyond the apparent2 unity of the mathematical model of probability, there are

strikingly different views of what probability means (Fine 1983). The aim of this
section is to discuss some of these views, emphasizing some limitations of the repre-
sentation of uncertainty by means of a unique probability distribution. This section
is completed by a glance at De Finetti’s conditional events and their three-valued
logic, and at a very specific kind of probability distribution (so-called big-stepped)
that play a noticeable role in the representation of default rules.

3.1 Frequentists Versus Subjectivists

If probability theory is considered as a tool for knowledge representation, one must
explain what probability means, what is it supposed to represent. There are at least
three understandings of probability, that have been proposed since its inception.

The simplest one is combinatorial. The setΩ is finite and pi is proportional to the
number of elements in v−1(si ). Then a probability degree is just a matter of counting,
for each event, the proportion of favorable cases over the number of possible ones.
The well-foundedness of this approach relies on considerations about symmetry (a
principle of indifference or insufficient reason, after Laplace), or the assumption
that the phenomenon we deal with is genuinely random (like coin flipping, fair die
tossing, etc.), and follows a uniform distribution.

The most common interpretation is frequentist. It is assumed that we accumu-
late observations (a finite n-element subset Ω(n) of the sample space Ω). Then
frequencies of observing v = si defined by:

fi = card(v−1(si ) ∩ Ω(n))

n

can be obtained. When S is infinite, we can build a histogram associated to the
random variable v by considering frequencies of elements of a finite partition of S
(possibly adjusting a continuous distribution to it).

2Apparent, because the mathematical settings proposed by Kolmogorov and De Finetti (1974) are
different, especially for the notion of conditioning, even if the Kolmogorov setting seems to be
overwhelmingly adopted by mathematicians.
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As the number of observations increases,Ω(n) becomes a representative sampling
ofΩ , and it is assumed that such frequencies fi converge to probability values defined
as limits, by pi = limn→∞ fi . To use this definition of probability, one must clearly
have a sufficient number of observations available (ideally an infinite number) for the
phenomenon under study. Under this view, the probability of a non-repeatable event
makes no sense. Moreover, the frequentist probability distribution is a mathematical
model of a physical phenomenon, hence objective, even if it can be part of the
knowledge of an agent.

Under the third, subjectivist, view, the degree of probability P(A) is interpreted
as a degree of belief of an agent in the truth of the information item v ∈ A. Hence it
should apply to any event, be it repeatable or not. What plays the role of frequencies
formaking subjective probability operational for non-repeatable events is the amount
of money one should pay for a gamble on the occurrence or the non occurrence of
event A. More precisely the degree of probability P(A) for an agent is equated to
the fair price this agent is willing to pay to a bookmaker for a lottery ticket with a
1 euro reward in case the event occurs. The price is fair in the sense that the agent
would also agree to sell it at this price to the bookmaker, should the latter decide
to buy it. Clearly the more the agent believes in A the greater (i.e., the closer to
1 euro) the price (s)he is likely to offer. This approach then relies on a rationality
principle, called coherence, saying that the agent is not willing to lose money for
sure. It ensures that degrees of belief (betting prices) behave in an additive way like
probabilities. To see it, suppose the agent buys two lottery tickets, the first one to
bet on A, the second one to bet on its complement A. The agent is sure to have
one winning ticket, which means a profit of 1 − P(A) − P(A) euros in relative
value. Prices such that P(A) + P(A) − 1 > 0 are not rational as it means a sure
loss for the agent. However, prices such that P(A) + P(A) − 1 < 0 are unfair and
will lead the bookmaker to buy the tickets at those prices instead of selling them, to
avoid sure loss on the bookmaker side. So the only choices left for the agent is to
propose prices such that P(A) + P(A) = 1. The same reasoning can be carried our
for three mutually exclusive events, A, B, A ∪ B, leading to the constraint P(A) +
P(B) + P(A ∪ B) = 1, which, since P(A ∪ B) = 1 − P(A ∪ B), leads to P(A ∪
B) = P(A) + P(B). Note that the probability degrees so-defined are personal, and
may change across agents, contrary to frequentist probabilities.

Apparently, the subjectivist approach looks like a mere copy of the calculus of
frequentist probabilities. In fact as shown by De Finetti (1974) and his followers
(Coletti and Scozzafava 2002), things are not so simple. First, in the subjectivist
approach there is no such thing as a sample space. The reason is that a subjective
probability is either assigned to a unique event (after betting one checks whether this
event did occur or not), or to a single realization of a repeatable one (e.g., flipping this
coin now).Next, on infinite spaces, only finite additivity (in contrast withσ -additivity
for the frequentist approach) can be justified by the above betting paradigm. Finally,
the initial data does not consist of statistics, but a collection of bets (prices ci ) on
on the truth of propositions Ai in an arbitrary set thereof {A j : j = 1, . . . ,m}, along
with a number of logical constraints between those propositions. The state space S is
then constructed based on these propositions and these constraints. It is assumed, by
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virtue of the coherence principle, that the agent assigns prices c j to propositions A j

in agreement with the probability calculus, so that there is a probability distribution
that satisfies P(A j ) = c j , j = 1, . . . ,m. While the frequentist approach leads to
assuming a unique probability distribution representing the random phenomenon
(obtained via an estimation process from statistical data), this is not the case in
the subjectivist setting, if the bets bear on arbitrary events. Indeed there may be
several probability measures such that c j = P(A j ),∀ j = 1, . . . ,m. Any of those
probability functions is coherent but the available information may not allow us
to select a single one. It may also occur that no such probability exists (then the
bets are not coherent). To compute the probability degree P(A) of some arbitrary
event A based on a collection of pairs {(A j , c j ) : j = 1, . . . ,m}, one must solve
linear programming problems whose decision variables are probabilities pi attached
to singletons of S of the form: maximise (or minimise)

∑
si∈A pi under constraints

c j = ∑
sk∈A j

pk,∀ j = 1, . . . ,m.
It is then clear that the subjectivist approach to probability is an extension

of the logical approach to artificial intelligence based on propositional logic and
classical inference. The latter is recovered by assigning probability c j = 1 to
A j , j = 1, . . . ,m, which enforces P(A) = 1 to all logical consequences A of
{A j : j = 1, . . . ,m}.

There are other formal differences between frequentist and subjectivist probabil-
ities when it comes to conditioning.

3.2 Conditional Probabilities

By considering S as the state space, it is implicitly assumed that S represents an
exhaustive set of possible worlds. To emphasize this point of view we may as well
write the probability P(A) as P(A | S). If further on the agent receives new infor-
mation that comes down to restraining the state space, probabilities will be defined
based on a different context, i.e., a non-empty subset C �= ∅ ⊂ S and the probability
P(A) becomes P(A | C) in this new context. Changing P(A) into P(A | C) essen-
tially consists in a renormalization step for probabilities of states inside C , setting
other probabilities to 0:

P(A | C) = P(A ∩ C)

P(C)
(7)

We can indeed check that P(A) = P(A | S). This definition is easy to justify in the
frequentist setting, since indeed P(A | C) is but the limit of a relative frequency.

Justifying this definition in the subjectivist case is somewhat less straightforward.
The probability P(A | C) is then assigned to the occurrence of a conditional event
denoted by A | C .3 The quantity P(A | C) is again equated to the fair price of a lottery
ticket for the conditional bet on A | C . The difference with a standard bet is that if the

3We come back to the logic of conditional events at the end of this section.
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opposite ofC occurs, the bet is called off and the amount of money paid for the ticket
is given back to the agent (De Finetti 1974). The conditional event A | C represents
the occurrence of event A in the hypothetical context where C would be true. In this
operational set-up it can be shown that the identity P(A ∩ C) = P(A | C) · P(C)

holds.
This definition of conditional probability contrasts with the one of Kolmogorov

based on a quotient, which presupposes P(C) �= 0, and proves to be too restric-
tive in the subjectivist setting. Indeed, in the latter setting, conditional probabilities
are directly collected, so that conditional probability is the primitive concept in the
subjectivist setting ofDe Finetti, and no longer derived from the unconditional proba-
bility function. The conditional probability satisfying P(A ∩ C) = P(A | C) · P(C)

still makes sense if P(C) = 0; see (Coletti and Scozzafava 2002).
Under the subjectivist view, a body of knowledge consists of a set of conditional

probability assignments {P(Ai | C j ) = ci j , i = 1, . . . ,m; j = 1, . . . , n}. Such con-
ditional events correspond to various hypothetical contexts whose probability is
allowed to be 0. The questions of interest are then (i) to derive a probability distribu-
tion in agreement with those constraints (actually a sequence of probability measures
on disjoint parts of S (Coletti and Scozzafava 2002); (ii) to find induced optimal
bounds on some conditional probability P(A|C). For instance, one may consider the
probabilistic syllogismalready studiedbyBoole andDeMorgan.Namely suppose the
quantities P(B|A), P(C |B) are precisely known,what can be inferred about P(C |A)

? It turns out that if P(C |B) < 1, we can only conclude that P(C |A) ∈ [0, 1]. How-
ever when the values of P(A|B) and P(B|C) are known as well, we can compute
non-trivial bounds on P(C |A). These bounds can be found in (Dubois et al. 1993).
For example, it can be shown that

P(C |A) ≥ P(B|A) · max

(
0, 1 − 1 − P(C |B)

P(A|B)

)

and that this lower bound is tight.
Yet another mathematical attempt to justify probability theory as the only rea-

sonable belief measure is the one of Cox (1946). To do so he relied on the Boolean
structure of the set of events and a number of postulates, considered compelling.
Let g(A|B) ∈ [0, 1] be a conditional belief degree, A, B being events in a Boolean
algebra, with B �= ∅. Cox assumed:

(i) g(A ∩ C |B) = F(g(A|C ∩ B), g(C |B)) (if C ∩ B �= ∅);
(ii) g(A|B) = n(g(A|B)), B �= ∅, where A is the complement of A;
(iii) function F is supposed to be twice differentiable, with a continuous second

derivative, while function n is twice differentiable.

On such a basis, Cox claimed g(A|B) is necessarily isomorphic to a conditional
probability measure.

This result is important to recall here because it has been repeated ad nauseam
in the literature of artificial intelligence to justify probability and Bayes rule as the
only reasonable approach to represent and process numerical belief degrees (Horvitz
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et al. 1986; Cheeseman 1988; Jaynes 2003). However some reservations must be
made. First, the original proof by Cox turned out to be faulty – see Paris (1994)
for another version of this proof based on a weaker condition (iii): it is enough that
F be strictly monotonically increasing in each place. Moreover, Halpern (1999a, b)
has shown that the result does not hold in finite spaces, and we need an additional
technical condition to get it in the infinite setting. Independently of these technical
issues, it should be noticed that postulate (i) sounds natural only if one takes Bayes
conditioning for granted; the second postulate requires self-duality, i.e., it rules out all
other approaches to uncertainty considered in the rest of this chapter and in the next
one; it forbids the representation of uncertainty due to partial ignorance as seen later
on. Noticing that P(A|B) can be expressed in terms of P(A ∩ B) and P(A ∩ B),
an alternative option would be to start with assuming g(A|B) to be a function of
g(A ∩ B) and g(A ∩ B)), adding the postulate g((A|B)|C) = g(A|B ∩ C), if B ∩
C �= ∅, but dropping (iii). This could lead to a general study of conditional belief as
outlined in Dubois et al. (2010). The above comments seriously weaken the alleged
universality of Cox results.

3.3 Bayes Rule: Revision Versus Prediction

Assuming that a single probability measure is available, the additivity property of
probability theory implies two noticeable results for conditional probabilities, that
are instrumental in practice:

• The theorem of total probability: If {C1, . . . ,Ck} forms a partition of S, then

P(A) =
k∑

i=1

P(A | Ci )P(Ci ).

• Bayes theorem

P(C j | A) = P(A | C j )P(C j )∑k
i=1 P(A | Ci )P(Ci )

.

The first result makes it possible to derive the probability of an event in a general
context S given the probabilities of this event in various subcontexts C1, . . . ,Ck ,
provided they form a partition of the set of possible states, and if probabilities of
these subcontexts are available. Bayes theorem is useful to solve classification prob-
lems: suppose k classes of objects forming a partition of S. If the probability that
objects in each class C j satisfy property A is known, as well as prior probabilities of
classes C j , then if a new object is presented that is known to possess property A, it is
easy to compute the probability P(C j | A) that this object belongs to classC j . Diag-
nosis problems are of the same kind, replacing “class” by “disease” and “observed
property” by “symptom”. The use of conditional probabilities in Bayesian networks
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first proposed by Pearl (1988) is extensively discussed in chapter “Belief Graphical
Models for Uncertainty Representation and Reasoning” of Volume 2 of this treatise.

Most of the time, the information encoded in a probability distribution refers
to some population. It represents generic information, with a frequentist meaning.
One can use this information to infer beliefs about a particular situation, in which
one has made partial, but unambiguous observations. This task is referred to as
prediction. If P(A | C) is the (frequentist) probability of event A in context C , one
measures the agent’s confidence g(A | C) in proposition A, when only information
C is known, by the quantity P(A | C), assuming the current situation is typical of
context C . The agent’s belief about proposition A is updated from g(A) = P(A)

to g(A | C) = P(A | C) after observing that C is true in the current situation, and
nothing else. Conditioning is thus used to update the agent’s contingent beliefs about
the current situation by exploiting generic information. For instance, probability
measure P represents medical knowledge (often compiled as a Bayesian network).
Contingent information C represents test results for a given patient. Conditional
probability P(A | C) is then the probability that disease A is present for patients
with test results C ; this value also measures the (contingent) probability that the
particular patient under consideration has disease A. We can remark that, under
inference of this kind, the probability measure P does not change. One only applies
generic knowledge to the reference class C , a process called focalization.

In the context of subjective probability à la De Finetti, to say that a probability
distribution P is known means to know P(A | C) for all events in all contexts. The
agent only chooses the conditional probability of the event of interest in the context
that is in agreement with the information on the current situation.

These views of conditioning differ from a revision process leading to a change of
probability measure. Indeed some authors justify conditional probability in terms of
belief revision (Gärdenfors 1988). The quantity P(A | C) is then viewed as the new
probability of A when the agent learns that C occurred. A basic principle of belief
revision isminimal change: the agent revises its beliefsminimallywhile absorbing the
new information item, interpreted as the constraint P(C) = 1. Under this view, the
nature of the original probability function, and of the input information is the same,
as is the posterior probability. In this revision scenario (see chapter “Main Issues
in Belief Revision, Belief Merging and Information Fusion” of this volume), the
probability function can be generic (e.g., frequentist, population-based) or singular
(a subjective probability) and the input information is of the same kind as P (we learn
thatC has actual probability 1). The revision problem is then defined as follows: find
a new probability P ′ as close as possible to P such that P ′(C) = 1, which obeys
minimal change (Domotor 1985). Using a suitable measure of relative information
(e.g.,Kullback-Leibler relative entropy) it can be shown that P ′(A) = P(A | C),∀A.

This revision scenario contrasts with the one of making predictions based on
generic knowledge (in the form of a probability measure P describing the behavior
of a population) and singular information items describing a situation of interest,
even if the same tool, conditional probability, is used. As will be seen later on in this
chapter and in the next one, the two tasks (revision vs. prediction) will no longer be
solved by the same form of conditioning in more general uncertainty theories.
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3.4 Probability Distributions and Partial Ignorance

The so-called Bayesian approach to subjective probability theory postulates the
unicity of the probability distribution as a preamble to any kind of uncertainty
modeling (see, for instance, Lindley (1982)), which could read as follows: any state
of knowledge is representable by a single probability distribution. Note that indeed,
if, following the fair bet procedure of De Finetti, the agent decides to directly assign
subjective probabilities via buying prices to all singletons in S, the coherence princi-
ple forces this agent to define a unique probability distribution in this case. However,
it is not clear that the limited perception of the human mind makes the agent capable
of providing real numbers with infinite precision in the unit interval as prices. The
measurement of subjective probability should address this issue in some way. If one
objects that perhaps the available knowledge of the agent hampers the assignment
of precise prices, the Bayesian approach sometimes resorts to selection principles
such that the Laplace Principle of Insufficient Reason that exploits symmetries of
the problem, or the maximal entropy principle (Jaynes 1979; Paris 1994). Resort-
ing to the latter in the subjectivist setting is questionable because it would select
the uniformly distributed probability whenever it is compatible with the imprecise
probabilistic information, even if imprecise probabilities suggest another trend.

Applying the Bayesian credo as recalled above forces the agent to use a single
probability measure as the universal tool for representing uncertainty whatever its
source. This stance leads to serious difficulties already pointed fourty years ago
(Shafer 1976). For one, it means we give up making any difference between uncer-
tainty due to incomplete information or ignorance, and uncertainty due to a purely
random process, the next outcome of which cannot be predicted. Take the example of
die tossing. The uniform probability assignment corresponds to the assumption that
the die is fair. But if the agent assigns equal prices to bets assigned to all facets, how
can we interpret it? Is it because the agent is sure that the die is fair and its outcomes
are driven by pure randomness (because, say, they could test it hundreds of times
prior to placing the bets)? Or is it because the agent who is given this die, has just
no idea whether the die is fair or not, so has no reason to put more money on one
facet than on another one? Clearly the epistemic state of the agent is not the same
in the first situation and in the second one. But the uniformly distributed probability
function is mute about this issue.

Besides, the choice of a set of mutually exclusive outcomes depends on the chosen
language, e.g., the one used by the information source, and several languages or points
of viewcan co-exist in the sameproblem.As there are several possible representations
of the state space, the probability assignment by an agentwill be language-dependent,
especially in the case of ignorance: a uniform probability on one state space may
not correspond to a uniform one on another encoding of the same state space for the
same problem, while in case of ignorance this is the only representation left to the
betting agent. Shafer (1976) gives the following example.Consider the question of the
existence of extra-terrestrial life, about which the agent has no idea. If the variable
v refers to the claim that life exists outside our planet (v = l), or not (v = ¬l),
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then the agent proposes P1(l) = P1(¬l) = 1
2 on S1 = {l,¬l}. However it makes

sense to distinguish between animal life (al), and vegetal life only (vl), which leads
to the state space S2 = {al, vl,¬l}. The ignorant agent is then bound to propose
P2(al) = P2(vl) = P2(¬l) = 1

3 . As l is the disjunction of al and vl, the distributions
P1 and P2 are not compatible with each other, while they are supposed to represent
ignorance. Amore casual example comes from noticing that expressing ignorance by
means of a uniform distribution for v ∈ [a, b], a positive interval, is not compatible
with a uniform distribution on v′ = log v ∈ [log(a), log(b)], while the agent has the
same ignorance on v and v′.

Finally, it is not easy to characterize a single probability distribution by assign-
ing lottery prices to propositions that do not pertain to singletons of the state
space. Probability theory and classical logic, understood as knowledge represen-
tation frameworks, do not get along very conveniently. A maximal set of propo-
sitions to each of which the same lower bound of probability strictly less than 1
is assigned is generally not deductively closed. Worse, the conditioning symbol in
probability theory is not a standard Boolean connective. The values Prob(A|B) and
Prob(B → A) = Prob(B ∪ A) can be quite different from each other, and will
coincide only if they are equal to 1 (Kyburg, Jr. and Teng 2012). A natural concise
description of a probability distribution on the set of interpretations of a language
is easily achieved by a Bayesian network, not by a weighted set of propositional
formulas.

Besides, in first-order logic, we should not confuse an uncertain universal conjec-
ture (Gaifman and Snir 1982) (for instance, Prob(∀x, P(x) → Q(x)) = α) with a
universally valid probabilistic statement (for instance, ∀x, Prob(P(x) → Q(x)) =
α, or ∀x, Prob(Q(x)|P(x)) = α). Extensions of Bayesian networks to first-order
logical languages are proposed by Milch and Russell (2007). Finally we give a num-
ber of references to works that tried to reconcile probabilistic and logical represen-
tations (propositional, first-order, modal) in various ways: (Halpern 1990; Bacchus
1991; Nilsson 1993; Abadi and Halpern 1994; Marchioni and Godo 2004; Jaeger
2001; Halpern and Pucella 2002, 2006; Jaeger 2006). See chapter “Languages for
ProbabilisticModelingOver StructuredDomains” inVolume 2 for a detailed account
of probabilistic relational languages.

The above limitations of expressive power for single probability distributions have
motivated the emergence of other approaches to uncertainty representations. Some of
them give up the numerical setting of degrees of belief and use ordinal or qualitative
structures considered as underlying the former subjectivist approaches. For instance,
see (Renooij and van der Gaag 1999; Parsons 2001; Bolt et al. 2005; Renooij and van
derGaag2008) forworks that try to provide a qualitative counterpart ofBayesiannets.
Another option is to tolerate incomplete information in the probabilistic approaches,
which leads to different mathematical models of various level of generality. They are
reviewed in the rest of this chapter and in the next chapter in this volume. Possibility
theory is the simplest approach of all, and is found in both qualitative and quantitative
settings (Dubois and Prade 1998).
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3.5 Conditional Events and Big-Stepped Probabilities

Instead of considering a conditional probability function P(· | C) as a standard prob-
ability distribution on C , De Finetti (1936) was the first scholar to consider the set
of conditional probabilities {P(A | C) : A ⊆ S,C �= ∅} as a probability assignment
to three-events, or conditional events A | C . A conditional event can be informally
understood as a conditional statement or an if-then rule: if all the currently available
information is described by C , then conclude that A holds.

A three-event is so called because it partitions the state space S into three disjoint
sets of states s:

• Either s ∈ A ∩ C ; s is called an example of the rule “ifC then A”. The three-event
is considered as true at state s, which is denoted by t (A | C) = 1;

• or s ∈ A ∩ C ; s is called a counter-example of the rule “if C then A”. The three-
event is considered as false at state s, which is denoted by t (A | C) = 0;

• or s ∈ C ; then the rule “if C then A” is said not to apply to s. In this case the
three-event takes a third truth-value at s, which is denoted by t (A | C) = I where
I stands for inapplicable.

A three-event A | C can thus be interpreted as a pair (A ∩ C, A ∩ C) of disjoint sets
of examples and counter-examples. A qualitative counterpart of Bayes rule holds,
noticing that as the set-valued solutions of the equation A ∩ C = X ∩ C are all sets
{X : A ∩ C ⊆ X ⊆ A ∪ C}, which is another possible representation of A | C (as an
interval in the Boolean algebra of subsets of S). This definition of conditional events
as pairs of subsets suggests a natural consequence relation between conditional events
defined as follows (Dubois and Prade 1994):

B | A � D | C ⇔ A ∩ B � C ∩ D and C ∩ D � A ∩ B

which reads: all examples of B | A are examples of D |C and all counter-examples of
D |C are counter-examples of B | A. Note that only the second condition coincides
with the deductive inference between material conditional counterparts of the three-
events. Material conditionals highlight counter-examples of rules, not examples.
When ordering the truth-values as 0 < I < 1, this semantic inference relation also
reads B | A � D |C ⇔ t (B | A) ≤ t (D | C).

Representing if-the rules by conditional events avoids some paradoxes of material
implications, such as the confirmation paradox: in the material implication represen-
tation, the rule if C then A is the same as its contrapositive version if A then C .
If we use material implication, we are bound to say that an observation confirms a
rule if it makes this material implication true. So, both s1 ∈ A ∩ C and s2 ∈ A ∩ C
confirm the rule. But this is questionable: suppose the rule means all ravens are black.
Then meeting a white swan would confirm that all ravens are black (Hempel 1945).
This anomaly does not occur with conditional events as A | C is not equivalent to
C | A: they have the same counterexamples (e.g., white ravens) since they have the
same material conditional representations, but they do not have the same examples:
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s2 is an example of C | A (e.g., a white swan), but this three-event does not apply to
s1 ∈ A ∩ C (Benferhat et al. 2008).

It is worth noticing that a conditional probability P(A | C) is indeed the proba-
bility of a conditional event A | C since P(A | C) is entirely determined by the pair
(P(A ∩ C), P(A ∩ C)). Moreover, if all probabilities of singletons are positive, and
B | A � D | C , it is clear that P(B | A) ≤ P(D | C).

A three-valued logic for conjunctions of conditional events was developed by
Dubois and Prade (1994). A three-valued extension of standard conjunction is used
where the third truth-value I is a semi-group identity. This three-valued logic truth-
table for conjunction and the above inference rule offer an alternative simple seman-
tics for the non-monotonic inference system P (Kraus et al. 1990) that captures
exception-tolerant reasoning, where conditional events B | Amodel generic rules of
the form: generally if A then B (see also the section on non-monotonic inference in
chapter “Knowledge Representation: Modalities, Conditionals, and Nonmonotonic
Reasoning” in this volume and Sect. 4.2.1 of the present chapter). Non-monotonicity
manifests itself by the fact that the inference B | A � B | A ∩ C does not hold (the
latter has less examples than the former), so that, like in probability theory, condi-
tional events B | A and B | (A ∩ C) can coexist in the same rule base without ruling
out any possible world (contrary to material conditionals in propositional logic that
would enforce A ∩ C = ∅). Under this logic, to infer a plausible conclusion F from
a state of knowledge described by the epistemic set E , and a conditional base (a
set of conditional events) C that encodes generic information, means to infer the
conditional event F | E from a conditional event obtained as a suitable conjunction
of a subset of conditional events in C (Benferhat et al. 1997).

Note also that under this inference scheme, the conditional event A ∩ B | C fol-
lows fromC = {A | C, B | C}, so that the set of plausible conclusions obtained from
C will be deductively closed. But as pointed our earlier, P(A ∩ B | C) > 1 − θ

does not follow from P(A | C) ≥ 1 − θ and P(B | C) > 1 − θ , however small θ

may be. In particular, if we minimally define A as an accepted belief whenever
P(A | C) > P(A | C) (in other words P(A | C) > 1/2), we see that contrary to
what happens with conditional events, a set of probabilistically accepted beliefs will
not be closed in the sense of classical deduction. To ensure compatibility between
symbolic inference between conditional events and accepted beliefs in the above
sense, we can restrict the set of probability distributions to a subset for which deduc-
tive closure will be respected. This kind of probability measure is called big-stepped
probability and is defined as follows by the condition:

∀i < n − 1, pi >
∑

j=i+1,..,n p j where pi = P(si ) and p1 > .. > pn−1 ≥ pn > 0.

For an example of big-stepped probability distributionwhen n = 5, consider p1 =
0.6, p2 = 0.3, p3 = 0.06, p4 = 0.03, p5 = 0.01. This type of exponential-like (or
super-decreasing) probability distributions are at odds with uniform distributions.
They offer a full-fledged probabilistic semantics to the logic of conditional events
and Kraus, Lehmann and Magidor (1990)’s system P for coping with exceptions in
rule-based systems (Benferhat et al. 1999b; Snow 1999).
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4 Possibility Theory

Basic building blocks of possibility theory go back to a seminal paper by Zadeh
(1978) and further works by Dubois and Prade (1988) quite independently of the
works of an English economist, Shackle (1961) who had outlined a similar theory
some thirty years before (in terms of so-called degrees of surprize to be equated
to degrees of impossibility). Actually, Zadeh and Shackle did not have the same
intuitions in mind. Zadeh viewed his possibility distributions as representing flex-
ible constraints representing pieces of fuzzy information in natural language (viz.
“what is the possibility that John is more than 30 years old assuming he is young”?).
In contrast Shackle tried to offer a representation of how the human mind handles
uncertainty that is supposedly more faithful than probability theory. After the publi-
cation of Zadeh’s paper, it soon became patent that possibility distributions were not
necessarily generated from the representation of gradual properties in natural lan-
guage (like young), but that they allowed to formalize a gradual notion of epistemic
states by extending the disjunctive view of sets to fuzzy sets, whereby degrees of
possibility, understood as plausibility, can be assigned to interpretations induced by
any propositional language.

Possibility measures are maximum-decomposable for disjunction. There have
companion set-functions called necessity measures, obtained by duality, that are
minimum-decomposable for conjunction. They can be completed by two other set-
functions that use the same basic setting. This general framework is first recalled
in the following subsections. Then the distinction between qualitative and quantita-
tive possibility theories is recalled. Qualitative possibility theory is best couched in
possibilistic logic, which is briefly outlined. This section is completed by an expo-
sition of the relationships between qualitative possibility theory and non-monotonic
reasoning, and the modeling of default rules. We end the section by a possibility-
theory rendering of formal concept analysis, which was originally developed in a
very different perspective.

4.1 General Setting

Consider a mapping πv from S to a totally ordered scale L , with top denoted by 1
and bottom by 0. It can be the unit interval as suggested by Zadeh, or generally any
finite chain such as L = {0, 0.1, 0.2, . . . , 0.9, 1}, or a totally ordered set of symbolic
grades. The possibility scale can be the unit interval as suggested by Zadeh, or
generally any finite chain, or even the set of non-negative integers. For convenience,
it is often assumed that the scale L is equipped with an order-reversing map denoted
by λ ∈ L �→ 1 − λ. More generally L can be a complete lattice with a top and a
bottom element, denoted by 1 or 0 respectively. The larger πv(s), the more possible,
i.e., plausible the value s for the variable v, that supposedly pertains to some attribute
(like the age of John in Sect. 2.4). The agent information about v is captured by πv
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called a possibility distribution. Formally, the mapping π is the membership function
of a fuzzy set (Zadeh 1978), where membership grades are interpreted in terms of
plausibility. If the possibility distribution stems from gradual linguistic properties,
plausibility is measured in terms of distance to fully plausible situations, not in
terms of, e.g., frequency. Function π represents the state of knowledge of an agent
(about the actual state of affairs), also called an epistemic state distinguishing what is
plausible from what is less plausible, what is the normal course of things from what
is not, what is surprising from what is expected. It represents a flexible restriction
on what is the actual state with the following conventions (similar to probability, but
opposite to Shackle’s potential surprise scale)4:

• π(s) = 0 means that state s is rejected as impossible;
• π(s) = 1 means that state s is totally possible (= plausible).

If the universe S is exhaustive, at least one of the elements of S should be the
actual world, so that ∃s, π(s) = 1 (normalised possibility distribution). This condi-
tion expresses the consistency of the epistemic state described by π . Distinct values
may simultaneously have a degree of possibility equal to 1. In the Boolean case, π
is just the characteristic function of a subset E ⊆ S of mutually exclusive states, rul-
ing out all those states considered as impossible. Possibility theory is thus a (fuzzy)
set-based representation of incomplete information. There are two extreme cases of
imprecise information

• Complete ignorance: without information, only tautologies can be asserted. It is
of the form v ∈ S, corresponding to the possibility distribution π ?

v (s) = 1,∀s ∈ S.
• Complete knowledge: it is of the form v = s0 for some value s0 ∈ S, corresponding
to the possibility distribution π s0

v (s) = 1 if s = s0 and 0 otherwise. Note that it is
the value 0 that brings information in πv.

Possibility theory is driven by the principle of minimal specificity. It states that any
hypothesis not known to be impossible cannot be ruled out. It is a minimal com-
mitment, cautious information principle. Basically, we must always try to maximize
possibility degrees, taking constraints into account. Measures of possibilistic speci-
ficity have been proposed in a way similar to probabilistic entropy (Higashi and Klir
1982).

4.1.1 The Two Basic Set-Functions

Plausibility and certainty evaluations, induced by the information represented by a
distribution πv, pertaining to the truth of proposition v ∈ A can then be defined. We
speak of degrees of possibility and necessity of event A:

Π(A) = max
s∈A

πv(s); N (A) = 1 − Π(A) = min
s /∈A

1 − πv(s) (8)

4If L = N, the conventions are opposite: 0 means possible and ∞ means impossible.
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By convention Π(∅) = 0 and then N (S) = 1. Π(S) = 1 (hence N (∅) = 0) fol-
lows if πv is normalized. The symbol 1 − (·) should not suggest these degrees are
numerical. It is just the order-reversing map on L .

When distribution πv takes value on the binary scale {0, 1}, i.e., there is a subset
E ⊆ S such that πv(s) = 1 ⇔ s ∈ E , it is easy to see that Π(A) = 1 if and only
if the proposition v ∈ A is not inconsistent with the information item v ∈ E , i.e., if
A ∩ E �= ∅. Likewise, N (A) = 1 if and only if proposition v ∈ A is implied by the
information item v ∈ E (since E ⊆ A). Π(A) = 0 means that it is impossible that
the assertion v ∈ A is true if v ∈ E is true. N (A) = 1 expresses that the assertion
v ∈ A is certainly true if v ∈ E is true.

Functions N andΠ are tightly linked by the duality property N (A) = 1 − Π(A).
This feature highlights amajor difference between possibility and necessitymeasures
and probability measures that are self dual in the sense that P(A) = 1 − P(A).

The evaluation of uncertainty in the style of possibility theory is atwork in classical
and modal logics. If K is a set of propositional formulas in some language, suppose
that E is the set of its models. Consider a formula p which is the syntactic form of
the proposition v ∈ A, then N (A) = 1 if and only if K implies p, and Π(A) = 0 if
and only if K ∪ {p} is logically inconsistent. Of course, the presence of p inside K
encodes N (A) = 1, while the presence of its negation ¬p in K encodes Π(A) = 0.
In contrast, in the propositional language of K , one cannot encode N (A) = 0 nor
Π(A) = 1, e.g., that v ∈ A is unknown. To do this inside the language, one must use
the formalism of modal logic (see chapter “Knowledge Representation: Modalities,
Conditionals, and Nonmonotonic Reasoning” in this volume), that prefixes propo-
sitions by modalities of possibility (♦) and necessity (�): in a modal base Kmod ,
♦p ∈ Kmod directly encodes Π(A) = 1, and �p ∈ Kmod encodes N (A) = 1 (the
latter merely encoded by p ∈ K in propositional logic). The duality relation between
Π and N is very well known in modal logic, where it reads ♦p = ¬�¬p. A simple
modal logic (a very elementary fragment of the KD logic), called MEL (for minimal
epistemic logic), has been defined by Banerjee et Dubois (2014) with a semantics
in terms of non-empty subsets of interpretations ({0, 1}-valued possibility distribu-
tions). A similar idea was first suggested by Mongin (1994). The satisfaction of �p
by an epistemic set E means that E ⊆ A, if p encodes v ∈ A.

In the possibilistic setting one distinguishes three extreme epistemic attitudes
pertaining to an information item v ∈ A:

• the certainty that v ∈ A is true: N (A) = 1, hence Π(A) = 1;
• the certainty that v ∈ A is false: Π(A) = 0, hence N (A) = 0:
• ignorance pertaining to v ∈ A: Π(A) = 1, and N (A) = 0.

These attitudes can be refined as soon as L contains at least one value differing from
0 or 1 leading to situations where 0 < N (A) < 1 or 0 < Π(A) < 1.

It is easy to verify that possibility and necessity measures saturate inequalities
(2) verified by capacities:

Π(A ∪ B) = max(Π(A),Π(B)). (9)
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N (A ∩ B) = min(N (A), N (B)). (10)

Possibility measures are said to be maxitive and are fully characterized by the
maxitivity property (9) in the finite case; necessity measures are said to be minitive
and are fully characterized by the minitivity property (10) in the finite case, including
when these functions take values in [0, 1].

In general possibility and necessity measures do not coincide. It is impossible for
a set function to be at the same time maxitive and minitive for all events, except in
case of complete knowledge (E = {s0}). Then N = Π also coincide with a Dirac
{0, 1}-valued probability measure.

Observe that we only have

N (A ∪ B) ≥ max(N (A), N (B)) and Π(A ∩ B) ≤ min(Π(A),Π(B)),

and it may occur that the difference is maximal. Indeed in the {0, 1}-valued case, if
it is not known whether A is true or false (namely, A ∩ E �= ∅ and A ∩ E �= ∅), then
Π(A) = Π(A) = 1 and N (A) = N (A) = 0; however, by definition Π(A ∩ A) =
Π(∅) = 0 and N (A ∪ A) = N (S) = 1.

4.1.2 Two Decreasing Set Functions. Bipolarity

Yet another set function Δ and its dual companion ∇ (first introduced in 1991, see
(Dubois and Prade 1998)) can be naturally associated with the possibility distribution
πv in the possibilistic framework:

Δ(A) = min
s∈A

πv(s); ∇(A) = 1 − Δ(A) = max
s /∈A

1 − πv(s) (11)

Observe first that in contrast with Π and N , Δ and ∇ are decreasing functions with
respect to set inclusion (hence to the logical consequence relation). Function Δ is
called strong possibility or guaranteed possibility since inside set A, the degree of
possibility is never less than Δ(A) (while Π is only a weak possibility degree that
just measures consistency); dually, function ∇ is a measure of weak necessity, while
N is a measure of strong necessity. Besides, the following inequality hold:

∀A,max(Δ(A), N (A)) ≤ min(Π(A),∇(A))

provided that both πv and 1 − πv are normalised.
Characteristic properties of Δ and ∇ are:

Δ(A ∪ B) = min(Δ(A),Δ(B)); Δ(∅) = 1. (12)

∇(A ∩ B) = max(∇(A),∇(B)); ∇(S) = 0. (13)
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From the standpoint of knowledge representation, it is interesting to consider the
case when the possibility distribution πv only takes a finite number of distinct values
α1 = 1 > · · · > αn > αn+1 = 0. It can then be described by n nested subsets E1 ⊆
· · · ⊆ Ei ⊆ · · · ⊆ En whereπv(s) ≥ αi ⇔ s ∈ Ei . One can then verify thatΔ(Ei ) ≥
αi , while N (Ei ) ≥ 1 − αi+1 for i = 1, . . . , n, and that πv(s) = maxEi�s Δ(Ei ) =
minEi ��s(1 − N (Ei )) (with conventions max∅ = 0 et min∅ = 1). A distribution πv

can thus be seen as a weighted disjunction of sets Ei , from the point of view of Δ,
and as a weighted conjunction of sets Ei from the point of view of N . The reading
of πv viewed from Δ offers a positive understanding of the possibility distribution,
expressing towhich extent each value is possible, while viewed from N ,πv expressed
to what extent each value is not impossible (since each value s is all the more
impossible as it belongs to fewer subsets Ei ).

These positive and negative flavors respectively attached toΔ and N lay the foun-
dation of a bipolar representation of information in possibility theory (Benferhat et al.
2008). The idea of bipolarity refers to an explicit handling of positive or negative
features of information items (Dubois and Prade, eds. 2008). There are several forms
of bipolarity and we only focus on the case when it comes from the existence of
distinct sources of information. In the possibilistic setting, two possibility distribu-
tions δv and πv are instrumental to respectively represent values that are guaranteed
possible for v and values that are just known to be not-impossible (because not ruled
out). The concept of bipolarity applies to representing knowledge as well as prefer-
ences. These distributions are differently interpreted: when representing knowledge
δv(s) = 1 means that s is certainly possible because this value or state has been actu-
ally observed, and, when representing preferences, s is an ideal choice. Moreover,
when representing knowledge, δv(s) = 0 just means that nothing is known about this
value that has not been observed, and, when representing preferences, that the choice
s is not at all attractive. In contrast, when representing knowledge, πv(s) = 1 means
that s is not impossible (just feasible when representing preference), but πv(s) = 0
means that s is completely ruled out (or not acceptable for preferences). Intuitively,
any state that is guaranteed possible should be among the non-impossible situations.
So there is a coherence condition to be required: δv ≤ πv. It corresponds to a standard
fuzzy set inclusion). In possibilistic logic presented further on, the distribution πv

stems from constraints of the form N (Ai ) ≥ ηi , and distribution δv from statements
of the form Δ(Bj ) ≥ δ j where Ai ⊆ S, Bj ⊆ S, and ηi ∈ L , δ j ∈ L . The idea of
bipolar representation is not limited to possibility theory, even if it was not often
considered in other frameworks (see Dubois et al. (2000a)).

4.1.3 Possibility and Necessity of Fuzzy Events

The set functions Π , N , Δ et ∇ can be extended to fuzzy sets. The (weak) possibil-
ity of a fuzzy event F is defined by Π(F) = sups min(F(s), πv(s)) (Zadeh 1978);
still using duality, the necessity of a fuzzy event then reads N (F) = 1 − Π(F) =
infs max(F(s), 1 − πv(s)). Functions Π and N still satisfy, respectively, maxitivity
(9) and minitivity (10) properties. The values Π(F) and N (F) turn out to be spe-
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cial cases of Sugeno integrals (see chapter “Multicriteria Decision Making” in this
volume). Possibility and necessity of fuzzy events are instrumental to evaluate the
extent to which a flexible condition is satisfied by an ill-known piece of data (Cayrol
et al. 1982); in particular, if πv = F , only N (F) ≥ 1/2 obtains, which at first glance
may be questionable. To get N (F) = 1, the condition ∀s πv(s) > 0 ⇒ F(s) = 1
is needed, which means the inclusion of the support of π in the core of F so that
any value that is possible even to a very low extent be fully in agreement with F .
Such evaluations have been applied to fault diagnosis problems using a qualitative
handling of uncertainty, where one may separate anomalies that more or less cer-
tainly appear when a failure occurs, from anomalies that more or less possibly appear
(Cayrac et al. 1996; Dubois et al. 2001). FunctionsΔ and∇ extend similarly to fuzzy
events as Δ(F) = infs max(1 − F(s), πv(s)), letting ∇(F) = 1 − Δ(F) by duality,
while preserving respective properties (12) and (13).

Set functions N and Δ on fuzzy events are also very useful to represent fuzzy
if-then rules (see also chapter “Case-Based Reasoning, Analogical Reasoning, and
Interpolation” in this volume) of the form the more v is F, the more it is sure that
y is G, and the more v is F, the more it is possible that y is G respectively, where
F (but possibly G as well) are gradual properties represented by fuzzy sets (Dubois
and Prade 1996). Indeed, the first type of rule expresses a constraint of the form
N (G) ≥ F(s) while the second one is better modeled by the inequality Δ(G) ≥
F(s). However, the first type of rule, where 1 − F(s) is viewed as the degree of
possibility that the conclusion G is false, while in the second type of rule F(x) is the
minimal degree of possibility that the conclusion G holds, which corresponds to the
following possibility distributions on the joint domain of (x, y):

πx,y(s, t) ≤ max(1 − F(s),G(t)) and πx,y(s, t) ≥ min(F(s),G(t)).

Definitions of the strong necessity and possibility functions compatible with these
inequalities are not the ones based onZadeh’sweak possibility of a fuzzy event. Based
on the following equivalence: c ≤ max(a, 1 − b) ⇔ (1 − a) → (1 − c) ≥ b, where
→ is Gödel implication

u → v =
{
1 si u ≤ v,

v otherwise,

the following extensions of strong necessity and possibility of fuzzy events N and
Δ must be used: N (G) = infs(1 − F(s)) → (1 − πv(s)) and Δ(G) = infs F(s) →
πv(s). These evaluations do reduce to strong necessity and possibility of standard
events, like the ones in the previous paragraph, but the necessity function satisfies
N (G) = 1 when πv = G (since we expect some equivalence between statements
such as it is sure that John is young and John is young). Likewise, Δ(G) = 1 when
πv = G. See Dubois et al. (2017a) for a systematic analysis of extensions of the
four set functions of possibility theory to fuzzy events. The two types of fuzzy rules
reflect a bipolar view of a standard rule if v ∈ A then y ∈ B, which, on a Carte-
sian product of domains S × T can be represented either by the relational constraint
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R(s, t) ≥ (A × B)(s, t)pointingout examples, or by the relational constraint R(s, t) ≥
(A × B)(s, t) ⇔ R(s, t) ≤ (A + B)(s, t) excluding counter-examples, where the

overbar means complementation and where A + B = A × B. The view of an if-
then rule as a conditional event B|A is thus retrieved.

4.1.4 Conditioning in Possibility Theory: Qualitative Versus
Quantitative Settings

Since the basic properties in possibility are based on minimum, maximum and an
order-reversing map on the uncertainty scale (1 − (·) on the unit interval, and 1 −
αk = αm−k) on a bounded chain {α0, · · · , αm}), it is not imperative to use a numerical
setting for the measurement of possibility and necessity. When the set functions take
values in the unit interval, we speak of quantitative possibility theory. When they
take values in a bounded chain, we speak of qualitative possibility theory (Dubois
and Prade 1998). In both cases, possibility theory offers a simple, but non trivial,
approach to non-probabilistic uncertainty. The two versions of possibility theory
diverge when it comes to conditioning. In the qualitative case, there is no product
operation, and the counterpart of Bayes rule is naturally expressed replacing it by
the minimum operation on the bounded chain L:

Π(A ∩ B) = min(Π(A | B),Π(B)). (14)

This equation has no unique solution. In the spirit of possibility theory, one is led
to select the least informative solution, according to minimal commitment, namely
when B �= ∅, and A �= ∅:

Π(A | B) =
{
1 if Π(A ∩ B) = Π(B),

Π(A ∩ B) otherwise.
(15)

This is just like conditional probability, except that we no longer make a division by
Π(B). When Π(B) = 0, Π(A | B) = 1 as soon as A ∩ B �= ∅. It reflects the idea
than you may destroy available information when conditioning on an impossible
event. Conditional necessity is defined by duality as5:

N (A | B) = 1 − Π(A | B) =
{
0 if Π(A ∩ B) = Π(B);
N (A ∪ B) otherwise.

5The Bayesian-like rule in terms of necessity measures, N (A ∩ B) = min(N (A | B), N (B)),
is trivial. Its least specific solution, minimizing necessity degrees, is N (A | B) = N (A ∩ B) =
min(N (A), N (B)), which defines in turn Π(A | B) = Π(B ∪ A). It comes down to interpreting a
conditional event as a material implication.
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The least specific solution to equation (14) does capture an ordinal form of con-
ditioning due to the following result:

N (A | B) > 0 ⇐⇒ Π(A ∩ B) > Π(A ∩ B)

when Π(B) > 0. Intuitively, it means that a proposition A is an accepted belief in
context B if it ismore plausible than its negation in this context. Likewith probability,
one may have thatΠ(A ∩ B) > Π(A ∩ B)whileΠ(A ∩ B ∩ C) > Π(A ∩ B ∩ C)

in a more restricted context B ∩ C . An alternative approach to conditional possibility
is the one of Coletti and Vantaggi (2006), in which coherent possibility assessments
on conditional events are defined based on Eq. (14), in the style of De Finetti’s
conditional probability.

In the case of quantitative possibility theory, the lack of continuity of the set
function Π(A | B) in Eq. (15) (de Cooman 1997) has led to replace minimum by
product in this equation, mimicking conditional probability:

Π(A | B) = Π(A ∩ B)

Π(B)
provided that Π(B) �= 0.

As we shall see, it coincides with Dempster’s rule of conditioning in evidence theory
(see the next chapter in this volume). More generally, on the unit interval, the product
can be extended to a triangular norm, and this general setting has been studied by
Coletti and Vantaggi (2009) under the coherence approach in the style of De Finetti.

A major difference between possibility and probability theories concern inde-
pendence. While stochastic independence between events with positive probability
is a symmetric, negation-invariant, notion, since Prob(B|A) = Prob(B) is equiv-
alent to Prob(A ∩ B) = Prob(A) · Prob(B) and to Prob(B|A) = Prob(B), this
is no longer the case for possibilistic independence, several versions of which exist.
For instance, in qualitative possibility theory, the equality N (B|A) = N (B) > 0
expresses that learning A does not question the accepted belief B and is not
equivalent to N (A|B) = N (A) > 0 nor to N (B|A) = N (B) > 0. Another form
of independence is N (B|A) = N (B) = N (B|A) = N (B) = 0, which means that
learning A leaves us ignorant about B; see (Dubois et al. 1999) for a com-
plete study. There exist several definitions of conditional possibilistic independence
between variables, in qualitative possibility theory, one being symmetric (Π(x, y|z)
= min(Π(x |z),Π(y|z))) and one being asymmetric (Π(x |z) = Π(x |z, y)); see
Ben Amor et al. (2002). In the quantitative setting, independence between vari-
ables (∀x, y, z,Π(x |y, z) = Π(x |z)) is symmetric since it is equivalent to ∀x, y, z,
Π(x, y|z) = Π(x |z) · Π(y|z). The notion of possibilistic independence has also
been studied by Coletti and Vantaggi (2006).

Conditional probability is the basis of representation of uncertain information in
the form of Bayesian networks. There also exist graphical possibilistic representa-
tions in quantitative possibility theory, and in qualitative possibility theory as well
(see chapter “Belief Graphical Models for Uncertainty Representation and Reason-
ing” in Volume 2) and some variants of possibilistic independence are useful to
develop local uncertainty propagation methods.
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4.2 Qualitative Possibility Theory

The main application of qualitative possibility theory is the development of pos-
sibilistic logic, an extension of classical logic that handles qualitative uncertainty,
and is useful for encoding non monotonic reasoning and dealing with inconsistency.
Besides, the basic setting of formal concept analysis can be seen as a set-valued
counterpart of possibility theory, which leads to an interesting parallel between the
two theories. We first present possibilistic logic. Note that qualitative possibility the-
ory can be used for decision under uncertainty. Decision-theoretic foundations of
qualitative possibility theory are presented in chapter “Decision under Uncertainty”
of this volume.

4.2.1 Possibilistic Logic

The building blocks of possibilistic logic (Dubois et al. 1994; Dubois and Prade
2004) are pairs made of a (well-formed) formula of classical logic (propositional,
or first order), and a weight (or level) which may be qualitative or numerical, but
qualitatively handled. The weights usually belong to a totally ordered scale, but may
only belong to a lattice structure with a smallest and a greatest element).

Necessity-basedpossibilistic logic In its basic version, possibilistic logic only allows
to consider conjunctions of pairs of the form (p, α) where p is a propositional logic
formula associatedwith aweightα belonging to the interval (0, 1] (or to a finite totally
ordered scale). The weight α is understood as a lower bound of a necessity mesure,
i.e., the pair (p, α) encodes a constraint of the form N (p) ≥ α. It either corresponds
to a piece of information (one is certain at level α that p is true), or a preference (p
then represents a goal to be reached with priority α). The decomposability property
of necessity mesures (10) ensures that we make no difference between (p ∧ q, α)

and (p, α) ∧ (q, α), and thus possibilistic bases, which are sets of such possibilistic
pairs, can be expressed as conjunctions of weighted clauses.

Let BN = {(p j , α j ) | j = 1, . . . ,m} be a possibilistic base. At the semantic level,
a possibility distribution π over the set of interpretations satisfies BN (denoted by
π |= BN ) if and only if N (p) ≥ α j , j = 1, . . . ,m. The least specific possibility
distribution that satisfies BN exists and is of the form

π N
B (s) = min

j=1,...,m
π(p j ,α j )(s) = min

j : s |=¬p j

1 − α j ,

where π(p j ,α j )(s) = 1 if s |= p j and 1 − α j otherwise. Thus an interpretation s is all
the more possible as it does not violate any formula p j with a high priority level α j ,
and π |= BN if and only if π ≤ π N

B .
The possibility distribution π N

B provides a description “from above” (each pair
(p j , α j ) combined by min restricts the set of interpretations regarded as possible
to some extent). It takes the form of a min-max combination, since π(p j ,α j )(s) is of
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the form max(M(p j )(s), 1 − α j ), where M(p) denotes the characteristic function
of the set of models of p.

Basic possibilistic logic possesses the cut rule

(¬p ∨ q, α); (p ∨ r, β) � (q ∨ r,min(α, β)).

This rule is sound and complete for refutation, with respect to possibilistic semantics.
It should be noticed that the probabilistic counterpart to this rule, namely

Prob(¬p ∨ q) ≥ α; Prob(p ∨ r) ≥ β) � Prob(q ∨ r) ≥ max(0, α + β − 1)

is sound, but not complete with respect to probabilistic semantics. Note that the
deductive closure of possibilistic base {(p j , β j ) with β j ≥ α} j=1,n only contains for-
mulaswithweights at leastα, while this is wrong in general for the set of probabilistic
formulas {p j |Prob(p j ) ≥ α} j=1,n after closure with the corresponding resolution
rule (except if α = 1).

Dual possibilistic logic with guaranteed possibility weightsA dual representation
for possibilistic logic bases relies on guaranteed possibility functions. A formula is
then a pair [q, β], understood as the constraint Δ(q) ≥ β, where Δ is a guaranteed
possibility (anti-)measure. It thus expresses that all the models of q are at least
possible, at least satisfactory at level β. A Δ-base BΔ = {[qi , βi ] | i = 1, . . . , n} is
then associated with the distribution

πΔ
B (s) = max

i=1,...,n
π[qi ,βi ](s) = max

i : s |=qi
βi ,

with π[qi ,βi ](s) = min(M(qi )(s), βi ). We define π |= BΔ if and only if Δ(qi ) ≥
βi ,∀i = 1, . . . , n, which is equivalent to π ≥ πΔ

B . So, πΔ
B provides a description

“from below” of the distribution representing an epistemic state. Taking advantage
of decomposability property (12) of guaranteed possibility measures, it is easy to
see that the set {[p, α], [q, α]} is equivalent to the formula [p ∨ q, α]. Then putting
classical logical formulas in disjunctive normal form, we can always rewrite a dual
possibilistic base BΔ into an equivalent base where all formulas qi are conjunctions
of literals.

A base BΔ in dual possibilistic logic can always be rewritten equivalently in terms
of a standard possibilistic logic N -base BN (Benferhat andKaci 2003;Benferhat et al.
2008), and conversely, in such a way that π N

B = πΔ
B . However, note that Δ-based

possibilistic logic obeys an inference rule different from the above resolution rule
for N -bases: [¬p ∧ q, α]; [p ∧ r, β] � [q ∧ r,min(α, β)]. It propagates guaranteed
possibility levels in agreement with the decreasingness of set function Δ (indeed, if
r = �, and q � p, then α = 1 since Δ(⊥) = 1, and the rule concludes [q, β] from
[p, β]).

A set of pieces of possibilistic Boolean information (with a finite number of pos-
sibility levels) can thus be represented by a possibility distribution on interpretations,
but also in amore compactmanner under the formof afinite set of formulas associated



Representations of Uncertainty in Artificial Intelligence: Probability and Possibility 99

either with a certainty (resp. priority) level, or with a level of guaranteed possibility
(resp. satisfaction) when modeling knowledge (resp. preferences). Moreover, graph-
ical representations of possibilistic bases in terms of possibilistic networks (either
based on qualitative or on quantitative conditioning) have been proposed, with exact
translations from one type of representation to the other (Benferhat et al. 2002). For
an introduction to possibilistic networks and their algorithms, the reader is referred
to chapter “Belief Graphical Models for Uncertainty Representation and Reasoning”
in Volume 2. Possibilistic networks are also useful for preference modeling (Ben
Amor et al. 2018) (see also chapter “Compact Representation of Preferences” in this
volume).

There exist different variants of possibilistic logic where a logical formula is, in
particular, associated with lower bounds of (weak) possibility measures. They can
express different forms of ignorance by asserting that two opposite events are both at
least somewhat possible). Other kinds of weights can be attached to logical formulas
such as time slots where one is more or less certain that the formula is true, or subsets
of sources or agents that are certain to various extents that the formula is true; see
(Dubois and Prade 2004, 2014) for references. For further developments on multiple
agent possibilistic logic, see (Belhadi et al. 2013).

Generalized possibilistic logic Another type of extension allows for negations or
disjunctions of basic possibilistic formulas (and not only conjunctions as in standard
possibilistic logic). It then results into a two-tiered logic, named “generalized possi-
bilistic logic” (GPL) (Dubois et al. 2017c), where Boolean connectives can be placed
inside or outside basic possibilistic formulas. Its semantics is in terms of subsets of
possibility distributions. Indeed, elementary formulas in the logic GPL encode lower
or upper bounds on the necessity or the possibility of logical formulas. GPL is both
a generalization of the minimal epistemic logic MEL (Banerjee and Dubois 2014)
(where weights are only 1 or 0), and of standard possibilistic logic, in full agree-
ment with possibility theory. GPL has been axiomatized and inference in GPL has
been shown sound and complete w.r.t. semantics in terms of subsets of possibility
distributions.

GPL appears as a powerful unifying framework for various knowledge repre-
sentation formalisms. Among others, logics of comparative certainty, and reasoning
about explicit ignorance can bemodeled in GPL. There also exists a close connection
between GPL and various existing knowledge representation formalisms. It includes
possibilistic logic with partially ordered formulas (Touazi et al. 2015), the logic of
conditional assertions of Kraus et al. (1990), three-valued logics (Ciucci and Dubois
2013), and the 5-valued “equilibrium logic” of Pearce (2006) as well as answer set
programming (Dubois et al. 2012) (see chapter “Logic Programming” in Volume
2). More specifically, the intended meaning of answer-set programs can be made
more explicit through a translation in GPL (using a 3-level scale for the possibility
distributions).

Lastly, in the sameway as imprecise probabilities (see next chapter in this volume)
are of interest, one may think of imprecise possibilities. In that respect, the following
result is particularly worth noticing: any capacity (i.e., any monotonic increasing set
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function) on a finite domain can be characterized by a set of possibility mesures;
then capacities offer a semantics to non normal modal logics (useful for the handling
of paraconsistency) (Dubois et al. 2015b), and it may provide a unifying framework
for multiple source information processing in the spirit of Belnap logic.

4.2.2 Inconsistency and Non Monotonic Reasoning

An important feature of possibilistic logic is its ability to deal with inconsistency.
The inconsistency level inc(B) of a possibilistic base B is defined as

inc(B) = max{α| B � (⊥, α)}.

No formula whose level is strictly greater than inc(B) contributes to inconsis-
tency. It can be shown that 1 − inc(B) is the height h(πB) of πB , defined by
h(πB) = maxs πB(s) (πB being the possibility distribution induced by B). More-
over, inc(B) = 0 if and only if the set of logical formulas appearing in B, irrespec-
tive of the weights, is consistent in the classical sense. All the formulas in B whose
level is smaller or equal to inc(B) are ignored in the standard possibilistic inference
mechanism; they are said to be “drowned”. However, there exist other extensions of
possibilistic inference that take into account formulas at the inconsistency level or
below, especially those not involved in any inconsistent subset of formulas (called
free formulas), see (Benferhat et al. 1999a) for a complete overview of these infer-
ences.

The application of default rules having potential exceptions (for instance, “birds
fly”) to particular situations (e.g., “Tweety is a bird”) about which information is
incomplete, may lead to tentative conclusions (here, “Tweety flies”) that become
inconsistent with the new conclusions obtained when more information becomes
available on such particular situations (e.g., “Tweety is a penguin”). The non mono-
tonic nature of conditional qualitative possibility enables us to handle this problem.
Indeed it allows N (B | A) > 0 and N (B | A ∩ A′) > 0 to simultaneously hold, i.e.,
the arrival of the piece of information A′ may lead to reject a previously accepted
proposition B in the context where we only knew A.

Indeed, a default rule “if Ai then generally Bj” can be represented by the possi-
bilistic constraint Π(Bj ∩ Ai ) > Π(Bj ∩ Ai ) expressing that it is more possible to
have Bi true than Bi false in the context where Ai is true. A base of default rules
is then represented by a set of such constraints, which in turn determines a set of
possibility measures that satisfy them. From such a rule base, two types of inference
are natural in order to deduce new rules applicable to the situation where one exactly
knows A (i.e., the rules of the form “if A then generally B”, which will allow us to
conclude B (tentatively) in this situation).

A first type of inference, which is cautious, requires that the inequality constraint
Π(A ∩ B) > Π(A ∩ B) associated with B|A be satisfied by par all possibility mea-
sures that agree with the set of constraints (supposed to be consistent) associated
with the set of default rules. A second, bolder, inference only considers the largest
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(the least specific) possibility distribution that is a solution of the latter constraints (it
can be shown that this distribution is unique when it exists). It can be established that
the first inference relation basically corresponds the so-called preferential inference
(system P (Kraus et al. 1990)) obeying basic postulates for non monotonic plau-
sible inference (see chapter “Knowledge Representation: Modalities, Conditionals,
and Nonmonotonic Reasoning” in this volume), while the second one is nothing but
the “rational closure” inference of Lehmann and Magidor (1992). These two types
of inference can be justified also using other semantics such as conditional objects
(Dubois and Prade 1994), infinitesimal probabilities, systems Z and Z+ (Pearl 1990;
Goldszmidt and Pearl 1991), conditional modal logic (Boutilier 1994), Halpern’s
plausibility measures (Halpern 2001); see Benferhat et al. (1997) for an overview
and references. There are also semantics in terms of big-stepped probabilities (Ben-
ferhat et al. 1999b), or conditional probabilities in De Finetti’s sense (Coletti and
Scozzafava 2002). In this latter case the rule “if A then generally B” simply corre-
sponds to a constraint Prob(B|A) = 1 where Prob(B|A) still makes sense when
Prob(A) = 0 (0 does not mean impossible here, but rather something as “negligible
at first glance”), thanks to a prioritized handling of constraints induced by a parti-
tioning of the set of interpretations (Biazzo et al. 2002). The setting of possibilistic
logic thus enables us to practically handle a form of default reasoning (Benferhat
et al. 1998), as well as reasoning from qualitative uncertain information; il is even
possible to combine both (Dupin de Saint-Cyr and Prade 2008).

Belief revision theory (Gärdenfors 1988) (see chapter “Main Issues inBelief Revi-
sion, Belief Merging and Information Fusion” in this volume), which is closely
related to non monotonic reasoning, relies on the notion of epistemic entrenchment,
used by the revision process for ordering theway pieces of information are called into
question. It is interesting to note that an epistemic entrenchment relation is nothing
but a qualitative necessity relation (Dubois and Prade 1991) (whose unique counter-
part on a totally ordered scale is a necessity measure (Dubois 1986)). Moreover the
possibilistic setting canmake sense of the intuition that propositions in the belief base
that are independent of the input information should remain after revision (Dubois
et al. 1999). Besides, updating and revision can be combined, in the style of Kalman
(1960) filtering, in the qualitative setting of possibilistic logic (Benferhat et al. 2000).

Let us alsomention amodel of causal ascriptionwhere an agent, in the presence of
a sequence of events that took place, is supposed to assert causal relations between
some of these events on the basis of his beliefs on the normal course of things
(Bonnefon et al. 2008). The normal course of things is represented by default rules
(obeying system P postulates). The possibilistic framework for causal ascription
favors “abnormal” events as potential causes which may be adopted by the agent; a
detailed comparison of this approach with the probabilistic modeling of causation
is presented in Bonnefon et al. (2012). The reader is referred to chapter “A Glance
at Causality Theories for Artificial Intelligence” in this volume for an overview of
approaches to causality modeling.
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4.2.3 Possibility Theory and Formal Concept Analysis

Formal concept analysis (FCA) is a knowledge representation formalism at the basis
of a data mining methodology (see chapters. “Designing Algorithms for Machine
Learning and Data Mining” and “Formal Concept Analysis: From Knowledge Dis-
covery to Knowledge Processing” of Volume 2). It provides a theoretical setting
for learning hierarchies of concepts. Strong similarities between this representation
framework and possibility theory have been pointed out in the last decade (and also
to some extent with rough set theory (Pawlak and Skowron 2007)). This is the reason
for the presence of this – maybe unexpected – subsection in this chapter.

In FCA (Barbut and Montjardet 1970; Ganter and Wille 1999), one starts with
a binary relation R, called formal context, between a set of objects O and a set of
propertiesP; xRy means that object x possesses property y. Given an object x and
a property y, let R(x) = {y ∈ P | xRy} be the set of properties possessed by object
x and let R(y) = {x ∈ O | xRy} be the set of objects having property y. In FCA
correspondences are defined between the sets 2O and 2P . These correspondences are
Galois derivation operators. The Galois operator at the basis of FCA, here denoted
by (.)Δ (for a reason made clear in the following), enables us to describe the set of
properties satisfied by all the objects in X ⊆ O as

XΔ = {y ∈ P | ∀x ∈ O (x ∈ X ⇒ xRy)} = {y ∈ P | X ⊆ R(y)} =
⋂

x∈X
R(x).

In a dual manner, the set of objects satisfying all the properties in Y is defined by

YΔ = {x ∈ O | ∀y ∈ P (y ∈ Y ⇒ xRy)} = {x ∈ O | Y ⊆ R(x)} =
⋂

y∈Y
R(y).

The pair of operators ((.)Δ, (.)Δ) applied respectively to 2O and 2P constitutes a
Galois connection that induces formal concepts. Namely, a formal concept is a pair
(X,Y ) such that

XΔ = Y and YΔ = X.

In other words, X is a maximal set of objects, and Y a maximal set of properties
such that each object in X satisfies all the properties in Y . Then the set X (resp. Y )
is called extension (resp. intension) of the concept. In an equivalent way, (X,Y ) is a
formal concept if and only if it is a maximal pair for the inclusion

X × Y ⊆ R.

The set of all formal concepts is naturally equippedwith an order relation (denoted by
�) and defined by: (X1,Y1) � (X2,Y2) iff X1 ⊆ X2 (or Y2 ⊆ Y1). This set equipped
with the order relation � forms a complete lattice. Then association rules between
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properties can be found by exploiting this lattice, see Guigues and Duquenne (1986),
Pasquier et al. (1999).

Note that XΔ = ⋂
x∈X R(x) mirrors the definition of a guaranteed possibility

measure Δ(F) = mins∈F π(s) (where π is a possibility distribution), changing L
into 2Y and π into a set-valued map (R is viewed as a Boolean lattice-valued map).
On the basis of this parallel with possibility theory, other operators can be introduced
(Dubois and Prade 2012). Namely, the possibility operator (denoted by (.)Π ) and its
dual necessity operator (denoted by (.)N ), as well as the operator (.)∇ dual to the
operator (.)Δ on which FCA is based. They are defined as follows:

• XΠ is the set of properties satisfied by at least one object in X :

XΠ = {y ∈ P | ∃x ∈ X, xRy} = {y ∈ P | X ∩ R(y) �= ∅} =
⋃

x∈X
R(x);

• XN is the set of properties that only the objects in X have:

XN = {y ∈ P | ∀x ∈ O (xRy ⇒ x ∈ X)} = {y ∈ P | R(y) ⊆ X} =
⋂

x /∈X
R(x),

where R(x) is the set of properties that x has not;
• X∇ is the set of properties that are not satisfied by at least one object outside X :

X∇ = {y ∈ P | ∃x ∈ X , xRy} = {y ∈ P|R(y) ∪ X �= O} =
⋃

x /∈X
R(x).

The operators YΠ , Y N , Y∇ are obtained similarly. While the equalities X∇ = Y
and Y∇ = X provide another characterization of usual formal concepts, it can be
shown that pairs (X,Y ) such that XN = Y and Y N = X (equivalently, XΠ = Y and
YΠ = X ) characterize independent sub-contexts (i.e., that have no object or property
in common) inside the initial context (Dubois and Prade 2012). The pairs (X,Y ) such
that XN = Y and Y N = X are such that:

(X × Y ) ∪ (X × Y ) ⊇ R.

It can be checked that the four sets XΠ , XN , XΔ, X∇ are complementary pieces
of information, all necessary for a complete analysis of the situation of X in the
formal contextK = (O,P,R). In practice, one supposes that both R(x) �= ∅ and
R(x) �= P , i.e., each object possesses at least one property in P , but no object
possesses all the properties in P . Under this hypothesis of bi-normalisation, the
following inclusion relation holds: RN (Y ) ∪ RΔ(Y ) ⊆ RΠ(Y ) ∩ R∇(Y ), which is
a counterpart of a relation that holds as well in possibility theory (provided that
distributions π and 1 − π are both normalized).

Finally, let us also mention that there exists an extension of FCA to graded proper-
ties (Belohlavek 2002), as well as an extension to formal contexts displaying incom-
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plete or uncertain information (Burmeister andHolzer 2005; Ait-Yakoub et al. 2017).
Another extension deals with the capability of associating objects no longer with
simple properties, but with structured descriptions, possibly imprecise, or with logi-
cal descriptions, thanks to so-called patron structures (Ganter and Kuznetsov 2001;
Ferré and Ridoux 2004). They remain in agreement with the possibilistic paradigm
(Assaghir et al. 2010).

4.3 Quantitative Possibility and Bridges to Probability

In the quantitative version of possibility theory, it is natural to relate possibility and
probability measures. It can be done in several independent ways. In the following,
we outline the three main ones: namely, a possibility distribution can be viewed as
a likelihood function in non-Bayesian statistics, possibility (resp. necessity) degrees
of events can be viewed either as upper (resp. lower) probability bounds, or as a
suitable transformation of exponents of infinitesimal probabilities.

4.3.1 Possibility Distributions as Likelihood Functions

The idea of casting likelihood functions inside the framework of possibility theory
was suggested by Smets (1982), but it has roots in considerations relating statistical
inference and consonant belief functions (another name for necessity measures) in
Shafer (1976)’s book; see also (Denœux 2014) on this topic. The connection was
formalized in (Dubois et al. 1997), and further studied in the coherence framework of
De Finetti in (Coletti and Scozzafava 2003). Consider an estimation problem where
the value of a parameter θ ∈ Θ that governs a probability distribution P(· | θ) on S is
to be determined fromdata. Suppose the obtained data is described by the information
item A. The function �(θ) = P(A | θ), θ ∈ Θ is not a probability distribution, it is a
likelihood function: a value θ is all the more plausible as P(A | θ) is greater, while
this value can be ruled out if P(A | θ) = 0 (in practice, less that a small relevance
threshold). Such a function is often renormalized so that its maximal value is 1, since
a likelihood function is defined up to a positive multiplicative constant. There are
some good reasons why one may see �(θ) as a degree of possibility of θ , and let
π(θ) = P(A | θ) (up to renormalizing). First, it can be checked that, in the absence
of prior probability onΘ , ∀B ⊆ Θ , P(A | B) is upper and lower bounded as follows:

min
θ∈B P(A | θ) ≤ P(A | B) ≤ max

θ∈B P(A | θ)

It suggests that we can apply the maxitivity axiom to get an optimistic estimate
of P(A | B) from {P(A | θ), θ ∈ B}. However, insofar as �(b) is the likelihood of
θ = b, and we extend it to all subsets B of Θ , we should have that �(B) ≥ �(b),
for all b ∈ B. Hence, in the absence of prior probability, we can identify �(B) as
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a possibility measure with distribution π(θ) = P(A | θ) (Coletti and Scozzafava
2003). Considering the lower bound of P(A | B)would yield a guaranteed possibility
measure.

However, note that under this view, possibility degrees are known in relative
values, which means that not all basic notions of possibility theory apply (e.g., com-
paring the informativeness of π and π ′ using fuzzy set inclusion, by checking if
π ≤ π ′ becomes questionable).

4.3.2 Possibility as Upper Probability

Alternatively, possibility degrees valued on [0, 1] viewed as an absolute scale can
be exactly defined as upper probability bounds as Zadeh (1978) had the intuition
from the start. The generation process can be described as follows: consider an
increasing sequence of nested sets E1 ⊂ E2 ⊂, . . . ,⊂ Ek and let α1 ≤ α2 ≤, . . . ,≤
αk ∈ [0, 1], such that αi is a lower bound on the probability P(Ei ). This type of
information is typically provided by an expert estimating a quantity v by means of
set Ek with confidence αk that Ek contains v. Consider the probability family P =
{P : P(Ei ) ≥ αi ,∀i = 1, . . . , k}. It is easy to check (Dubois and Prade 1992) that
the function P∗(A) = inf P∈P P(A) is a necessitymeasure and the function P∗(A) =
supP∈P P(A) is a possibility measure induced by the possibility distribution:

∀s ∈ S, π(s) = min
i=1,...,k

max(Ei (s), 1 − αi ). (16)

where Ei (s) = 1 if s ∈ Ei and 0 otherwise. See de Cooman and Aeyels (1999) for
the extension of this result to infinite settings. Each pair (Ek, αk), made of a set and
its confidence level is encoded by the possibility distribution max(Ei (s), 1 − αi ),
where 1 − αi is an upper bound on the probability that v /∈ Ek . Equation (16) just
performs the conjunction of these local distributions. It is clear thatπ is a very concise
encoding of the probability family P . Conversely, the (convex set) of probability
measures encoded by a possibility distribution π can be retrieved as

P(π) = {P, P(A) ≤ Π(A), ∀A measurable} = {P, P(A) ≥ N (A), ∀A mesurable},

and it can be checked that Π(A) = supP∈P (π) P(A). In the case where the sets Ei

are not nested, the above formula (which is in agreement with possibilistic logic
semantics of Sect. 4.2.1) only yields an approximation of the probability familyP;
better approximations can be obtained by means of pairs of possibility distributions
enclosing P (Destercke et al. 2008). This view of possibility measures cast them
in the landscape of imprecise probability theory studied in the next chapter of this
volume.

Nested shortest dispersion intervals can be obtained from a given probabil-
ity distribution (or density) p, letting Eα = {s : p(s) ≥ α}, and αα = P(Eα). The
obtained possibility distribution, that covers p as tightly as possible, is called opti-
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mal probability-possibility transform of p (Dubois et al. 2004) and is instrumental
for comparing probability distributions in terms of their peakedness or entropies (by
comparing their possibility transforms in terms of relative specificity) (Dubois and
Hüllermeier 2007).

4.3.3 Possibility as Infinitesimal Probability

Ranking functions, originally called ordinal conditional functions (OCF), have been
proposed by Spohn (1988, 2012) to represent the notion of belief in a setting that is
basically equivalent to possibility theory, but for the direction and nature of its value
scale. Each state of theworld s ∈ S is assigned a degree κ(s) not in [0, 1], but in the set
of non-negative integers N, (sometimes even ordinals). The convention for ranking
functions is opposite to the one in possibility theory, since the smaller κ(s) the more
possible s. It is more in agreement with a degree of potential surprise suggested
by Shackle (1961): κ(s) = +∞ means that s is impossible, while κ(s) = 0 means
that nothing opposes to s being the true state of the world. Set functions expressing
disbelief, similar to possibility measures, are then built in the same style as Shackle
(1961):

κ(A) = min
s∈A

κ(s) and κ(∅) = +∞.

More specifically, Spohn (1990) interprets κ(A) as the integer exponent of an
infinitesimal probability P(A) = εκ(A) , which is indeed in agreementwith the union-
minitivity property κ(A ∪ B) = min(κ(A), κ(B)) of ranking functons.

Conditioning is defined by Spohn (1988) as follows:

κ(s | B) =
{

κ(s) − κ(B) si s ∈ B
+∞ sinon

It is obvious that κ(s | B) is the exponent of the infinitesimal conditional probability
P(s | B) = εκ(s)/εκ(B).

Casting ranking functions in possibility theory is easy, due to the following trans-
formations (Dubois and Prade 1991):

πκ(s) = 2−κ(s),Πκ(A) = 2−κ(A).

As a consequence possibility distributions πκ and functions Πκ take values on
a subset of rational numbers in [0, 1]. Function Πκ is indeed a possivility measure
since

Πκ(A ∪ B) = 2−min(κ(A),κ(B)) = max(Πκ(A),Πκ(B)).

Moreover, for the conditional ranking function one obtains ∀s,

πκ(s|B) = 2−κ(s)+κ(B) = 2−κ(s)

2−κ(B)
= πκ(s)

Πκ(B)
,
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which is the product-based conditioning of possibility theory. The converse (loga-
rithmic) transformation of a possibility distribution into a ranking function is only
possible if it maps real numbers to non-negative integers. More on the comparison
between possibility theory and ranking functions can be found in (Dubois and Prade
2016).

Note that this approach is often presented as qualitativewhile it is a numerical one.
In some applications, or when modeling expert opinions, it may be more convenient
to describe degrees of (dis)belief by means of integers rather than by real numbers in
[0, 1]. However it is easier to introduce intermediary grades with a continuous scale.
The integer scale of ranking functions has been used recently by Kern-Isberner and
Eichhorn (2014) to encode non-monotonic inferences and applied in (Eichhorn and
Kern-Isberner 2015) to belief networks.

5 The Cube of Opposition: A Structure Unifying
Representation Frameworks

Many knowledge representation formalisms, although they look quite different at
first glance and aim at serving diverse purposes, share a common structure where
involutive negation plays a key role. This structure can be summarized under the form
of a square or a cube of opposition. This in particular true for frameworks able to
represent incomplete information. It can be observed that the properties of non empty
intersection and of inclusion related by negation are at the basis of possibility theory,
formal concept analysis, as well as rough set theory. It is still true for belief functions
presented in the next chapter in this volume. This section first introduces the square
and the cube of opposition, and indicates the formalisms to which it applies.

The traditional square of opposition (Parsons 2008), which dates back to Aristotle
time, is built with universally and existentially quantified statements in the following
way. Consider four statement of the form (A): “all P’s are Q’s”, (O): “at least one
P is not a Q”, (E): “no P is a Q”, and (I): “at least one P is a Q”. They can be
displayed on a square whose vertices are traditionally denoted by the letters A, I
(affirmative half) and E, O (negative half), as pictured in Fig. 1 (where Q stands for
“not Q”).
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As can be checked, noticeable relations hold in the square provided that there a
non empty set of P’s to avoid existential import problems:

1. A and O (resp. E and I) are the negation of each other;
2. A entails I, and E entails O (it is assumed that there is at least one P);
3. A and E cannot be true together;
4. I and O cannot be false together.

Another classical example of such a square is obtained with modal logic operators by
takingA as�p,E as,�¬p, I as♦p, andO as♦¬p. This structure, largely forgotten
with the advent of modern logic after G. Boole, was rediscovered by Blanché (1966)
and then by Béziau (2003) who both advocate its interest. In particular, Blanché
noticed that adding two vertices U and Y defined respectively as the disjunction of
A and E, and as the conjunction of I and O, leads to a hexagon that includes three
squares of opposition in the above sense. Such a hexagon is obtained each time we
start with three mutually exclusive statements, such as A, E, and Y, and it turns
out that this structure is often encountered when representing relationships between
concepts on the same domain (e.g., deontic notions such as permission, obligation,
interdiction, etc.).

Switching to first order logic notations (e.g.,A becomes ∀x, P(x) → Q(x)), and
negating the predicates, i.e., changing P into ¬P , and Q in ¬Q leads to another
similar square of opposition aeoi, where we also assume that the set of “not-P’s”
is non-empty. Altogether, we obtain eight statements that may be organized in what
may be called a cube of opposition (Reichenbach 1952). The front facet and the back
facet of the cube are traditional squares of opposition, and the two facets are related
by entailments.

Such a structure can be extended to graded notions (Ciucci et al. 2016), using an
involutive negation such as 1 − (·), and where the mutual exclusiveness of A and E
translates into a sum of degrees less or equal to 1, while entailments are translated by
inequalities between degrees (in agreement with residuated implications). An exam-
ple of a graded cube is given by possibility theory. Indeed, assuming a normalized
possibility distribution π : S → [0, 1], and also assuming that 1 − π is normalized
(i.e., ∃s ∈ S, π(s) = 0), we obtain a cube of opposition on Fig. 2, linking Π(A),
N (A), Δ(A), ∇(A), Π(A), N (A), Δ(A), and ∇(A). The front and back facets form
two squares of opposition, while the side facets express a different property, namely
inequalities such as min(Π(A),∇(A)) ≥ max(N (A),Δ(A)). Since these set func-
tions rely on ideas of graded inclusion and degrees of non-empty intersections, the
fact that they fit with a graded structure of cube of opposition should not be too
surprizing.

In fact, the structure of cube of opposition is quite general. As noticed by Ciucci
et al. (2016), any binary relation R on a Cartesian product X × Y (one may have
Y = X ) gives birth to a cube of opposition, when applied to a subset. Indeed, we
assume R �= ∅. Let R(x) = {y ∈ Y | (x, y) ∈ R}. R denotes the complementary
relation ((x, y) ∈ R iff (x, y) /∈ R), and Rt the transposed relation ((y, x) ∈ Rt if
and only if (x, y) ∈ R); let R(y) = {x ∈ X | (x, y) ∈ R} = Rt (y). Moreover, it is
assumed that∀x, R(x) �= ∅, whichmeans that the relation R is serial, namely∀x, ∃y
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Fig. 2 Cube of opposition
of possibility theory

i: (A)

I: (A) O: (A)

o: (A)

a: (A)

A: N(A) E: N(A)

e: (A)

Fig. 3 Cube induced by a
relation R and a subset T

i: R(T )

I: R(T ) O: R(T )

o: R(T )

a: R(T )

A: R(T ) E: R(T )

e: R(T )

such that (x, y) ∈ R. Similarly, Rt is also supposed to be serial, i.e., ∀y, R(y) �= ∅,
as well as R and its transpose, i.e. ∀x, R(x) �= Y and ∀y, R(y) �= X .

Let T be a subset of Y and T its complement. We assume T �= ∅ and T �= Y . The
composition is defined in the usual way R(T ) = {x ∈ X | ∃t ∈T, (x, t) ∈ R}. From
the relation R and the subset T , one can define the four following subsets of X (and
their complements):

R(T ) = {x ∈ X | T ∩ R(x) �= ∅} (17)

R(T ) = {x ∈ X | R(x) ⊆ T } (18)

R(T ) = {x ∈ X | T ⊆ R(x)} (19)

R(T ) = {x ∈ X | T ∪ R(x) �= X}. (20)

These four subsets and their complements can be nicely organized into a cube of
opposition (Fig. 3). Some of the required conditions for the cube hold thanks to
seriality (which plays the role of normalization in possibility theory).
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The front facet of the cube fits well with the modal logic reading of the square
where R is viewed as an accessibility relation, and T as the set of models of a
proposition p. Indeed, �p (resp. ♦p) is true in world x means that p is true at every

(resp. at some) possible world accessible from x ; this corresponds to R(T ) (resp.
R(T )) which is the set of worlds where �p (resp. ♦p) is true.

Other than the semantics ofmodal logics, there are a number of AI formalisms that
exploit a relation and towhich the cube of opposition of Fig. 3 applies: formal concept
analysis, as seen in Sect. 4.2.3, rough sets induced by an equivalence relation (see
Sect. 2.6), or abstract argumentation based on an attack relation between arguments
(Amgoud and Prade 2013). Graded squares or cubes also apply to belief functions
(Dubois et al. 2015a) and to upper and lower probabilities (Pfeifer and Sanfilippo
2017) presented in the next chapter in this volume, as well as to aggregation functions
such as Sugeno integrals (Dubois et al. 2015a) used in multiple criteria aggregation
and qualitative decision theory, or yet Choquet integrals (Dubois et al. 2017b), both
presented in chapter “Multicriteria Decision Making” in this volume.

This common structure is deeply related to the interplay of three negations as
revealed by the relational cube. In contrast the square and the cube collapse to a
segment in the case of probabilities since they are autodual.

The cube of opposition lays bare common features underlying many knowledge
representation formalisms. It exhibits fruitful parallelisms between them, which may
even lead to highlight some missing components present in one formalism and cur-
rently absent from another.

6 Conclusion

In this chapter, we have tried to show that while probability theory properly captures
uncertainty due to the randomness of precisely observed phenomena, the representa-
tion of uncertainty due to incomplete information requires a different setting having
roots in classical and modal logics, where incompleteness is a usual feature. The
corresponding uncertainty framework is possibility theory, which allows for a qual-
itative representation of uncertainty as well as a quantitative one. It has been shown
that numerical possibility theory is appropriate provided that the available infor-
mation items, although imprecise, are consonant, i.e., do not contradict each other.
The joint handling of imprecise and possibly conflicting information items require
joint extensions of probability and quantitative possibility theory studied in the next
chapter.
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Representations of Uncertainty in AI:
Beyond Probability and Possibility

Thierry Denœux, Didier Dubois and Henri Prade

Abstract This chapter completes the survey of the existing frameworks for
representing uncertain and incomplete information, started in the previous chapter of
this volume. The theory of belief functions and the theory of imprecise probabilities
are presented. The latter setting is mathematically more general than the former, and
both include probability theory and quantitative possibility theory as particular cases.
Their respective knowledge representation capabilities are highlighted.

1 Introduction

Usually items of information are neither precise nor always coherent with one
another. This chapter presents two uncertainty theories that generalize probability
theory while being capable of handing incomplete information in an explicit way, by
including possibility theory as a special case. There are two ways of building such a
generalized framework.

The first idea is to introduce probability theory on top of the basic set-valued
representation of incomplete information. Dempster imagined a set equipped with
a probability distribution and a one-to-many mapping from this set to a space of
interest. Such probabilities can be subjective or frequentist. Upper and lower proba-
bilities are then obtained on the second space. Dempster considered this set-up as an
extension of the fiducial paradigm for statistical inference, while Shafer interpreted
these upper and lower probabilities as plausibility and belief functions without refer-
ence to an underlying probability space with a one-to-many mapping. The approach
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so-obtained was called theory of evidence by Shafer. It is tailored for the representa-
tion andmerging of unreliable pieces of evidence. In contrast, upper and lower proba-
bilities in Dempster set-up may also model ill-known probabilities due to incomplete
observations of random variables.

The second idea is to work with (convex) sets of probabilities, either because the
statistical model is ill-known, or because the usual protocol for generating subjective
probabilities is altered, admitting that buying and selling prices of lotteries pertaining
to risky events may differ. The latter is the basis of Walley theory of lower previsions
and imprecise probabilities. It turns out that the framework of Walley is mathemat-
ically more general than the theory of Dempster-Shafer. This chapter provides an
account of these generalizations of Bayesian probability theory.

2 Theory of Belief Functions

The belief function model (Shafer 1976, 1990; Yager and Liu 2008) adds proba-
bilities on top of the set-based approach to imprecision. It replaces a representation
of the form v ∈ A, where A is a set of possible values of v, by a discrete probabil-
ity distribution over possible statements of the form v ∈ A (assuming the universe,
called frame of discernment by Shafer, S is finite).We denote bym such a probability
distribution on the power set 2S of S (the set of all subsets of S). Asm is a probability
distribution, the condition

∑
A⊆S m(A) = 1 is verified. Function m is called a mass

function, and m(A) is called the belief mass assigned to subset A. Any subset A of
S such that m(A) > 0 is called a focal set of m. We denote byF the family of focal
sets. In general, we do not assign any positive mass to the empty set, i.e., we assume
that m(∅) = 0; mass function m is then said to be normalized. However, the Trans-
ferable Belief Model (TBM) (Smets and Kennes 1994) relaxes this constraint: the
mass m(∅) then represents the degree of internal contradiction of the mass function.

In this hybrid representation of uncertainty, it is important to understand themean-
ing of the mass function. In particular, the belief mass m(A) should not be confused
with a probability of occurrence of A. According to Shafer (1976),m(A) is “themea-
sure of the belief committed exactly to A”. More precisely, we can say that m(A) is
the probability that the agent only knows that v ∈ A. There is thus an implicit epis-
temic modality inm(A), which is absent from P(A). This is the reason why function
m may be non-monotonic with respect to inclusion: wemay havem(A) > m(B) > 0
when A ⊂ B, if the agent is sure enough that what is known is of the form v ∈ A. In
particular, m(S) is the probability that the agent does not know anything. The vac-
uous mass function m? defined by m?(S) = 1 thus represents total ignorance. This
epistemic interpretation of mass functions is in line with Shafer (1981)’s random
code metaphor outlined in the next section.
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2.1 Random Code Semantics

A mass function can be interpreted by considering that the information provided
by a source (a piece of evidence) can be assimilated to a coded message whose
meaning is random (Shafer 1981). More precisely, assume that the source sends
an encrypted message using a code chosen at random from a set C = {c1, . . . , cn}
with probabilities p1, . . . , pn . We know the set of codes as well as the chances of
each code to be selected. If we decode the message using code ci , we get a decoded
message of the form v ∈ Γ (ci ) = Ai , where Γ is a multivalued mapping from C to
2S . The probability that the meaning of the original message is v ∈ A is thus

m(A) =
∑

{1≤i≤n:Ai=A}
pi . (1)

In particular, the probability that the message is empty, i.e., that it contains no infor-
mation about v, ism(S). The triple (C, P, Γ ), where P is a probabilitymeasure onC ,
defines a random set (Nguyen 2006). The formal equivalence between random sets
and belief functions has been proved for the first time by Nguyen (1978). However,
in random set theory, sets A with m(A) > 0 do not necessarily represent states of
knowledge. They can be objects taking the form of sets (Couso et al. 2014), contrary
to the case of evidence theory illustrated in the following example.

Example: Consider a watch that may be out of order with some known probability ε. The set
C describes the set of states of the watch, C = {working,broken}. Assume that the watch
shows time h. In that case, the multivalued mapping Γ is Γ (working) = {h} (if the watch is
working, it shows the right time), and Γ (broken) = S (if it is out of order, we do not know
what time it is). The mass function induced by S is thus m({h}) = 1 − ε and m(S) = ε.

The mass function obtained in the previous example is said to be simple because
the belief mass is shared between a single subset A of S, and S itself. Such a mass
function arises when a non-reliable source states that v ∈ A, and the agent believes
that the source is irrelevant with probability ε. This probability is committed to S
whereas m(A) = 1 − ε.

This way of generating a mass function from a multivalued mapping was first
proposed by Dempster (1967) in the context of statistical inference. Shafer (1976)
renamed the upper and lower probabilities of Dempster plausibility and belief func-
tions, respectively. To quote Shafer (2016b)’s recent intellectual autobiography:

My thought was to surrender the word probability to the objective concept and to build a
new subjective theory using mainly the word belief.

A mass function m models a state of knowledge, whereas the underlying triple
(C, P, Γ ) represents a body of evidence with uncertain meaning. Among theories of
uncertainty, the theory of belief functions has the particularity of putting emphasis
on the evidence that generates a state of knowledge, as shown by the title of Shafer
(1976)’s seminal book: A Mathematical Theory of Evidence.
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2.2 Basic Set Functions

Amass functionm induces two set functions: a belief function Bel (for “belief”) and
a plausibility function Pl, defined, respectively, by

Bel(A) =
∑

E⊆A,E �=∅
m(E); Pl(A) =

∑

E∩A �=∅
m(E). (2)

Observe that ∀A, Bel(A) ≤ Pl(A). When m(∅) = 0, it is clear that Bel(S) =
Pl(S) = 1, Pl(∅) = Bel(∅) = 0, and Bel(A) = 1 − Pl(A). Consequently, these
two functions are dual, as are necessity and possibility functions. The degree of
belief Bel(A) can be interpreted as the probability of provability of A from the avail-
able knowledge represented by m. In the language of modal logic, we should write
Bel(A) = P(�A), where � represents the modality of provability (Pearl 1990).
In the same way, Pl(A) can be seen as the probability of logical consistency of
A with m.

Belief functions Bel are completely monotone, i.e., for any k ≥ 2 and any family
(A1, . . . , Ak) of subsets of S, the following inequality holds,

Bel

(
⋃

i=1,...,k

Ai

)

≥
k∑

i=1

(−1)i+1
∑

I :|I |=i

Bel

⎛

⎝
⋂

j∈I
A j

⎞

⎠ . (3)

For Shafer (2016b), these inequalities play for belief functions the same role as
Kolmogorov axioms for probability theory. Plausibility functions verify a similar
property (they are completely alternating), changing the direction of the inequality
and switching the ∩ and ∪ operations.

A commonality function
Q(A) =

∑

E⊇A

m(E) (4)

was also introduced by Shafer (1976), essentially for computational reasons. It
later appeared that the commonality function is an extension of the guaranteed
possibility function in possibility theory (Dubois et al. 2001) (see the previous
chapter “Representations of Uncertainty in Artificial Intelligence: Probability and
Possibility” in this volume).

Conversely, knowing function Bel, we can uniquely recover function m by the
Möbius transform as:

m(E) =
∑

A⊆E

(−1)|E\A|Bel(A).

Similar identities make it possible to recover m from Pl or Q. The fast Möbius
transform (Kennes 1992) can perform these operations efficiently.

Belief functions are often defined on finite universes. Yet, thanks to the formal
identity between belief functions and random sets, it is easy to define belief functions
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on the real line (Dempster 1968; Strat 1984; Smets 2005; Denœux 2009), or even on
more abstract topological spaces (Shafer 1973, 1979; Nguyen 1978, 2006). We can
also extend belief and plausibility functions to fuzzy events (Smets 1981) by means
of Choquet integrals:

Bel(F) =
∑

E⊆S

m(E) · min
s∈E F(s) (5)

and
Pl(F) =

∑

E⊆S

m(E) · max
s∈E F(s), (6)

for the finite case. It is also possible to “fuzzify” the theory of belief functions by
allowing either the focal sets to be fuzzy sets (Zadeh 1979; Yen 1990), or the belief
masses to be intervals or fuzzy numbers (Denœux 1999, 2000a).

Two Special Cases

Two remarkable special kinds of belief functions are worth noticing:

1. Probability functions are obtained by assuming the focal sets to be singletons. It is
clear that, if m(A) > 0 implies ∃s ∈ S, A = {s}, then Bel(A) = Pl(A) = P(A)

is the probability function such that P({s}) = m({s}),∀s ∈ S. Conversely, Bel is
a probability function if and only of Bel(A) = Pl(A),∀A ⊆ S.

2. Plausibility functions are possibility measures (or, dually, belief functions are
necessity measures) if and only of the focal sets are nested, i.e., if ∀E �=
F ∈ F ,E ⊂ F or F ⊂ E . In that case, Pl(A ∪ B) = max(Pl(A), Pl(B)) and
Bel(A ∩ B) = min(Bel(A), Bel(B)). For instance, a simple mass function, as
in the above watch example, yields possibility and necessity measures.

We can associate to m the mapping ϕm : S → [0, 1] called contour function of m
defined by ϕm(s) = Pl({s}), i.e.,

∀s ∈ S, ϕm(s) =
∑

s∈E
m(E). (7)

It is easy to see that function ϕm is normalized in the sense of possibility theory
(ϕm(s) = 1 for some state s ∈ S) whenever the focal sets have a nonempty inter-
section (which is the case if they are nested). Recovering the mass function m from
ϕm is only possible when the focal sets are either nested or disjoint. In particular,
if Bel is a probability measure, ϕm coincides with m and is a probability distribu-
tion. Now assume that the focal sets are nested and form an increasing sequence
E1 ⊂ E2 ⊂, . . . ,⊂ En , where Ei = {s1, . . . , si }; then ϕm is indeed a possibility dis-
tribution π , and (7) reduces to π(si ) = ∑n

j=i m(E j ). The possibility measureΠ and
the necessity measure N defined from π coincide, respectively, with the plausibility
and belief functions induced by m. The mass function can be recomputed from π as
follows (with the notation π(sn+1) = 0) (Dubois and Prade 1982):

mπ (Ei ) = π(si ) − π(si−1), i = 1, . . . , n. (8)
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2.3 Combination Rules

The combination of information or evidence from different sources plays a funda-
mental role in the theory of belief functions. The basic tool is Dempster’s rule of
combination (Dempster 1967; Shafer 1976), which makes it possible to combine
independent pieces of information. This tool, as well as the precise definition of
independence in this context can be introduced using the random code metaphor
introduced in Sect. 2.1.

2.3.1 Dempster’s Rule of Combination

Let m1 and m2 be two mass functions on S induced by random sets (C1, P1, Γ1) and
(C, P2, Γ2), where C1 and C2 are, as before, interpreted as sets of codes. Assume
both codes are selected independently at random. For each pair (c1, c2) ∈ C1 × C2,
the probability that c1 and c2 are jointly selected is P1({c1})P2({c2}); we can then
deduce that v ∈ Γ1(c1) ∩ Γ2(c2). If moreover we assume the two bodies of evidence
pertain to the same message, we have to restrict to cases where Γ1(c1) ∩ Γ2(c2) �= ∅.
Consequently, the joint probability distribution on C1 × C2 should be conditioned
on the set {(c1, c2) ∈ C1 × C2|Γ1(c1) ∩ Γ2(c2) �= ∅}. This line of reasoning leads to
the following combination rule, called Dempster’s rule:

(m1 ⊕ m2)(A) = 1

1 − κ

∑

B∩C=A

m1(B)m2(C) (9)

for any A ⊆ S, A �= ∅ and (m1 ⊕ m2)(∅) = 0, where

κ =
∑

B∩C=∅
m1(B)m2(C) (10)

is called the degree of conflict between m1 and m2. If κ = 0, the two bodies of evi-
dence are said to be non-conflicting, i.e., each focal set of m1 intersects all focal sets
of m2. If κ = 1, the two bodies of evidence are logically contradictory and, conse-
quently, they cannot be combined. Mass function m1 ⊕ m2 is called the orthogonal
sum of m1 and m2. The unnormalized version of this rule, which corresponds to a
random set intersection (Dubois and Prade 1986), was introduced by Smets (1990a).
A general definition of Dempster’s rule in infinite spaces was given by Shafer (1973,
2016a).

Dempster’s rule is commutative, associative and it admits the vacuous mass func-
tion m? as neutral element. It can be easily computed using the commonality func-
tion (4). Denoting by Q1, Q2 and Q1 ⊕ Q2 the commonality functions associated,
respectively to m1, m2 and m1 ⊕ m2, the following relation holds,
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Q1 ⊕ Q2 = 1

1 − κ
Q1 · Q2. (11)

2.3.2 Dempster’s Rule of Conditioning

Conditioning in evidence theory, referred to asDempster’s rule of conditioning, was
proposed by Shafer (1976). It is a special case of Dempster’s rule of combination
(cf. Sect. 2.3.1), mass function m being combined with a logical mass function mC

such that mC(C) = 1. The idea is to transfer all the mass from each focal set E to
E ∩ C �= ∅, since mC states that the truth lies in C , and to renormalize the obtained
result. The new information C can then be viewed as a revision of the original belief
function so as to ensure that Pl(C) = 0: the situations in which C is false are now
considered as impossible. Denoting by Pl(A ‖ C) the revised plausibility, we have

Pl(A ‖ C) = Pl(A ∩ C)

Pl(C)
, (12)

which clearly constitutes an extension of probabilistic conditioning. The conditional
belief function is then obtained dually as Bel(A ‖ C) = 1 − Pl(A ‖ C). We can
remark that, with this rule of conditioning, the size of focal sets decreases: con-
sequently, information becomes more precise, and the intervals [Bel(A), Pl(A)]
become narrower (up to the normalization factor). Especially, when Bel(C) = 0
and Pl(C) = 1 (total ignorance about C), conditioning on C by Dempster’s rule
increases the precision of the resulting mass function. Indeed, Dempster’s condition-
ing corresponds to a revision process leading to information enrichment. Revision
is here viewed as the combination between a body of uncertain evidence and a sure
piece of information.

2.3.3 Other Combination Rules

Dempster’s rule tends to concentrate belief masses on smaller focal sets: it thus has
a conjunctive behavior. We can define a disjunctive counterpart to Dempster’s rule
(Dubois and Prade 1986; Smets 1993) as follows,

∀A ⊆ S, (m1 ∪ m2)(A) =
∑

B∪C=A

m1(B)m2(C). (13)

This combination rule assumes that at least one of the two information sources is
reliable, contrary to Dempster’s rule, which assumes that they both are reliable. The
disjunctive rule is commutative, associative, and admits as neutral element the mass
function m such m(∅) = 1. It can be expressed from belief functions using product:

(Bel1 ∪ Bel2) = Bel1 · Bel2, (14)
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which can be compared to (11). Note that the weighted average of belief functions
is still a belief function. It offers yet another alternative combination rule. The set of
belief functions is thus closed under product and weighted average.

2.3.4 Approximations by Reducing the Number of Focal Sets

BothDempster’s rule (9) and its dual disjunctive rule (13) have the effect of increasing
the number of focal sets. To avoid combinatorial explosion, a useful strategy is to
approximate each mass function by a simpler one with fewer focal sets. Several
methods with different degrees of complexity have been proposed for this purpose
(Lowrance et al. 1986; Tessem 1993; Bauer 1997; Harmanec 1999; Denœux 2001).
The simplest, yet quite effective approach, is theSummarization algorithm (Lowrance
et al. 1986), which works as follows. Let F1, . . . , Fn be the focal sets of m ranked
by decreasing mass, i.e., m(F1) ≥ m(F2) ≥ · · · ≥ m(Fn). If n exceeds some the
maximum allowed number k of focal sets, then the n − k focal sets Fi , i = k +
1, . . . , n with the smallest masses are replaced by their union, andm is approximated
by the mass function m ′ defined as

m ′(Fi ) = m(Fi ), i = 1, . . . , k, (15a)

m ′
(

n⋃

i=k+1

Fi

)

=
n∑

i=k+1

m(Fi ). (15b)

Amore sophisticated algorithm for grouping focal setswhileminimizing information
loss, based on the principle of hierarchical clustering, was proposed by Denœux
(2001).

When Eq. (11) or (14) are used, the complexity depends no longer on the number
of focal sets, but on the cardinality of the universe S. An efficient approximation
algorithm based on the search for a coarsening (grouping of focal sets) minimizing
information loss was proposed by Denœux and Ben Yaghlane (2002). Using a com-
pletely different approach, the combination of several belief functions can also be
performed by Monte-Carlo simulation (see, e.g., Moral and Wilson 1994, 1996).

2.3.5 Conflict Management

The management of conflict between information sources in an important practical
problem, which has drawn a lot of attention over the years (Lefèvre et al. 2002; Smets
2007; Martin et al. 2008; Destercke and Burger 2013). When a high conflict between
pieces of information is detected, two strategies are possible: we can either revise
the way information has been formalized, or we can use a robust combination rule
yielding a consistent result in case of conflict.

An example of such rule is the (Dubois and Prade 1988) rule defined as follows:
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(m1 � m2)(A) =
∑

B∩C=A

m1(B)m2(C) +
∑

{B∩C=∅,B∪C=A}
m1(B)m2(C), (16)

for any A ⊆ Ω , A �= ∅, and (m1 � m2)(∅) = 0. When the degree of conflict κ

between m1 and m2 is zero, we get m1 � m2 = m1 ⊕ m2: in the absence of
conflict, the Dubois–Prade rule is equivalent to Dempster’s rule. In contrast, when
the degree of conflict is equal to 1, we have m1 � m2 = m1 ∪ m2: in that case, the
Dubois–Prade rule boils down to the disjunctive rule. In all other cases, the behavior
of the� operator is intermediate between conjunctive and disjunctive modes: it is an
adaptive combination rule. We can remark that this rule is commutative but it is not
associative. However, an n-ary version can easily be defined, based on maximal con-
sistent subsets of focal sets. More complex ways of distributing the conflict among
focal sets have been proposed (see, e.g., Lefèvre et al. 2002; Martin et al. 2008).
See also chapter “Main Issues in Belief Revision, Belief Merging and Information
Fusion” in this volume, for more details on fusion operations.

2.3.6 Combination of Dependent Information

Dempster’s rule (9) and its disjunctive counterpart (13) both make an independence
assumption about the pieces of information to be combined.While it is often possible
to break down a body of evidence into independent pieces (Shafer 2016c), this is not
always the case, especially in sensor fusion applications. It is then useful to have a
well-justified rule allowing us to combine non independent pieces of evidence.

Such a rule, called the cautious rule, was proposed by Denœux (2008). It is based
on the weight function representation, which wewill now introduce. Amass function
m is said to be separable (Shafer 1976) if it is the orthogonal sum of simple mass
functions (see Sect. 2.1). Denoting a simple mass function with focal sets A and S
as Aw(A), where w(A) is the mass committed to S (so, 1 − w(A) is committed to A),
a separable mass function can thus be written as

m =
⊕

∅�=A⊂S

Aw(A). (17)

Considering the negationm of amass functionm, defined by∀A,m = m(A) (Dubois
and Prade 1986), there is a De Morgan duality between the disjunctive rule (14) and
the non-normalized variant of Dempster’s rule (9) that has been exploited byDenœux
(2008) to define a disjunctive decomposition of belief functions.

Given a separable mass function m with commonality function Q such that
m(S) > 0, the weights w(A) can be recovered from Q as

lnw(A) = −
∑

B⊇A

(−1)|B|−|A| ln Q(B), ∀A ⊂ S, A �= ∅. (18)
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The mapping w : 2S \ {∅, S} → [0, 1] defined by (18) is called the weight function
associated to m. When m is not separable but still verifies m(S) > 0 (it is then said
to be non dogmatic), we can still define the weight function w from (18), but we
can now have w(A) > 1 for some A (Smets 1995). Mass function m can then still
computed from w using (17), where Aw(A) with w(A) > 1 is no longer a proper mass
function but a generalized mass function assigning “masses” w(A) > 1 to S and
1 − w(A) < 0 to A.

Given two non dogmatic mass function m1 and m2 with weight functions w1 and
w2, their orthogonal sum can be written as:

m1 ⊕ m2 =
⊕

∅�=A⊂Ω

Aw1(A)w2(A),

i.e., the weight function ofm1 ⊕ m2 is the product of those ofm1 andm2. In contrast,
the cautious rule is defined as

m1 � m2 =
⊕

∅�=A⊂Ω

Amin(w1(A),w2(A)), (19)

i.e., the weight function of m1 � m2 is the minimum of those of m1 and m2. The
cautious rule is commutative, associative and idempotent, which makes it suitable to
combine dependent pieces of evidence. It can be justified by the Least Commitment
Principle (see Sect. 2.4). A disjunctive counterpart of �, called the bold disjunctive
rule, can also be defined (Denœux 2008). With Dempster’s rule and the disjunctive
rule (13), the cautious and bold rules can be seen as particular elements of infinite
families of rules based on triangular norms and on uninorms (Pichon and Denœux
2010). Other idempotent, but non associative rules have been defined and studied by
Destercke and Dubois (2011) and Cattaneo (2011).

2.3.7 Taking into Account Metaknowledge About Sources

When combining information from several sources, it is often useful to take into
account not only the information provided by the sources, but also metaknowledge
about their properties (such as their reliability or truthfulness). The discounting oper-
ation (Shafer 1976; Smets 1993) makes it possible to account for the reliability of a
source by transferring a fraction α of eachmassm(A) for A ⊂ S to S. The discounted
mass function, denoted by αm, is then given by

αm = (1 − α)m + αm?,

where, as before m? denotes the vacuous mass function and α is called the discount
rate. The contextual discounting operation, introduced by Mercier et al. (2008),
generalizes discounting by allowing one to take into account the source’s reliability
in different contexts. Pichon et al. (2012) have proposed a very general mechanism
for “correcting” and combining mass functions, taking into account the relevance
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and truthfulness of information sources; they have shown that all connectives of
Boolean logic can be interpreted in the light of these two properties. Other belief
function correction mechanisms have been proposed by Mercier et al. (2012, 2016),
and Pichon et al. (2016).

2.4 Imprecision, Specialization and Information Measures

Like any information items, it is interesting to compare belief functions according to
their information content. This makes it possible, in particular, to apply themaximum
uncertainty (Klir and Wierman 1999) or least commitment (Smets 1993) principle,
which serves the same purpose as the maximum entropy principle in probability
theory and the principle of minimal specificity in possibility theory. According to
this principle, when several belief functions are compatible with a set of constraints,
the least committed should be selected. In order to apply this principle, we need to
define a partial order on the set of belief functions. For that purpose, we may either
define a degree of imprecision or of uncertainty of a belief function, or we may adopt
a more qualitative approach and directly define an informational ordering relation
on the set of belief functions.

2.4.1 Quantitative Approach

As belief functions model both imprecise and uncertain information, we may be
willing to measure imprecision and uncertainty separately. A natural measure of
imprecision is the expected cardinality of the randomset definedby themass function,

Imp(m) =
∑

E⊆S

m(E) · card(E). (20)

It is clear that Imp(m?) = card(S), where m? is the vacuous mass function, and
Imp(m) = 1whenm is a probability mass function. It can be checked that Imp(m) =∑

s∈S Pl({s}). An alternative measure of imprecision is nonspecificity (Dubois and
Prade 1985), defined for a normalized mass function m as

N (m) =
∑

E⊆S

m(E) log2 card(E). (21)

Nonspecificity was shown by Ramer (1987) to be the only measure of imprecision
satisfying some rationality requirements.

The degree of uncertainty of a belief function can be measured by generalizing
the well-known Shannon entropy of a probability measure P defined by
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H(P) = −
card(S)∑

i=1

pi · ln pi . (22)

Several extensions of H(p) to belief functions have been proposed, of the form

D(m) = −
∑

E⊆S

m(E) · ln g(E), (23)

where g can be, e.g., Pl or Bel (Dubois and Prade 1987;Klir andWierman 1999). For
g = Pl, we get ameasure of dissonance (or internal conflict), which ismaximized by
uniform probability measures, and reaches its minimum (zero) when the intersection
of focal sets is non empty :

⋂{E : m(E) > 0} �= ∅. For g = Bel, we rather have a
measure of confusion, which is minimal (zero) for logical mass functions verifying
m(E) = 1 for some unique focal set E (imprecise but certain and clear information),
but high for uniform mass functions over subsets of S with cardinality Card(S)/2
(Dubois andRamer 1993). See alsoRamer andKlir (1993),Klir andWierman (1999).

Another approach, proposed by Smets (1983), is to define a measure I of infor-
mation content that relies on the pivotal role of Dempster’s rule in the theory of
belief functions, namely, it is natural to impose an additivity property with respect to
this rule, such as I (m1 ⊕ m2) = I (m1) + I (m2) for any two non-conflicting mass
functions m1 and m2. As shown by Smets (1983), this requirement, together with a
few additional natural conditions, lead to the following definition1:

I (m) = −
∑

E⊆S

ln Q(E). (24)

Other quantitative criteria attempt to measure imprecision and uncertainty simul-
taneously. For instance,aggregate uncertainty (Maeda and Ichihashi 1993;Harmanec
and Klir 1994) is defined as follows, for a normalized mass function m:

AU (m) = max
P∈P (m)

H(P), (25)

where H is the Shannon entropy, andP(m) is the set of probability measures on S
compatible with m:

P(m) = {P, P(A) ≤ Pl(A),∀A ⊆ S}. (26)

It is clear that AU (m) is maximal both for the vacuous mass function m = m? and
for the uniform Bayesian mass function m such that m({s}) = 1/card(S) for all
s ∈ S; these two mass functions correspond, respectively, to maximal imprecision
and to maximal uncertainty. Aggregate uncertainty can be shown to meet a number
of reasonable requirements (Klir and Wierman 1999). However, the debate on what

1Considering the disjunctive rule instead of the conjunctive rule would lead to replace Q by Bel
in (24).
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should be a “natural” measure of total uncertainty in the theory of belief functions
is not settled: see, for instance, the recent proposal and discussion by Jiroušek and
Shenoy (2016).

2.4.2 Comparative Approach

The second approach to comparing the informational contents of belief functions
consists of directly defining a partial order on the set of belief functions. Given two
normalizedmass functionsm1 andm2,m1 is said to bemore precise thanm2 (denoted
bym1 �Pl m2) iff, for any subset A of S, the interval [Bel1(A), Pl1(A)] is included in
the interval [Bel2(A), Pl2(A)]. Because of the duality of Bel and Pl, this condition
can be simplified to: ∀A, Pl1(A) ≤ Pl2(A). In terms of imprecise probabilities, the
condition m1 �Pl m2 means that P(m1) is a subset of P(m2) (Dubois and Prade
1986;Yager 1986).Mass functionm is thusmaximally precisewhen it coincideswith
a single probability measure, and minimally precise ifm = m?. It is also clear that, if
m1 �Pl m2, then AU (m1) ≤ AU (m2). Note that this approach is in agreement with
the imprecise probability interpretation of belief functions explained in Sect. 3.

An alternative method for comparing the informativeness of belief functions con-
sists in generalizing relative specificity, viewed as set inclusion, to random sets. A
normalized mass function m1 is a specialization of a normalized mass function m2

(denoted by m1 �s m2) if and only of the following three conditions hold:

1. Any focal set of m2 contains at least one focal set of m1;
2. Any focal set of m1 is included in at least one focal set of m2;
3. There exists a stochasticmatrixW whose elementwi j is the proportion of themass

m1(Ei ) assigned to Fj ⊇ Ei in order to reconstruct mass m2(Fj ), i.e., m2(Fj ) =∑
i wi j · m1(Ei ).

This relation is stronger than the previous one: ifm1 is a specialization ofm2, thenm1

is also more precise than m2, but the converse is not true in general, see Dubois and
Prade (1986). It is also obvious that, if m1 is specialization of m2, then Imp(m1) ≤
Imp(m2).

As noted in Sect. 2.2, in the consonant case, mπ and π contain the same infor-
mation, i.e., Pl = Π and Bel = N . Accordingly, for possibility measures, the pre-
cision and specialization orderings both coincide with the specificity ordering for
possibility distributions: mπ1 is a specialization of mπ2 iff Π1(A) ≤ Π2(A),∀A ⊆ S
iff π1(s) ≤ π2(s),∀s ∈ S (Dubois and Prade 1986).

Other informational orderings have been proposed. For instance, m1 is said to be
more informative than m2 according to commonalities (denoted by m1 �Q m2) iff
Q1 ≤ Q2 (Dubois and Prade 1986; Yager 1986). This property can be interpreted
from Eq. (11): as numbers Q1(A) get closer to 1, the influence ofm1 when combined
by Dempster’s rule with another mass function m2 becomes smaller, which means
that m1 becomes less informative. Relation �Q is weaker than �s , but it is not
comparable with �Pl . Obviously, m1 �Q m2 implies that I (m1) ≥ I (m2).
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Yet another ordering relation was proposed by Denœux (2008), based on the
weight function (18). Mass function m1 is said to be more informative than m2

according to the weights (denoted by m1 �w m2) iff w1 ≤ w2. This means that m1 is
the orthogonal sum of m2 and a separable mass function m that has no conflict with
m2:m1 = m2 ⊕ m. The cautious rule (19) can be derived from the least commitment
principle based on relation �w.

2.5 Criteria for Decision Under Uncertainty

Consider a set A = {a1, . . . , ar } of acts, a set S = {s1, . . . , sn} of states of nature,
and a payoff matrix U of size r × n, whose element ui j is the utility of choosing
act ai if state s j occurs. Assuming the uncertainty about the state of nature to be
modeled by a mass function m on S, which act should be chosen? To answer this
question, the classical Maximum Expected Utility (MEU) principle (von Neumann
andMorgenstern 1944) can be generalized in a number of ways in the belief function
setting (see also chapter “Decision Under Uncertainty” in this volume).

2.5.1 Lower and Upper Expected Utilities

According to Dempster (1967) and Shafer (1981), the lower and upper expected
utilities of act ai are defined, respectively, as the following Choquet integrals (further
studied in chapter “Decision Under Uncertainty” of this volume) similar to (5):

EU(ai ) =
∑

E⊆S

m(E)min
s j∈E

ui j (27a)

EU(ai ) =
∑

E⊆S

m(E)max
s j∈E

ui j . (27b)

The lower and upper expected utilities can be shown to be, respectively, the lower and
upper bounds of the expected utility with respect to all probability measures P on S
compatible withm (Shafer 1981). An optimistic decision-maker (DM) will typically
maximize the upper expected utility, while a pessimistic DM will maximize the
lower expected utility. These two decision rules can be generalized by considering
a convex sum of the lower and upper expected utility (Jaffray 1989; Strat 1990),
which generalizes Hurwicz criterion (see chapter “Decision Under Uncertainty” in
this volume for a detailed discussion of its axiomatization due to Jaffray):

EUα(ai ) =
∑

E⊆S

m(E)

(

αmin
s j∈E

ui j + (1 − α)max
s j∈E

ui j

)

(28a)

= αEU(ai ) + (1 − α)EU(ai ), (28b)
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where α can be seen as a pessimism index. An evenmore general approach, proposed
by Yager (1992), combines the utilities in each set {ui j | s j ∈ E} by an Ordered
Weighted Average (OWA) operator.

2.5.2 Pignistic Probability

Following a different line of reasoning and putting emphasis on the avoidance of
Dutch books (i.e., sequences of bets ensuring a sure loss), Smets (1990b) advocated
a two-level mental model: the credal level, where uncertainty is represented by
a belief function, and the pignistic level, where belief functions are transformed
to probabilities for decision-making. The pignistic transformation (Smets 1990b)
consists in distributing each massm(E) equally to all elements of E , resulting in the
probability distribution betp defined as

betp(s) =
∑

E :s∈E

m(E)

card(E)
. (29)

This transformation had been earlier proposed by Dubois and Prade (1982) as a
generalization of Laplace’s principle of insufficient reason to belief functions. Smets
(1990b) justified it axiomatically, by imposing a linearity property (the pignistic
probability of a convex sum of belief functions should be the convex sum of the
pignistic probabilities) and an anonymity property (the pignistic probability of an
event E should not change after permuting the elements of E). In fact, the pignistic
probability was already known in the theory of cooperative games since the 1950s as
the Shapley value, and Smets’ axioms aremathematically the same as those proposed
by Shapley (1953), albeit in a different context. The pignistic probability is also the
center of gravity of the convex set of probabilities that dominate the belief function.

We can also search for the least informative belief function, according to the
commonality ordering �Q defined in Sect. 2.4.2, corresponding to a given pignistic
probability distribution. As shown byDubois et al. (2008), it is unique and consonant;
consequently, it induces a possibility distribution.

Having defined the pignistic distribution betp, we can evaluate each act ai by its
expected utility with respect to betp,

EUbetp(ai ) =
∑

s j∈S
betp(s j )ui j =

∑

E⊆S

m(E)

⎛

⎝ 1

card(E)

∑

s j∈E
ui j

⎞

⎠ , (30)

which can be compared to (27) and (28a). The pignistic criterion is a special case of
Yager’s OWA criterion (Yager 1992), as the average is a particular OWA operator.
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2.6 Applications to Statistical Learning and Data Analysis

In Artificial Intelligence, the theory of belief functions has been used, until the early
1990’s, to model uncertainty in expert systems (Shafer 1987; Shenoy 1989). Since
1990, we have seen the development of another application area: statistical learning
(see chapter “Designing Algorithms for Machine Learning and Data Mining” of
Volume 2). The theory of belief functions has proved to be an efficient formalism for
combining models, modeling uncertainty in the outputs of classifiers or clustering
algorithms, and learning from uncertain data. In the following, we review some of
the recent developments in this area.

2.6.1 Classifier Combination

A first way of applying the theory of belief functions to classification is to consider
classifier outputs as items of evidence and to merge them using Dempster’s rule, or
any other combination rule (see Sect. 2.3). Given the flexibility of the belief function
formalism, this approach can be applied to classifiers of various types, the outputs
of with can be converted into belief functions.

For instance, Xu et al. (1992) proposed to use a confusion matrix to convert a clas-
sifier’s decision into a mass function. They obtained good results for a handwriting
recognition problem. A similar approach was used byMercier et al. (2009) for postal
address recognition. More recently, Bi et al. (2008) proposed to represent classifier
scores as “triplet” mass functions with three focal sets. Bi (2012) studied the influ-
ence of classifier diversity and the combination rule on the accuracy of the ensemble.
Quost et al. (2011) considered a parametrized family of combination rules, including
Dempster’s rule and the cautious rule (see Sect. 2.3.6), and proposed a method to find
the best rule in this family.

From a different perspective, Quost et al. (2007) considered the combination of
binary classifiers as a way to solve multi-class classification problems. For instance,
in the “one-against-one” approach, binary classifiers are trained using data from
only two classes; consequently, their outputs can be interpreted as conditional mass
functions. The problem is then to construct an unconditional mass function on the
whole set of classes, as consistent as possible with the conditional mass functions
provided by the binary classifiers.

2.6.2 Evidential Classifiers

An evidential classifier is a classifier whose output is a mass function over a set of
classes Ω = {ω1, . . . , ωc}. Two main approaches have been proposed for construct-
ing such a classifier from training data.

The first approach, first introduced and justified axiomatically by Appriou (1991,
1998), is to construct a mass function m on Ω from the likelihoods p(x |ωk), where
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x is the feature vector. One of the two methods proposed by Appriou is identical to
the solution resulting from the application the Generalized Bayes Theorem (GBT)
introduced by Smets (1993). The mass function has the following expression:

m =
c⊕

k=1

{ωk}αk p(x |ωk )
, (31)

where the αk’s are coefficients ensuring that αk p(x |ωk) ≤ 1 for k = 1, . . . , c, and
the notation Aw stands for the simple mass function μ such that μ(A) = 1 − w and
μ(Ω) = w (see Sect. 2.3.6). A major advantage of this method is that it can be used
without prior class probabilities, or with only weak prior information encoded as
a belief function. However, when prior probabilities are given, the GBT yields the
same solution as the Bayesian approach. Appriou (1991) showed the robustness of
this method, in particular when the test data distribution differs from the learning
distribution due, e.g., to different data acquisition methods or to sensor malfunction.

Another approach, referred to as the evidential k-nearest neighbor (NN) rule, was
introduced by Denœux (1995). It consists in considering each training instance (or
only each of the k nearest instances in the training set) as a piece of evidence about
the class of the new object to be classified. The different pieces of evidence are
represented by mass functions and are combined using Dempster’s rule. In the most
general form of this method, we consider a training set

L = {(x (1),m(1)), . . . , (x (N ),m(N )),

where x (i) is the feature vector of instance i and m(i) is a mass function on Ω

representing partial knowledge about the class of that example. In the fully supervised
case, eachmass functionm(i) is certain, i.e., we havem(i)({ω j }) = 1 for some element
ω j of Ω . In the general case, we have a partially supervised learning problem.
Partial knowledge about the class of training instances may be provided by an expert
or derived from indirect observation. We also assume a distance or dissimilarity
measure δ between feature vectors.

The mass function representing the evidence of the training example e(i) =
(x (i),m(i)) is defined as

m(A | e(i)) = ϕ
(
δ(x, x (i))

)
m(i)(A), ∀A ⊂ Ω (32a)

m(Ω | e(i)) = 1 −
∑

A⊂Ω

m(A|e(i)), (32b)

where ϕ is a decreasing function verifying ϕ(0) ≤ 1 and limd→∞ ϕ(d) = 0. Mass
function m(·|e(i)) is thus obtained by discounting m(i) (see Sect. 2.3.7), with a dis-
count rate that gets closer to one when the dissimilarity between vectors x and x (i)

goes to infinity. The condition limd→∞ ϕ(d) = 0 ensures that mass functionm(·|e(i))

becomes vacuous when the dissimilarity between vectors x and x (i) goes to infinity.
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Let us now consider a new object described by a known feature vector x̂ and an
unknown class label y ∈ Ω . Having computed mass functions (32) for each of the
K nearest neighbors of x̂ , the combined mass function on Ω is

m(· | L ) =
⊕

{i |xi∈N K (x̂)}
m(· | e(i)), (33)

where NK (x̂) denotes the set of the K nearest neighbors of x̂ . The choice of a best
class ŷ ∈ Ω can thenbemadeusingoneof the decision rules described inSect. 2.5 and
in chapter “Decision Under Uncertainty” of this volume. Denœux (1997) describes
several decision strategies with different reject options.

Zouhal and Denœux (1998) have proposed a method for choosing function ϕ

within a parametric family by minimizing an error function. The evidential neural
network classifier introduced by Denœux (2000b) is a variant of this method, in
which the training set is summarized as a set of prototypes. Both the evidential
k-NN rule and the evidential neural network classifier have been implemented in
the R package evclass (Denœux 2017). Denœux and Zouhal (2001) have studied
another variant of the evidential k-NN rule in which partial information about the
class of training instances is given as possibility distributions. Petit-Renaud and
Denœux (2004) have extended the approach to regression problems, where variable
y is numerical. Recently, Lian et al. (2015) proposed a feature selection method
based on the evidential k-NN rule, and Lian et al. (2016) described an algorithm for
learning the distance function δ in (32).

The evidential k-NN rule has also been extended tomulti-label classification prob-
lems, in which each object may belong simultaneously to several classes (Denœux
et al. 2010). In this case, the universe is the power set 2Ω of the set of classes. To
prevent double exponential complexity in the manipulation of mass functions, belief
functions can then be defined on a lattice of subsets ofΩ (the intervals with respect to
the ordering relation ⊆). A general presentation of this approach (with applications
not only to classification, but also to preference elicitation and to clustering) can
be found in Denœux and Masson (2012). See also Grabisch (2009) for the general
theory of belief functions on lattices.

The likelihood-based and distance-based evidential classification methods out-
lined above have been compared experimentally by Fabre et al. (2001), and theoreti-
cally by Denœux and Smets (2006), who showed that they can both be derived from
the GBT.

2.6.3 Evidential Clustering

The theory of belief functions has also been applied to clustering, which consists
in finding groups (or clusters) in data (see chapters “Designing Algorithms for
Machine Learning and DataMining” and “Constrained Clustering: Current and New
Trends” of Volume 2). Here, belief functions can be used to quantify the uncertainty
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about the group membership of each particular object. Given a set of n objects
O = {o1, . . . , on} and a set of c clusters Ω = {ω1, . . . , ωc}, Denœux and Masson
(2004) defined a credal partition as an n-tuple M = (m1, . . . ,mn) of (not necessar-
ily normalized) mass functions on Ω , where mi quantifies the uncertainty about the
cluster membership of object oi . A credal partition boils down to a hard partition
when all mass functions are precise (i.e., when they focus on only one singleton).
Most other “soft” clustering notions such as fuzzy, possibility and rough clustering
are also recovered as special cases (Denœux and Kanjanatarakul 2016). For instance,
if all mass functions correspond to probability distributions (i.e., their focal sets are
singletons), then we can identify each massmi ({ωk})with the degree of membership
uik of object oi to cluster ωk , and we have a fuzzy partition (Bezdek 1981). If each
mass function mi is categorical (i.e., it has only one focal set Ai ), then we can define
the lower approximation of cluster ωk as the set of objects oi that surely belong to
ωk , i.e., such that Ai = {ωk}, and the upper approximation of cluster ωk as the set
of objects oi that may belong to ωk , i.e., such that ωk ∈ Ai . We then have a rough
partition as defined by Lingras and Peters (2012). A general credal partition can also
easily be summarized into a hard partition or any type of soft partition. For instance,
we obtain a fuzzy partition by replacing each mass mi by its pignistic probability
distribution (29), and we get a rough partition by selecting, for each mass function
mi , the focal set with the largest mass (Denœux and Kanjanatarakul 2016).

An evidential clustering algorithm is a procedure that constructs a credal partition
from a dataset. Several such algorithms have been proposed over the years:

• The EVCLUS algorithm, introduced by Denœux andMasson (2004), applies ideas
frommultidimensional scaling to clustering: given a dissimilarity matrix, it finds a
credal partition such that the degrees of conflict (10) betweenmass functionsmatch
the dissimilarities, dissimilar objects being represented by highly conflicting mass
functions; this is achieved by iteratively minimizing a stress function. A variant of
EVCLUS allowing one to use prior knowledge in the form of pairwise constraints
was later introduced by Antoine et al. (2014), and several improvements to the
original algorithm making it capable of handling large dissimilarity datasets have
been reported by Denœux et al. (2016) and Li et al. (2018).

• The Evidential c-means (ECM) algorithm (Masson and Denœux 2008) is a
c-means-like algorithm that minimizes a cost function by searching alternatively
the space of prototypes and the space of credal partitions. Unlike the hard and fuzzy
c-means algorithms, ECM associates a prototype not only to each cluster, but also
to each nonempty set of clusters. The prototype associated to a set of clusters is
defined as the barycenter of the prototypes of each single cluster in the set. The
cost function to be minimized insures that objects close to a prototype have a high
mass assigned to the corresponding set of clusters. A variant with adaptive metrics
and binary constraints was introduced by Antoine et al. (2012), and a relational
version for dissimilarity data (called RECM) has been proposed by Masson and
Denœux (2009). A version of ECM taking into account spatial constraints and
suitable for image segmentation was introduced by Lelandais et al. (2014).
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• The Ek-NNclus algorithm (Denœux et al. 2015) is a decision-directed clustering
procedure based on the evidential k-NN rule described in Sect. 2.6.2. Starting from
an initial partition, the algorithm iteratively reassigns objects to clusters using the
evidential k-NN rule, until a stable partition is obtained. After convergence, the
cluster membership of each object is described by a mass function onΩ assigning
a mass to each cluster and to the whole set of clusters. The mass assigned to the set
of clusters can be used to identify outliers. The procedure can be seen as searching
for the most plausible partition of the data.

All these algorithms have been implemented in the R package evclust (Denœux
2016).

3 Imprecise Probabilities

Imprecise probability theory (Walley 1991) relies on an approach opposite to the
one of belief functions. Instead of randomizing the set-based approach to incomplete
information, incompleteness is injected in probability theory. Under the frequentist
view, epistemic uncertainty goes on top of a probabilistic model. Under the sub-
jectivist view, the betting protocol is relaxed, by no longer enforcing the equality
between buying and selling prices. In the area of economics, Gilboa and Schmeidler
(1989) already showed that by suitably relaxing Savage axioms for decision under
uncertainty, it is possible to formally justify the idea that an agent’s epistemic state
consists of a set of probability distributions on the set S of possible states of theworld:
in order to hedge against uncertainty, when evaluating a decision, the cautious agent
picks the probability distribution that minimizes its expected utility.

3.1 Basic Definitions and Interpretations

An imprecise probability model comes down to specifying a familyP of probability
functions over S. However, there are several approaches to come up with this family
according to the understanding of probability (frequentist or subjectivist), and to the
available data in the specific application context.

3.1.1 Incomplete Information About Frequentist Probability

Under a frequentist view, P is an epistemic set reflecting incomplete information
about an otherwise precise mathematical model of a random process: a probabil-
ity distribution in P is the right one. The family P thus represents an imprecise
probabilistic model. There are several situations that lead to such a model:
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• The most common situation is when several probability measures are compatible
with the available information, for instance in the case of scarce data. In the
parametric case, the parameters of themodel are ill-known, because the confidence
intervals for these parameters are too wide. Bayesians then often assume a prior
probability distribution on the parameter range or the set of possible probability
functions. This is preciselywhat is not assumed in the imprecise probability setting.
Some authors may still use the Bayesian paradigm, but assume imprecision about
the prior probability (they are called robust Bayesians Huber 1981; Berger 1994),
resulting in an imprecise posterior distribution.

• Imprecise information can be obtained by an expert or from empirical data about
statistical parameters (like support, mean, mode, median, some fractiles) but the
type of probabilisticmodel is otherwise ill-known (Baudrit andDubois 2006) (e.g.,
you know the empirical mean and variance but you do not know if the process
is Gaussian or not). It may be that the expert provides probability bounds on
some events (intervals, quantiles, etc.). In the finite case, an expert may assign a
probability interval to each outcome instead of a precise value (de Campos et al.
1994).

• A usual setting for getting upper and lower probabilities is the one of imprecise
statistical information, that corresponds to Dempster (1967)’s setting for belief
functions. The mass value of a focal set is the frequency of observing this incom-
plete information item. In that case, belief and plausibility functions are lower and
upper probabilities, respectively, with a frequentist flavor. See the book by Couso
et al. (2014) for a presentation of this approach to imprecise statistics.

• Some authors have even questioned the basic assumptions that frequencies con-
verge toward limit probabilities. For instance it is only known that frequencies
eventually remain inside an interval (Walley and Fine 1982).

Suppose one comes up to a probability familyP via some of the above scenarii.
Then one can assign to each event lower and upper bounds for the probability of this
event (Smith 1961):

P∗(A) = inf
P∈P

P(A); P∗(A) = sup
P∈P

P(A). (34)

Functions P∗ and P∗ are monotonic with respect to inclusion and satisfy the duality
property P∗(A) = 1 − P∗(A). We call set functions P∗ and P∗ lower and upper
envelopes respectively, after (Walley 1991). The additivity property of P enforces
the following conditions for such envelopes (Good 1962): ∀A, B ⊆ S, such that
A ∩ B = ∅,

P∗(A) + P∗(B) ≤ P∗(A ∪ B) ≤ P∗(A) + P∗(B) ≤ P∗(A ∪ B) ≤ P∗(A) + P∗(B).

(35)
The width of the interval [P∗(A), P∗(A)] represents the amount of ignorance of the
agent as to the truth of proposition A. Total ignorance is when this interval is [0, 1].
When this interval reduces to a singleton, full probabilistic knowledge is obtained.
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Probability envelopes are more general than belief and plausibility functions, hence
more general than necessity and possibility measures (Walley 1996).

It is important to notice that in general, it is impossible to reconstruct the original
setP from the knowledge of these intervals [P∗(A), P∗(A)] for all events A. Indeed,
these intervals correspond to particular projections ofP . Namely, lettingP(P∗) =
{P : ∀A ⊆ S, P(A) ≥ P∗(A)}, it is easy to see thatP(P∗) is convex (if P1 ∈ P(P∗)
and P2 ∈ P(P∗) then, ∀λ ∈ [0, 1], λ · P1 + (1 − λ) · P2 ∈ P(P∗)) and contains the
convex hull ofP , even ifP andP(P∗) have the same upper and lower envelopes.

A characteristic property of an upper envelope (induced by a non-empty set of
probabilities) was found by Giles (1982). Viewing a set A as its {0, 1}-valued char-
acteristic function (A(s) = 1 if s ∈ A and 0 otherwise). A set-function g is an upper
envelope if and only if for any tuple A0, A1, . . . , Ak of subsets of S, and any pair of
positive integers (r, s) such that

∑k
i=1 Ai (·) ≥ r + s · A0(·), it holds that

k∑

i=1

g(Ai ) ≥ r + s · g(A0). (36)

3.1.2 The Subjectivist Point of View

The subjectivist approach to imprecise probability was fully developed by Walley
(1991). It is powerful enough to encompass all convex sets of probabilities. In this
approach the agent proposes buyingprices for gambles.Agamble is a function f from
S to the real line that expresses losses ( f (s) < 0) or gains ( f (s) > 0). The gamble
associated to an event is its characteristic function. The agent is not committed to
selling such gambles at the same prices as the ones he or she accepts to buy them.

Informally, the approach relies on so-called desirable gambles (Walley 1991)
that the agent would agree to buy for a positive price. The set of desirable gambles
contains at least all positive gambles. Moreover the sum of two desirable gambles is
desirable, and a desirable gamble remains desirable when multiplied by a positive
constant. The lower prevision LP( f ) of a gamble f is the maximal value α such
that f − α is desirable. It can be shown that given a set of gambles fi ∈ G and their
lower previsions LP( fi ), there is a convex set of probabilitiesP , called credal set,
such that LP( fi ) is the lower expectation of fi according toP , for all fi ∈ G . One
important point is that any convex set of probabilities can be represented by lower
previsions on some family of gambles.

In this setting, the upper prevision U P( f ) of a gamble f is provably equal to
−LP(− f ). The value LP( f ) is thus the maximal buying price for a gamble f , and
the upper previsionU P( f )(≥ LP( f )) is theminimal selling price of f . If the credal
set attached to a set of gambles and its lower previsions is empty, then the proposal is
inconsistent and the agent incurs a sure loss after buying and resolving these gambles.
Moreover, due to the interactionbetweengambles, itmaybe that the consistent buying
prices proposed by the agent for gambles fi ∈ G are too low and could be raised
without altering the credal set. A set of buying prices pr( fi ), fi ∈ G is said to be
coherent if and only if LP( fi ) = pr( fi ),∀ fi ∈ G . In other words, letting EP( f ) be
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the expectation of f with respect to probability P , a set of buying prices for a set of
gamblesG is coherent if and only if for any fi ∈ G , inf{EP( fi ) : P ∈ P} = pr( fi ),
where P is the credal set induced by the gambles fi ∈ G , and their buying prices.
Clearly, Giles condition (36) is easily interpreted in terms of coherence of gambles.
It expresses the coherence of a set of upper probabilities assigned to subsets of S
(minimal selling prices of 0-1 gambles), protecting an agent who sells k + 1 lottery
tickets corresponding to events A0, A1, . . . , Ak from losing money while proposing
optimal selling prices g(Ai ).

The gamble approach leads to a decision rule that is specific to the imprecise
probability setting, namely a gamble f is preferred to a gamble g if and only the
gamble h = f − g is desirable, i.e., if the lower expectation of the latter gamble
with respect to the corresponding credal setP is positive. It gives a partial ordering
on gambles. It implies that ∀P ∈ P, EP( f ) ≥ EP(g). See chapter “Decision Under
Uncertainty” in this volume for other decision rules with credal sets

3.1.3 Special Cases

A monotonic set-function g : 2S → [0, 1] is said to be a Walley-coherent lower
probability if the following property holds:

g(A) = inf{P(A) : P(A) ≥ g(A),∀A ⊆ S}.

In that case, the credal setP = {P : P(A) ≥ g(A),∀A ⊆ S} is characterized by
the set-function g, that is, it can be described by assigning optimal buying prices to
events (viewed as 0-1 gambles) only.Mind that not all credal sets can be characterized
in this way. They generally require the assignment of buying (or selling) prices to
general gambles. A sufficient condition for a monotonic set function to be Walley-
coherent is the supermodularity condition: g(A ∪ B) + g(A ∩ B) ≥ g(A) + g(B).
Such a function g is a called a convex capacity. So it is clear that other set-functions
met in this chapter and the previous one are Walley-coherent as well, such as belief
functions (equivalently plausibility functions) and necessity measures (equivalently
possibility measures), which can represent specific credal sets.

Interestingly, Walley-coherence can be viewed as a generalization of deductive
closure to families ofweighted propositions. LetK be a consistent set of propositions
A0, A1, . . . , Ak , and suppose we assign the buying prices pr(Ai ) = 1, i = 0, ...k,
then P∗(A) = 1 if and only ifK |= A.

More about imprecise probability theories can be found in Walley (1991)’s book
and their relevance for uncertainty management in artificial intelligence is discussed
in Walley (1996), where the position of belief functions and possibility measures in
the landscape is pointed out. More recent books on the topics are the collection of
introductory papers edited byAugustin et al. (2014), and themathematically oriented
monograph on lower previsions by de Cooman and Troffaes (2014).
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3.2 Two Types of Conditioning

In the framework of imprecise probabilities, there are several ways of extending the
Bayesian conditioning of probability theory. It reflects the fact that the two usual
tasks performed by Bayes rule, that is prediction and revision, can no longer be
performed by the same conditioning rule (Dubois and Prade 1997b).

3.2.1 Prediction

When a credal set represents generic knowledge, Bayesian prediction or plausible
inference is achieved by performing a form of sensitivity analysis on probabilistic
conditioning, a rule proposed by Walley (1991), Fagin and Halpern (1991). Let P
be a credal set on S. It induces lower and upper bounds P∗(A) and P∗(A) of the
probability of each proposition A. In the presence of new pieces of information about
a singular case, summarized by the context C , the belief of the agent that proposition
A holds for the case at hand is represented by the interval [P∗(A | C), P∗(A | C)]
defined by

P∗(A | C) = inf{P(A | C) s.t. P(C) > 0, P ∈ P}

P∗(A | C) = sup{P(A | C) s.t. P(C) > 0, P ∈ P}.

Note that it is possible that interval [P∗(A | C), P∗(A | C)] is larger than [P∗(A),

P∗(A)], which means that there is a deficit of information given by the credal setP
in the specific context C , while there is more in more general contexts. This is called
the dilation effect (Seidenfeld and Wasserman 1993). It reflects the fact that in the
presence of incomplete information, themore observations are available on a singular
case, the less relevant to this case is generic information about the population of cases,
because the less the new case can be viewed as representative of this population. In
the case of Bayes rule applied to a known frequentist distribution, this dilation effect
does not appear because a single number is always obtained. However, this value
becomes all the more dubious as the number of cases similar to the one under study
in the population justifying the frequentist distribution becomes smaller and smaller
as we condition on a more specific context.

If P is the credal set associated to a convex capacity (hence, belief functions,
necessity measures as well) the upper and lower conditional functions take the
remarkable forms (Fagin and Halpern 1991):

P∗(A | C) = P∗(A ∩ C)

P∗(A ∩ C) + P∗(A ∩ C)
; P∗(A | C) = P∗(A ∩ C)

P∗(A ∩ C) + P∗(A ∩ C)
(37)

It is easy to see that P∗(A | C) = 1 − P∗(A | C), and these formula extend prob-
abilistic conditioning, in the sense that P∗(A | C) is a function of P∗(A ∩ C) and
P∗(C ∪ A) (and similarly for P∗(A | C)). It is clear that this form of conditioning
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does not correspond to the idea of enriching generic information by new observa-
tions, i.e., the latter do not alter the credal set. We just extract from it information
that fits the available evidence, in the spirit of De Finetti.

In the theory of belief functions, the above form of conditioning can be justified
in terms of their mass functions, positive weights m(E) assigned to subsets E of
S. When a mass function represents generic knowledge, m(E) may be, e.g., the
proportion of individuals, for which only imprecise proposition E is known to hold,
in the whole population. In this setting, prediction in contextC consists in evaluating
mass functionm(· | C) induced bym in contextC summarizing the available singular
information. Three cases can be considered (de Campos et al. 1990):

1. E ⊆ C : in that case, m(E) remains committed to E ;
2. E ∩ C = ∅: in that case, m(E) is no longer relevant and is discarded;
3. E ∩ C �= ∅ and E ∩ C �= ∅: in that case, a part αE · m(E) of m(E) remains

committed to E ∩ C and the rest, i.e., (1 − αE ) · m(E), is committed to E ∩ C .
But the proportion αE is unknown.

The third case corresponds to incomplete information E which neither confirms, nor
contradicts C . We do not have information to determine if, in each of the situations
corresponding to these observations, C is true or not. Assume that one knows the
proportions {αE , E ⊆ S}. We always have αE = 1 in the first case and αE = 0 in
the second case. One thus constructs a mass function mα(· | C). We can remark that
renormalization of the resulting mass function is necessary whenever Pl(C) < 1:
each mass is then divided by Pl(C). Denoting by Belα(A | C) and Plα(A | C) the
belief and plausibility obtained by focalization on C with vector of proportions α,
we can define the conditional degrees of belief and of plausibility given C as

Bel(A | C) = inf
α

Belα(A | C); Pl(A | C) = sup
α

Plα(A | C). (38)

These definitions yield the following special cases of Bayesian conditioning for
imprecise probability (37):

Bel(A | C) = inf{P(A | C) s.t. P(C) > 0, P ≥ Bel} = Bel(A ∩ C)

Bel(A ∩ C) + Pl(A ∩ C)
; (39)

Pl(A | C) = sup{P(A | C) s.t. P(C) > 0, P ≥ Bel} = Pl(A ∩ C)

Pl(A ∩ C) + Bel(A ∩ C)
. (40)

We still obtain belief and plausibility functions2 (see the non-trivial proofs by
Jaffray 1992 and Paris 1994). Let us notice that if Bel(C) = 0 and Pl(C) = 1 (total
ignorance about C) then all focal sets of m overlap C but C does not contain any of
them. In that case, Bel(A | C) = 0 and Pl(A | C) = 1,∀A �= S,∅: nothing can be
inferred in context C .

2When applied to necessity and plausibility measures, these two formulas also preserve consonance
and yield another form of conditional possibility and necessity (Dubois and Prade 1997a).
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3.2.2 Revision

In the framework of imprecise probabilities, a simple brute force approach to revision
of a credal set P by an information item C consists in enforcing the additional
constraint P(C) = 1 toP , namely restrict the latter, and update the upper and lower
probabilities of events accordingly:

P∗(A || C) = inf{P(A | C) s.t. P(C) = 1, P ∈ P}; (41)

P∗(A || C) = sup{P(A | C) s.t. P(C) = 1, P ∈ P}. (42)

Clearly, it is supposed, in contrast with the assumption in the prediction problem, that
the new item of information is of the same nature as the original credal set, and can
be modelled by the credal set {P : P(C) = 1} (it can be frequentist or subjectivist).

However, by doing so, it may be that the intersection of the two credal sets, i.e.,
{P ∈ P s.t. P(C) = 1} is empty. This is for instance most of the time the case in the
standard probabilistic setting sinceP reduces to a singleton. The way out is to apply
the maximum likelihood principle (Gilboa and Schmeidler 1992), selecting the most
likely probability functions inP , replacing condition P(C) = 1 by P(C) = P∗(C)

in the above definition of conditioning:

P∗(A || C) = inf{P(A | C) s.t. P(C) = P∗(C), P ∈ P}; (43)

P∗(A || C) = sup{P(A | C) s.t. P(C) = P∗(C), P ∈ P}. (44)

For convex capacities, it holds that P∗(A || C) = P∗(A∩C)

P∗(C)
, which generalizes

Dempster rule of conditioning. In the belief function setting, this form of condi-
tioning systematically assumes that αE = 1 whenever E ∩ C �= ∅ in Belα(A | C)

and Plα(A | C). From the perspective of Shafer and Smets, mass function m does
not represent generic information, but uncertain singular information, such as unre-
liable testimonies or inconclusive pieces of evidence about a specific situation. The
existence of two forms of conditioning in the theory of belief functions can thus be
explained by the difference between generic and singular information.

As a general setting for the numerical representation of uncertainty, liable of
various interpretations, and encompassing other theories of uncertainty as formal
particular cases, imprecise probabilities receive an increasing attention and foster
a number of theoretical works; for instance, de Cooman and Hermans (2008) build
bridges betweenWalley’s approach to imprecise probabilities and the game-theoretic
view of probability by Shafer and Vovk (2001). Practical representation methods in
artificial intelligence are also studied, for instance the imprecise probability version
of Bayesian nets, including dedicated uncertainty propagation algorithms (Cozman
2000; de Campos and Cozman 2005; Cozman and Mauá 2017).
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4 Conclusion

Artificial Intelligence, when focusing on representation and reasoningwith imperfect
information, was naturally bound to realize that classical logic on the one hand, and
precise probabilities on the other hand, were separately insufficient to deal with this
issue. Alternative formal frameworks have emerged in the last 40 years or so to
that effect, that this chapter partially accounts for. These frameworks are numerous
and often complement each other rather than compete, even if research in this area
remains fragmented. Nevertheless, these alternative theories of uncertain, incomplete
or conflicting information offer a very rich range of formalisms. It is important to
correctly understand their potentials and limitations prior to appropriately exploiting
them. These frameworks can be qualitative (like possibilistic logic, discussed in the
previous chapter) or quantitative (like belief functions and imprecise probabilities).
A significant effort is still needed before a full-fledged unification of the various
approaches is achieved, and the links with neighboring disciplines like statistics are
fully established, in order to master their use in applications.
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Qualitative Reasoning

Jean-François Condotta, Florence Le Ber, Gérard Ligozat
and Louise Travé-Massuyès

Abstract In this chapter, we discuss two research areas related to qualitative
reasoning: firstly, qualitative reasoning about dynamical systems, or qualitative
physics, that aims at providing qualitative descriptions of processes in the sense
that they are characterized regardless of quantitative data (for instance, “the tank
overflows”, “temperature increases”, etc.); and secondly qualitative spatial and tem-
poral reasoning (QSTR), that aims at describing and reasoning about qualitative
relationships between spatial regions (“the stadium is on the island”, “the bike path
crosses the river”) or between time periods (“theminister’s visit preceded the opening
of the Olympic Games”).

1 Introduction

At the very start of the 1980s — actually, in 1979 — the Naive Physics Manifesto
by Hayes (1979) became the starting point of Qualitative Physics by claiming that
an “intelligent machine” should have a model of the surrounding world and be able
to anticipate what may or may not occur.

In that paper and in the revised version that followed in 1985 (Hayes 1985),
the problem of modeling our common sense perception of the physical world was
formulated and illustrated the same year by an axiomatization in first order logic
of the “intuitive” behavior of liquids with An Ontology for Liquids. This was called
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more precisely Naive Physics. This project was very ambitious, more because of
the amount of knowledge to be encoded it implied than for the complexity of the
reasoning to be implemented, and its impact on our intelligent systems promised to
be huge since they would have to be able to predict the qualitative features of the
possible evolutions of the world.

Despite the attractiveness of such a project and the impact of these papers, the
common sense reasoning of Naive Physics was quickly overtaken by what became
known as Qualitative Physics or Qualitative Reasoning. Indeed, in 1977, in parallel
to the programmatic call of Pat Hayes, the MIT launched a project aiming at the
“creation” of an artificial engineer. The target was thus the knowledge and expertise
of an engineer reasoning about an artifact or a natural system, halfway betweenNaive
Physics and “classical” physics found in textbooks.

The area of Qualitative spatial and temporal reasoning can also avail itself of
Hayes’swork.Emphasizing the importance of the representation of space and change,
Hayes had introduced the notion of history, a kind of space-time region. Hence, in
his pioneering paper (Allen 1983), Allen refers to his own work as “describing a
reasoning mechanism for the temporal aspect of Naive Physics”.

The focus is indeed put on “common sense”, in accordance with the qualification
of “naive”. Rather than representing the advanced knowledge of engineers, the goal
is to represent the common sense knowledge that manifests itself especially in the use
of natural language. It is also of importance to note that spatial qualitative reasoning
predominantly prefers conceptualisations that reject the geometric concept of point
— in the same way as Allen rejects that of instant— in favor of mereological visions
of space. The research of the Leeds School (Randell et al. 1992b) and of the Toulouse
School (Vieu 1991) typically adopts that point of view.

We now describe the two main directions of qualitative reasoning: qualitative
physics and qualitative spatial and temporal reasoning (QSTR).

2 Qualitative Physics

Qualitative physics aims at automating the reasoning about the physical world,
a central goal of Artificial Intelligence. Qualitative modeling and inferences about
the behavior of a physical system where information is incomplete are two inputs of
qualitative physics. The theoretical foundations have resulted in new mathematical
tools that have had many practical spinoffs, resulting in several real world appli-
cations. We present different aspects, starting with theoretical work on qualitative
algebras, up to diagnosis and interactive learning applications.

2.1 Historical Outline

One of the pioneering works is undoubtedly that of de Kleer who, in 1977, designed
the Newton system, a system that was able to solve qualitatively simple mechan-
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ical problems (de Kleer 1977). It was followed by programs able to reason about
electrical circuits. De Kleer’s Local system used its knowledge of normal and faulty
behaviors of components of a circuit for detecting inconsistencies between observed
and predicted behaviors and then locate the faults in the circuit (de Kleer 1979).
Those ideas were to become the basic ideas of model-based diagnosis theory.

The concerns of Artificial Intelligence researchers thus met the body of work ini-
tiated by other scientific communities. Economists had already proposed qualitative
approaches in the 1960s (Lancaster 1965). Their work highlighted the fact that the
mere knowledge of the signs (+,−, 0) of a few variables is sometimes sufficient
to predict behavioral trends for a system. Qualitative analysis thus allows one to
distinguish the purely structural causes of an evolution from those due to specific
numerical configurations. Similarly, during the 1970s, some environmentalists devel-
oped formalisms to model a system in terms of signed graphs. That work was taken
over by the automatic control community in the 1980s, which proposed extensions
for the analysis of dynamical systems, in particular for assessing controllability and
observability (Travé and Kaszkurewicz 1986).

Those communities took as a point of departure the observation that quantitative
knowledge being often incomplete, building a numeric model is somehow arbitrary,
while qualitative knowledgemay provide relevant elements for analysis. TheAI com-
munity, on the other hand, had a quite different agenda, its goal being to automate the
kind of reasoning performed by humans and engineers, in particular when reasoning
about physical phenomena. As a consequence, it has payed special attention to the
issue of explanation, seeking not only to predict the behavior of a system but also
to explain it. Causal reasoning has been a constant concern of qualitative reasoning.
Similarly, model building and the formalization of the modeling process are its core
activities and they constitute one of its major contributions.

In France, research related to qualitative reasoning developed as a craze, orches-
trated by the working groupQualitative Modeling and Decision (MQD), which then
had no less than fiftymembers. Under the impulse ofMQD, a special issue of the jour-
nal Revue d’Intelligence Artificielle appeared in 1990 (Travé-Massuyès and Dormoy
1990) followed by a survey paper (Dague 1995) and some years later the collec-
tive book entitledQualitative Reasoning for Engineering Sciences (Travé-Massuyès
et al. 1997) whose second edition was published in the Hermès Collection in 2003
(Travé-Massuyés and Dague 2003). EchoingMQD, the European Network of Excel-
lenceMONET1 gathered researchers and organizedQR activities in Europe for about
six years, from 1999 to 2004. These activities were punctuated by the annual work-
shop on Qualitative Reasoning that is still held every year.

French contributions are essentially theoretical, providing formalisms for reason-
ing about orders of magnitude, either absolute or relative, main contributors being
J.-L. Dormoy and L. Travé-Massuyès for the former and O. Raiman and P. Dague
for the latter.

1MONET: Network of Excellence on Model Based Systems and Qualitative Reasoning.
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2.2 Different Aspects of Qualitative Reasoning

The underlying principles of qualitative reasoning provide several benefits over tradi-
tional analytical techniques often based on numerical simulation. Specifically, qual-
itative reasoning:

• can deal with incomplete knowledge that would be useless for conventional sim-
ulation methods;

• produces inaccurate but correct predictions that capture all possible behaviors
consistent with the incomplete specification. This contrasts with numerical sim-
ulation that requires a specific value for each parameter, producing accurate but
probably incorrect results (because precise values are often unknown);

• enables an easy exploration of alternatives which are obtained by qualitative sim-
ulation in a single execution. Exploring the same set of possible behaviors via
numerical simulation requires a great number of executions, one for each different
parameter value, with no guarantee of completeness;

• provides an automatic interpretation of results since evolutions are given as a func-
tion of the relevant qualitative characteristics used as input, whereas analyzing the
result of a numerical simulation requires the identification of those characteristics
by the user.

These properties are obtained thanks to specific conceptual approaches and math-
ematical formalisms specifically designed for qualitative reasoning.

2.2.1 Qualitative Abstractions

Qualitative reasoning is mainly concerned with systems with continuous dynam-
ics for which a standard model would consist of differential equations. Qualitative
abstractions aim at providing behavioral models that only retain the qualitative dis-
tinctions needed to solve a specific problem attached to a task. For this purpose, the
two main abstractions used in qualitative reasoning are:

• domain abstraction that, for each continuous variable, consists in discretizing its
value domain into a finite number of symbols, retaining its semantics in terms of
orders of magnitude;

• functional abstraction that retains only some properties of the functions. A typical
example is given by the qualitative operators M + (y, x) and M − (y, x) used by
the QSIM simulator (Kuipers 1986), whose interpretation is that y is linked to x
by an increasing, respectively decreasing, monotonic function, with no need to
specify the function itself.

Domain abstraction has been the subject of much work. On the one hand, we
find qualitative algebras or Q-algebras and qualitative calculi that makes use of a
qualitative equality ≈ and of the two qualitative operators sum ⊕ and product ⊗.
On the other hand, we have formal models that were proposed to represent relative
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orders of magnitude. Actually, the two lines of work echo two types of knowledge
about orders of magnitude:

• absolute orders of magnitude as used by the physicist when he/she approximates a
number by the powers of 10. The most common absolute order of magnitude alge-
bra is based on a partition of the real axis into 7 classes, corresponding to the sym-
bolsNegativeLarge (NL),NegativeMedium (NM),Negative Small (NS), Zero (0),
Positive Small (PS), Positive Medium (PM) and Positive Large (PL). Order
of magnitude algebras generalize sign algebra, based on three classes
Negative (–), Zero (0) and Positive (+), the most commonly used in qualitative
inference systems. At the other end, interval algebra (Moore 1966) is also an order
of magnitude algebra. Powerful algebraic properties have been identified for sign
algebra (Travé and Dormoy 1988), whereas general order of magnitude algebras
have weaker properties (Travé-Massuyès and Piera 1989).

• relative orders of magnitude as used by the physicist when he/she neglects a
quantity relative to another. The first system to be proposed was the formal system
FOG (Raiman 1991). Inspired by Non-Standard Analysis, it was based on three
basic relationships representing the intuitive concepts “negligible with respect
to” (Ne), “close to” (Vo) and “comparable to” (Co), and was axiomatized by 32
intuitive inference rules. The models ROM(K) and ROM(�) proposed later by
Dague (1993a, b) improved FOG’s formalization and allowed the incorporation of
quantitative information, producing valid results in the real world.

2.2.2 Generic and Modular Modeling

Qualitative reasoning explicitly represents the conceptual level of modeling. This
feature is crucial to enable automatic model generation, the goal being to avoid
developing the models by hand when considering different variants of a given sys-
tem or specific purposes. Thus the two principles guiding knowledge representation
in qualitative reasoning are genericity and modularity. Most qualitative reasoning
systems make use of a model library of basic components or processes – if one refers
to the two main qualitative reasoning ontologies respectively – that can be reused in
different configurations and allow automatic modeling by composing these model
fragments (Forbus 1984).

It must be noticed that the engineering world has a great expertise at building
numerical models. Hence, mathematical foundations that would allow one to connect
numerical models to qualitative models and help in the automatic model generation
process are of extreme importance (Forbus 1984).

2.2.3 Qualitative Simulation

As already noticed, the information available in some areas is inherently qualitative.
This is true of most natural systems. Moreover, the behavior of the system for precise
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Fig. 1 A pressure regulator

parameter and initial condition values is not always of interest. It may be more
interesting to know what types of qualitatively different behaviors are licensed by
the structure of the system, given some constraints on the parameters and initial
conditions. These objectives, at the core of qualitative reasoning, have given birth to
qualitative simulation.

Three now classical approaches can be distinguished: the component-based
approach by de Kleer and Brown (1984), the process-based approach by Forbus
(1984) and the constraint-based approach by Kuipers (1986). The issues raised by
these approaches have guided much of the work on qualitative simulation up to now.

In theENVISIONapproachdevelopedbydeKleer andBrown (1984), a qualitative
model is expressed as a set of confluences, i.e. constraints on the qualitative values
(here signs) of system variables. Confluences allow one to infer the qualitative values
of unknown variables, leading to a specific representation of the behavior of the
system.

This representation, called an envisionment is given by a graph that includes all
the qualitative states of the system that satisfy the system confluences, as well as all
the possible transitions between these states.

Consider, for example, the pressure regulator of Fig. 1, where Q is the flow rate
of fluid in the pipe, Pe and Ps are respectively the pressure at the input and output
of the regulator, V is the speed of the valve (when opening or closing), and F is
the force exerted on the piston. The resulting envisionment is given in Fig. 2. The
possible behaviors of the system, starting from a given initial state, are given by
the different paths in the diagram as a sequence of states chronologically ordered.
We distinguish between instantaneous states (symbolized by circles) and states with
non-zero duration (denoted by squares).

For example, the sequence [5, 4, 5, 1, 2, 3] represents a possible qualitative behav-
ior of the regulator. It indicates that, for a moment, the system can oscillate between
zero and positive force F exerted on the piston with a negative speed (valve closing),
to move to states in 1 and 2 where F is negative, then move to state 3, where the
speed and force become simultaneously negative.

Qualitative Process Theory (QPT), developed by Forbus (1984), provides a
process-centered view of the physical world. Given a scenario of a particular situa-
tion and a knowledge base of abstract model fragments describing objects, quantities,
relations between objects and processes in the domain, QPT generates a model of
the physical system under study. Basically, a model is a set of constraints, called
influences, over the qualitative values of the variables. In a way similar to the
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Fig. 2 Envisionment for the pressure regulator

ENVISIONapproach, qualitative simulation is used to build an envisionment describ-
ing the possible behaviors of the system.

Unlike ENVISION and QPT approaches, the QSIM approach by Kuipers (1986)
ignores the aspects related to model building. The qualitative model of a system is
a qualitative differential equation, which is an abstraction of a class of ordinary dif-
ferential equations. Qualitative simulation makes use of continuity properties, given
that variables are functions of time. It also considers the constraints over the values of
qualitative variables involved in the qualitative differential equation. It produces the
sequences of possible qualitative states, representing qualitative behaviors. QSIM is
by far the most popular approach. The clear definition of concepts such as qualitative
model, qualitative state and qualitative behavior as well as the explicit relationship
with numerical simulation facilitated the adaptation and integration of the mathemat-
ical properties of ordinary differential equations. Kuipers’s excellent book (Kuipers
1994) is also one of the key reasons of the success of the approach.

2.2.4 Causality

Causality (see chapter “A Glance at Causality Theories for Artificial Intelligence” of
this volume) is one of the essential concepts when reasoning about physical systems.
In many cases, the prediction of a given behavior is stated according to the cause-
effect relations underlying this behavior. Causal knowledge allows one to infer the
behavior but also to explain it. Therefore it is commonly used in tasks such as design
or diagnosis. In thefields of engineering, there are often highly structured theories that
underlie the behavior of systems. The Qualitative Reasoning community proposed
automatic methods to discover causal relations with a view to enrich such theories
with additional causal knowledge.
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For a given physical system, for which there is a model defined by a set of
constraints between a set of variables, the causal ordering problem is formulated
as the problem of deriving the set of causal relationships, also called influences,
between the variables involved in the model, given a subset of variables specified as
exogenous. A variable is exogenous when it is controlled by the system’s environ-
ment. The following three principles are generally accepted as underlying any causal
influence: temporal order, locality and necessity.

The main methods that were proposed by the Qualitative Reasoning community
are:

• mythical causality (de Kleer and Brown 1984, 1986);
• causal ordering (Iwasaki and Simon 1986, 1994);
• bond graphs (Top and Akkermans 1991; Dauphin-Tanguy et al. 2000).

Mythical causality can be seen as an intuitive method based on step by step prop-
agation of the changes of direction variables will take in response to perturbation.
For this purpose, it relies on heuristics. Causal ordering can be described as a com-
putational method since causal chains coincide with paths of value computation of
the variables, without reference to the underlying physical system. Finally, the bond
graphs approach can be considered as methodological because it provides a unified
modeling graphical language based on a categorization of physical phenomena.

The reader will find a detailed overview of causality as seen by the Qualitative
Reasoning community in Dague and Travé-Massuyès (2004).

2.3 Evolutions and Trends

Qualitative Reasoning is a mature research field that fully contributes to the advance-
ment of AI. Its influence in several related fields can no longer be denied, while the
strengths and weaknesses of qualitative reasoning theories are perfectly identified.
During the first ten years, Qualitative Reasoning produced ideas and novel theoretical
results that are described in the “Readings” book (Weld and de Kleer 1989). The-
oretical contributions as reported in Travé-Massuyès et al. (2003) then decreased.
Let us notice however a contribution establishing the conditions under which an
absolute order of magnitude model is consistent with a relative order of magnitude
model in 2005 (Travé-Massuyès et al. 2005) and a qualitative information theory
with the definition of the concept of entropy in absolute order of magnitude spaces
in 2010 (Roselló et al. 2010). Less theoretical works resulted in many applications
in the fields of engineering. Particular mention should be made of applications in
the field of space autonomy (Williams and Nayak 1996; Muscettola et al. 1998),
of diagnosis (Struss and Price 2003; Cascio et al. 1999; Travé-Massuyès and Milne
1997; Struss et al. 2014; Hofer et al. 2017), and of interactive learning (Bredeweg
and Forbus 2003). An interactive learning environment based on qualitative simula-
tion like DynaLearn allows for a novel form of active learning based on learning by
modelling (Bredeweg et al. 2013).
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The undeniable strength of qualitative simulation comes together with limitations
that were quickly identified by the community. These are related to the prediction
of spurious behaviors and has given rise to numerous works attempting to overcome
the problem (Yilmaz and Say 2006). These limitations, however, correspond to the
inherently incomplete nature of qualitative knowledge, a fact that the community
now appears to have accepted (Kuipers 1985). Some relatively recent works about
qualitative simulation define ad hoc algorithms tailored to specific systems. Let us
notice in particular the applications to the simulation of genetic networks (de Jong
et al. 2003; Ironi et al. 2008). However, Garp3 is at the forefront of nowadays qual-
itative simulators. Endowed with a diagrammatic visual language for representing
qualitative models and a user friendly interface to inspect simulation results, Garp3
allows modellers to articulate and refine their conceptual domain knowledge and
analyse this knowledge through simulation (Bredeweg et al. 2009).

The community has also faced the challenge of modeling, hence some researchers
proposed to learn qualitative models automatically (Bratko and Suc 2003). In areas
like ecology, biology, medecine or economics, challenges come from the fact that
knowledge is not much formalized (Guerrin 1991; Ndiaye et al. 2009; Kansou and
Bredeweg 2014). In technological fields that are typical engineering fields, qualitative
modelsmust get alongwith numericalmodels and the practices and know-how linked
to them. Generating automatically a qualitative model from a numerical model is a
critical issue that has been the focus of some work, particularly in the European
project IDD (Picardi et al. 2002; Struss 2002), with no really satisfactory results.
To move in this direction, the modeling practices should progress towards more
modularity and the explicit modeling of validity assumptions of the models.

For a long time, most of the work of the Qualitative Reasoning community has
been guided by technological applications (Iwasaki 1997; Travé-Massuyès andMilne
2009).This resulted in a significant overlappingof researchers attached to theQualita-
tive Reasoning community and the Model-Based Diagnosis community (see chapter
“Diagnosis and Supervision: Model-based Approaches” of this volume) and attend-
ing both annual workshops, QR and DX respectively. After a joint organization of
these workshops in 1998 and 1999, part of the community preferred to diversify co-
organizations. A particular reason was a significant move towards cognitive science.
This line of work is still active nowadays (Bredeweg and Struss 2003). For instance,
Forbus (2014) returns to common sense reasoning in the spirit of the Naive Physics
effort of Hayes (1979) with the goal to understand the mental models that support
people’s fluency in dealing with the physical world. On the other hand, Montserrat-
Adell et al. (2016) rely on qualitative absolute orders of magnitude to build a set
of hesitant fuzzy linguistic term sets that grasp the uncertainty existing in human
reasoning. This kind of linguistic terms has been applied to a social multi-criteria
evaluation real case study by Afsordegan et al. (2016). Reasoning and learning via
analogy, human-machine interaction and in the field of education, interactive learn-
ing and cognitive diagnosis – diagnosis of the model proposed by the learner – are
all active topics today (Forbus et al. 2002; Falkenhainer and Forbus Dedre 1989;
de Koning et al. 2000; Bredeweg et al. 2013). Conceptual aspects of modeling, as a
means to articulate and communicate knowledge, is also a very active topic.
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The integration of qualitative analysis methods with traditional methods also
defines an interesting line of work. In the fields of medicine and materials, the work
by L. Ironi is a typical example that integrates qualitative methods with numerical
methods and statistics to achieve automatic modeling, simulation and interpretation
of experimental data (Ironi and Tentoni 2007). The analysis of systems with non-
linear dynamics, possibly chaotic, also gives rise to methods integrating qualitative
analysis and classical mathematical approaches (Ross et al. 2006).

3 Qualitative Spatial and Temporal Reasoning

3.1 An Overview of the Field

A simple but typical example of qualitative temporal reasoning is the following:
assume we have to reason about point-like temporal entities, which we can model
as points on the real line. We are only interested in qualitative relations between
those entities, where qualitative means that we are not concerned with measuring the
amount of time elapsed between two time-points. Actually, we will consider only
three possible relations between two points: precedence (x precedes y), equality, and
the relation that is the converse relation to precedence (x follows y).

Using those three binary relations, which we note <, =, and >, respectively,
we define a formalism for representing and reasoning about temporal knowledge,
the Point calculus, which has good computational properties in terms of the cel-
ebrated trade-off between expressiveness and computational complexity (Levesque
andBrachman1985). Its formulas are conjuncts of basic formulas of the formα(x, y),
where x and y denote time-points, and α is either one of the three relations, called
basic relations, or a disjunction of them, such as ≤ (the disjunction of < and =), �=
(the disjunction of < and >), and so on. A further step consists in representing the
formulas of the language using constraint networks, which are oriented graphswhose
vertices are labelled by variables standing for points, and whose arcs are labeled by
disjunctive relations.

In his 1983 seminal paper (Allen 1983), a paper dealing with reasoning about
intervals, rather than points, Allen adopted the language of constraint networks. This
allowed him to benefit from the link between temporal reasoning and the developing
domain of constraint reasoning, based on the propagation of constraints. In particular,
devising algorithms by adapting those used in the domain of constraint satisfaction
problems (CSPs) became a natural strategy. In Allen’s approach to temporal reason-
ing, called the Interval calculus or Allen’s interval calculus, a pivotal role is played
by the algebra formed by the set of disjunctive relations, called the Interval algebra,
or Allen’s interval algebra.

Making explicit the link with constraint-based reasoning and using that link
to define reasoning “mechanisms” in temporal reasoning established the central
constraint-based feature of the new domain. Nowadays, in its turn, QSTR as a body
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of methods and techniques tends to emancipate itself from its limitations to space or
time, and to give birth to a general domain of qualitative constraint-based reasoning.

In terms of research communities, the domain of constraint-based qualitative
temporal or spatial reasoning has developed from the confluence of two research
directions: for qualitative temporal reasoning, Allen’s 1983 paper, whose formalism
became the starting point for much of further research; and for qualitative spatial
reasoning, the work of the Leeds school, whose definition of the RCC-8 formalism
(Randell et al. 1992a) – also considered independently by Egenhofer (1991) under
the name of the 9-intersection calculus –, a formalism for reasoning about relations
between regions.

At this point, it may be in order to remark that the distinction between temporal
and spatial reasoning in this context tends to be blurred or become inexistent if we
consider the calculi themselves rather than what motivated them: for instance, the
Point calculus can also be viewed as describing relations between points of the real
line, that is, as a calculus on a 1-dimensional space. The reader is advised to keep in
mind the important distinction between a formalism on the one hand, and its possible
interpretations on the other hand.

On the international research activity level, a sustained activity in qualitative and
spatial reasoning has taken place during the last decades.Workshops have been orga-
nized atmajor IA conferences such as IJCAI,AAAI, andECAI, aswell as specialized
conferences such as the TIME and COSIT conferences. At the European level, the
european SPACENET project (1994–1998) was a fruitful meeting point for the dis-
semination and promotion of the domain. At the French level, two French universities
participated in the SPACENET project, and several government supported projects
(GDRs) were carried out. Detailed presentations of the domain of qualitative spatial
and temporal reasoning (QSTR) can be found in (Renz and Nebel 2007), (Ligozat
2013), (Chen et al. 2015).

Representing and reasoning about time was one of the motivations of Prior for
developing time logics (Prior 1957) as particular kinds of modal logics. The spatial
interpretation of some modal logics had been introduced in the 1940s by McKinsey
and Tarsky (1944). The logical approaches have been widely developed, with a
constant interaction with the constraint-based approaches (Le Ber et al. 2007).

Finally, to get a wider perspective on the topic, one has to mention various
approaches using graph theoretical tools, the notion of entropy, lattices, Markov
models, temporized networks, homological algebra, mathematical morphology, pos-
sibility theory and the qualitative study of shapes.

In what follows, we will successively consider constraint-based formalisms, the
main problems encountered, the perspectives offered by this type of research, some
alternative approaches and conclude with a brief overview of applications.
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3.2 Qualitative Calculi

3.2.1 Allen’s Interval Calculus

Allen’s interval calculus considers intervals as primitive temporal entities, which
can be interpreted as (closed, bounded) intervals on the real line, that is, as pairs of
distinct real numbers. The qualitative relations considered between pairs of intervals
are those relations that correspond to all possible orderings of the end-points. This
yields a set of 13 relations (Fig. 3).

The set of basic relations has a natural structure of a lattice, which it inherits from
the ordering of time points. Moreover, because intervals are pairs of points, the basic
relations can be represented as regions in the plane (Fig. 4).

Fig. 3 The basic relations of Allen’s interval calculus

(a) (b)

Fig. 4 Basic relations of Allen’s interval calculus as a lattice a and as regions b



Qualitative Reasoning 163

This set of relations has the JEPD (jointly exhaustive and pairwise disjoint) prop-
erty, that is, it constitutes a partition of the set of all pairs of intervals: any pair of
intervals belongs to one, and only one, of them. Those relations are called the basic
relations of Allen’s interval calculus.

The “formulas” of the language are conceptualized in terms of constraint net-
works, which are oriented graphs whose arcs are labeled by sets of basic relations
interpreted as disjunctions. The nodes of the networks correspond to intervals, and
the labelings to constraints between them.

Reasoning uses constraint propagation based on the existence of two operations
on the (disjunctive) relations: the operation of conversion, that sends relation p (pre-
cedes) to relation pi (is preceded by), and similarly for other basic relations, except
equality which is its own converse, and the operation of composition of two relations
that can be described by a composition table; using constraint propagation, one can
compute the algebraic closure of a given network, by repeatedly executing

C(i, j) ← C(i, j) ∩ (C(i, k) ◦ C(k, j))

for all triples of nodes (i, j, k) until the network is no longer changed. A network such
thatC(i, j) ⊆ C(i, k) ◦ C(k, j) for all triples (i, j, k) of nodes is called algebraically
closed (or path-consistent).

3.2.2 A Review of Some Qualitative Calculi

Many qualitative calculi have been defined and studied during the past three decades.
We present a quick (not exhaustive) review of some of them.

The generalized interval calculus (Ligozat 1991) considers temporal entities
which are finite sequences of points on a line. It generalizes the Point calculus (where
the sequence is reduced to one point) and Allen’s interval calculus (sequences of two
points). Many properties of Allen’s interval calculus can be shown to be still valid
for sequences of length greater than two.

The Cardinal direction calculus (Ligozat 1991) is basically the product of two
instances of the Point calculus. Analogously, the Rectangle calculus, introduced by
Güsgen (1989), is the product of two instances of Allen’s interval calculus. This
calculus, as well as its generalizations to higher dimensions, has been studied by
Balbiani et al. (1998).

The Cardinal direction calculus, whose entities are points in a 2D plane, has been
extended to regions in the plane (Goyal and Egenhofer 1997).

The RCC-8 calculus has been introduced by the Leeds school (Randell et al.
1992b) as a sublanguage of theRCC theory, and independently, defined byEgenhofer
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Fig. 5 The basic relations of the RCC-8 calculus

(1989) as the 9-intersection calculus. Its eight basic relations can be defined in a
simple way for regions which are closed disks in the plane, as shown in Fig. 5.2

TheCyclic interval calculus considers entitieswhich are arcs on an oriented circle,
defined by their starting and end-points. This calculus, which is analogous to Allen’s
interval calculus on a circle, has been defined and studied by Balbiani and Osmani
(1999, 2000).

The INDU calculus (Pujari et al. 1999) refines Allen’s interval calculus by tak-
ing into account the relative durations of the intervals considered. For instance, the
relation of precedence p splits into three sub-relations p<, p=, and p> according to
the fact that the first interval is shorter, has the same duration, or is longer than the
second.

All calculimentioned up to nowhave considered binary relations. In a planewhich
has no global orientation, ternary relations have to be used. The best known ternary
calculus about points in a plane is Freksa’s Double-cross calculus3 (Freksa 1992).
Ligozat (1993) has shown that this calculus is a member of a family of calculi called
qualitative triangulation calculi, the simplest of which is the Flip-flop calculus.

If the entities considered are regions in the plane, ternary relations of alignment
can be defined, yielding a 5-intersection calculus (Billen and Clementini 2004).

2DC stands for disconnected, EC for externally connected, PO for partial overlap, TPP for tan-
gential proper part and NTPP for non-tangential proper part; TPPI and NTPPI are the converses
of TPP and NTPP, respectively.
3Those calculi divide all directions in the plane with respect to a given point of reference into a
finite number of sectors with a given angle; Freksa’s calculus is the case where the angles are right
angles, the Flip-flop calculus where they are 180◦ angles.
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3.3 Main Problems and Results

3.3.1 The Consistency Problem

The consistency problem is a central problem. It consists in answering the follow-
ing question: given a (finite) constraint network, determine whether there is a finite
configuration of the entities such that the constraints are satisfied. For the Point cal-
culus, this problem can be solved in polynomial time (see chapter “Theoretical Com-
puter Science: Computational Complexity” of volume 3), for instance by applying
an algorithm of van Beek (1990). Ghallab and Alaoui (1989) give efficient tech-
niques for solving large networks (several thousands of points). For Allen’s interval
calculus, the consistency problem is NP-complete (Vilain et al. 1989): the property of
algebraic closure is a necessary, but not sufficient condition for consistency, as already
shown in Allen’s 1983 paper.

This so-called incompleteness of the algebraic closure property is true for most of
the calculi we mentioned. In view of this fact, it is of interest to characterize subsets
of the relations for which the problem is polynomial – the problem is then said to
be tractable – and, when such is the case, to define suitable algorithms for deciding
consistency. In particular, the question arises: inwhat cases does the algebraic closure
property (which can be enforced in cubic time) imply consistency?

In order to characterize sub-classes of relations (subsets which are stable under
intersection, converse and composition), two approaches have been developed in
the literature: a syntactic approach (Nebel and Bürckert 1995; Koubarakis 1996,
2001; Jonsson and Bäckström 1998), and a geometric approach introduced by
Ligozat (1994, 1996) and developed at Orsay, Toulouse and Villetaneuse (France) by
Balbiani, Fariñas del Cerro, Condotta, Osmani and their students.

A central result for Allen’s interval algebra is the fact that there exists a single
maximal subclass of relations containing all basic relations such that the consistency
problem is solvable in polynomial time. In syntactical terms, this subclass is that
of ORD-Horn relations (Nebel and Bürckert 1995). In geometrical terms, those
relations constitute the subclass of pre-convex relations, which can be characterized
in a simple way: in the lattice representation of the set of basic relations, they are
those relations corresponding to intervals of the lattice, or to intervals of the lattice
from which some 1-dimensional or 0-dimensional relations have been removed. In
terms of regions in the plane, they are regions satisfying some convexity conditions.

As for the RCC-8 calculus, any atomic algebraically closed network is consistent,
and there exist exactly three maximal polynomial subclasses containing all atomic
relations (Renz 1999).

For many qualitative spatial or temporal calculi in the literature, the consistency
problem does not have such a simple solution as for Allen’s interval calculus: even
algebraically closed atomic networks may not be consistent; consistency may not
imply global consistency (some partial solutionsmay not be extensible to global solu-
tions). An important breakthrough on the syntactic front has been the characteriza-
tion of disjunctive linear relations (DLRs), independently discovered by Koubarakis
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(1996, 2001) and Jonsson and Bäckström (1998). The joint application of syntac-
tic and geometrical methods to the INDU calculus leads to the characterization of
several polynomial subclasses in the INDU algebra (Balbiani et al. 2006).

Beyond the consistency problem, other problems (Long and Li 2015; Sioutis
et al. 2015b) concerning constraint networks have been considered in the litterature.
In particular, much attention has been focused on the minimal labeling problem,
which is the problem of determining all the basic relations of a constraint network
that participate in at least one of its consistent configurations (Liu and Li 2012;
Amaneddine et al. 2013).

3.3.2 Models for the Qualitative Calculi

In several cases, the relations of a qualitative spatial or temporal calculus consti-
tute a relation algebra in the sense of Tarski (1941). Ligozat (1990) introduced the
notion of weak representation of such an algebra. Intuitively, a weak representa-
tion is a weak model of the theory corresponding to the algebra, in the sense that the
axioms describing the operation of composition are interpreted as implications rather
than equivalences. This notion generalizes the classical notion of representation in
universal algebra.

The weak representations of the algebras of the calculi based on total orderings
— this covers the Point calculus, Allen’s interval calculus, the Cardinal direction
calculus, the generalized interval calculi, the Rectangle calculus as well as more
generally the n-point and n-block calculi — have been studied by Ligozat (1991,
2001). This allowed him to show that all those calculi have the ℵ0-property, that is,
that up to isomorphism the corresponding theories have a unique countable model.

The models of the RCC theory, of which RCC-8 is a fragment, correspond to
structures called contact Boolean algebras (Stell 2000). Using this characterization,
all models of the calculus have been classified by Li and Ying (2003), who also
defined more general calculi which have both continuous and discrete models.

3.3.3 Qualitative Constraint Calculi

What exactly is a qualitative (constraint-based) calculus? To answer this question,
Ligozat and Renz (2004) related the notion of weak representation to a semantical
notion of partition scheme: a qualitative calculus is defined as a non-associative
algebra together with a weak representation of it satisfying someminimal conditions.
The consistency of a network then means the existence, in the category of all weak
representations of the algebra, of a morphism from the object corresponding to the
network to the weak representation defining the calculus.

Mossakowski et al. (2006) argued that only so-called semi-strong weak represen-
tations, which are necessarily injective, should be considered in order to define a
qualitative calculus. The notion of “qualitative (constraint) calculus” has been fur-
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ther elaborated by Dylla et al. (2013), who defined abstract partition schemes and
by Westphal et al. (2014) (Westphal 2014).

Inants (2016) has extended the framework based on weak representations and
partition schemes to accomodate heterogeneous universes (where the entities con-
sidered are of several sorts), hence the identity is not necessarily atomic,4 by defining
modular partition schemes.

3.3.4 Solving the Consistency Problem

In order to solve the consistency problem for a network whose constraints are finite
disjunctions of basic relations, a natural approach consists in successively enumer-
ating all its basic subnetworks,5 called scenarios. The number of scenarios obtained
in this way can be reduced by enforcing the algebraic closure condition once a basic
relation has been selected.

In Nebel (1996), Nebel proposes a very efficient algorithm that can be used once
a class S of tractable relations is known for which the algebraic closure method is
complete: the constraints of the network are decomposed into elements of S. In the
case of Allen’s interval relations, using the class of ORD-Horn relations results in
reducing the branching factor from 13 to 5 approximately. All currently efficient
algorithms are based on Nebel’s approach.

All those methods can be refined using heuristics: on the one hand, for choosing
which relation should be treated first, and on the other hand for choosing the com-
ponent sub-relation of the current relation. A host of heuristics have been proposed
— and experimentally evaluated — in the literature (van Beek and Manchak 1996).

Mainly based on the algorithms mentioned previously, several systems have been
developed which implement generic tools for solving the consistency problem for
networks based on the various calculi proposed in the literature (Condotta et al.
2006b; Wallgrün et al. 2006a).

Periodical Constraints

Some applications such as calendar management involve constraints that are applied
recurrently over periods of time. Part of the activity research on qualitative reasoning
has been devoted to representing and reasoning about this type of constraints. We
have already mentioned the Cyclic interval calculus, which has 16 basic relations.
Incidently, those relations have also been axiomatized in first-order predicate logic
(Condotta and Ligozat 2004).

Another approach of periodicity consists in considering qualitative constraints
such as those on Allen’s interval algebra as constraints of their own right on indef-
initely recurring periods of time. Then, a solution of the consistency problem is a

4This was already the case for several calculi in the literature, such as Vilain’s Point-and-Interval
calculus (Vilain 1982), and more generally Ligozat’sAS calculi, where S is a set of positive integers
with more than one element (Ligozat 1991).
5i.e. Subnetworks for which all constraints are basic relations.
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valuation of the variables at each instant such that for each time period the qualitative
constraints are satisfied. The consistency problem of such constraint networks, for
various qualitative calculi appearing in the literature, has been studied by Condotta
et al. (2005).

Representations concerned with activities or events recurring a finite number of
times have also been considered by Khatib (1994). The calculi proposed there allow
one to explicitly specify what qualitative constraints should be satisfied between
instances of recurring temporal activities. Such constraint problems can be solved
using classical qualitative constraint networks, where each variable stands for an
instance of an activity.

3.4 Perspectives

Among the perspectives, two active directions of research deserve to be mentioned:
one is extending and combining calculi, and the other is building bridges from the
domain of QSTR to other domains.

3.4.1 Extending and Combining Calculi

Extending an existing calculus to other kinds of entities is one type of extension:
a case in point is the extension of the Cardinal direction calculus, a point-based
calculus, to extended regions in the plane (Goyal and Egenhofer 1997).

Spatio-temporal calculi, where the intended interpretations are entities of a spatio-
temporal nature, are particular cases of extensions: they include qualitative trajectory
calculi (van de Weghe 2004), spatio-temporal formalisms (Muller 1998), and com-
binations of a spatial calculus with a temporal calculus (Gerevini and Nebel 2002).

Granularity has been a constant issue in QSTR (Hobbs 1985; Bettini et al. 2002).
It is another context where the extension of existing calculi is involved. Typically,
zooming in or zooming out will change the relations: for instance, two intervals
separated by a short distance (relation p) will appear to meet (relation m) when
zooming out, while conversely twomeeting intervals could prove to be in a preceding
relation when zooming in Euzenat (1996, 2001). More dramatically, a (very short)
interval can be considered as a point when zooming out sufficiently (Bettini et al.
2000; Euzenat and Montanari 2005).

Cohen-Solal et al. (2015, 2017a) propose a general formalism for qualitative
temporal reasoning with granularities, and show how algebraic closure can be used
in this broader context to obtain new results of tractability and minimality. The
problem of describing admissible sequences of configurations of spatial objects is
also revisited (Cohen-Solal et al. 2017b).

Combining existing calculi describing the same entities is another possibility: the
very same entities are considered from various perspectives, using distinct sets of
relations. The combination can be loose or tight: in the former case, two calculi are
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used independently, and procedures for exchanging information are defined; in the
latter, two calculi merge into a new one (Westphal and Wöfl 2008).

Two examples of loose combinations are the combination of the RCC-8-calculus
with the Rectangle calculus, and that of the RCC-8-calculus with the Cardinal direc-
tion calculus between regions (Liu et al. 2009; Cohn et al. 2014). By contrast, the
INDU calculus is a typical example of tight combination.

In the case of loose combination, a general constraint propagation method, called
bi-path consistency, has been proposed by Gerevini and Renz (2002).

Since a qualitative calculus about spatial or temporal entities corresponds to a
partition of the set of pairs of elements of the corresponding universe, the set of these
qualitative calculi is naturally structured as a lattice. This fact is used by Condotta
et al. (2009) to study combinations of calculi.

3.4.2 Building Bridges to Other Domains

Building bridges between different domains can be beneficial in a one-sided way:
translating a problem in one domain in terms of another domain permits to use
methods in the latter to solve problems in the former. Or conversely. But it can also
be mutually beneficial to both domains.

The first situation arises when QSTR problems are translated in terms of SAT
problems, or in terms of finite CSPs (constraint satisfaction problems), allowing to
use powerful methods in either the SAT or the CSP domain.

QSTR and the SAT Problem

A systematic approach to a translation of the consistency problem of a qualitative
constraint network into a SAT problem consists in abstracting the semantics of the
different basic relations, and then considering the QSTR problem as a combinato-
rial problem. Each basic relation of each qualitative constraint is represented by a
propositional variable, hence to each qualitative constraint corresponds an exclusive
disjunction. Another set of clauses defined from the composition table models all the
infeasible qualitative configurations of three variables. Hence, all truth assignments
satisfying the set of SAT clauses obtained in that waywill correspond to algebraically
closed scenarios.

As a consequence of this fact, such a SAT based translation is not necessary
complete, unless it is used in the context of a qualitative formalism for which
all algebraically closed scenarios are consistent scenarios. It should also be men-
tioned that the propositional clauses used in this approach are not necessarily Horn
clauses. Nevertheless, this approachmakes it possible to use SAT solvers (see chapter
“Reasoningwith Propositional Logic: fromSATSolvers toKnowledgeCompilation”
of volume 2) to efficiently solve the consistency problem of a qualitative constraint
network. The main difficulty when using a SAT translation of the consistency prob-
lem of a qualitative constraint network arises from the number of SAT clauses thus
obtained, which can be very large. Current research has devisedmethods for reducing
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this number of clauses (Li et al. 2009b; Condotta and D’Almeida 2011; Condotta
et al. 2016).

QSTR and Discrete CSPs

Another direction of research has focused on translating the consistency problem of
qualitative constraint networks into discrete CSPs (see chapter “Constraint Reason-
ing” of volume 2). In this context, a variable Vi j of the CSP is associated to each
constraint C(i, j) of the qualitative constraint network. The domain of the variable Vi j

is defined by the set of basic relations defining the qualitative constraint C(i, j). The
information corresponding to the composition table of the formalism is modeled in
the discrete constraint satisfaction problem by introducing a ternary constraint Ci jk

whose scope is (Vi j , Vjk, Vik) for all triples (i, j, k).
Similarly to the case of the translation into a SAT problem, the translation of

QSTR problems into discrete CSPs is not necessary complete, unless it is used in the
context of a qualitative formalism for which all algebraically closed scenarios are
consistent. Furthermore, the translation can lead to discrete CSPs with huge sizes
due to the encoding of the composition table.

Recent papers report results of experimental and theoretical comparisons between
those different approaches, see for example (Westphal and Wölfl 2009).

QSTR and Ontological Reasoning

The domain ofQSTRhas also been related to other types of reasoning. A case in point
is ontological reasoning, which illustrates a situation of mutual benefit: motivated by
problems in ontological reasoning, and using Euzenat’s connection of that domain
to QSTR (Euzenat 2008), Inants (2016) extends the framework of QSTR in order to
accomodate many-sorted universes — a benefit to QSTR— and uses it to overcome
difficulties in the domain of qualitative ontological reasoning.

3.5 Alternative Approaches

Modal Logics and QSTR

While temporal logics have been developed over several decades, acquiring an unde-
niable level of maturity (Prior 1967; Bestougeff and Ligozat 1992), it has only been
recently that the full potential of spatial logics has been re-evaluated (Aiello et al.
2007b). In this renewed surge of interest for themodal study of space, theAmsterdam
school has played a leading part (Aiello et al. 2007a).

The linking point between the domain of modal logics and QSTR arises from
the possibility to translate qualitative languages such as RCC-8 in terms of modal
formulas in such a way that satisfiability is preserved.

Spatio-Temporal Logics

In order to represent situations involving simultaneously time and space, several
spatio-temporal logics have been proposed (Wolter and Zakharyaschev 2000). Those
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logics, based on the temporal logic LTL, allow one to reason about changes of relative
positions of spatial entities through time. The relative positions of the entities are
expressed using spatial variables that are related using basic relations of a qualitative
calculus. For instance, using the language of RCC-8, the formula F(a NTPP b) will
express the fact that, in the future, the spatial region represented by a will be non-
tangentially included into that represented by b. Temporal operators that apply to
spatial variables are also considered. For instance, Xa will represent region a at the
next instant. For more detailed information on the topic of spatio-temporal logics, the
reader is invited to consult the references in (Balbiani and Condotta 2002), (Sioutis
et al. 2015a).

Lattices of Relations

In the specific domain of the qualitative representation of space and time, the interest
of lattices is twofold: firstly, they are natural models to represent temporal or spatial
algebras; secondly, they allow one to fill the gap between numerical geographical
information and qualitative spatial relations.

Temporal or spatial algebras, equipped with set inclusion, allow one to generate
Boolean lattices whose structure can be used for reasoning. Furthermore, for all
formalisms based on total orders, basic relations possess a lattice structure that can
be used to define convex and pre-convex relations.

Galois lattices – or concept lattices (Ganter and Wille 1999) – are specific lattice
structures that are particularly useful in spatial reasoning. These structures have been
used to relate spatial relations, such as those ofRCC-8, to the output of set-theoretical
operations on spatial regions (vector or raster regions). Such a lattice is described
in (Napoli and Le Ber 2007) (Fig. 6). The extension R of each concept represents a
disjunction of RCC-8 basic relations. The intension C represents a conjunction of
results obtained from set operations (or tests) on spatial regions. The equivalence∨

r∈R
r(x, y) ↔ ∧

c∈C
c(x, y) allows one to compute the existing relations between two

spatial regions x and y. The resulting Galois lattice is also useful for spatial inference
(conjunction and composition of relations), but to a lesser extent than the Boolean
lattice that contains it.

Finally, lattices can be used to represent geographical information itself. Indeed,
they allow one to easily manipulate region decomposition and recomposition. For
example, in a geographical information system, regions are often decomposed into
triangles, lines and points. These spatial elements can be organised within a lattice
based on a set of rules as: “two segments s1 and s2 share only a point denoted by
s1 � s2”. Topological relations between regions can then easily be deduced from
the lattice structure. For example, the intersection of two regions is obtained as an
infimum: if this infimum is a triangle then the regions overlap, if it is a segment or a
point they are connected, if it is the universal minimum they are disconnected. The
lattice representation also allows one to easily compute other topological notions
such as neighborhood or border.
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Fig. 6 TheGalois lattice used in (Napoli andLeBer 2007): each concept is defined by the properties
inherited top-down (for intension) and the relations inherited bottom-up (for extension)

3.6 Applications of Qualitative Spatial and Temporal
Reasoning

Three types of applications can be distinguished.

1. Transpositions to germane domains, to linguistics, or image-processing; in return
these domains can influence the qualitative models that are developed in the
Artificial Intelligence domain.

2. Applications to various domains such as landscape management, archaeology,
etc., where qualitative models are used to formalise expert knowledge and are
often related to numerical information.

3. Software tools implementing various models.

Transposition to Germane Domains

Relationships between Artificial Intelligence and linguistics are time-honored and
mutually fruitful, and qualitative reasoning models of time and space are often based
on research in linguistics or more generally in cognitive science. In France, these
relationships have beenmainly explored in Toulouse andOrsay, since the early 1990s
(Bestougeff and Ligozat 1992; Vieu 1991); Muller (1998) studies the combination of
spatial and temporal aspects, in order to build a model describing basic movements.
Studying natural language helps to refine the notions of spatial objects and relations:
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in (Aurnague et al. 1997), the authors focus on how natural language defines the
location of objects and manages imprecise information: they propose a formal def-
inition for the part-whole relation, the orientation relations, and the French spatial
preposition sur,6 etc. This kind of work participates in a global research domain
that is also active elsewhere in Europe and in the United States (see for example,
Lascarides and Asher 1991, 1993; Mark et al. 1995).

Conversely, progress in spatial and temporal reasoning models allows one to
automatically perform text analysis, spatial information extraction, event detection
or map production. Loustau et al. (2008) have developed a tool for the extrac-
tion of spatial information from texts in order to help the analysis of corpora of
ancient travel stories, and to automatically describe routes; this tool is used to extract
named locations and geographical concepts, the spatial relations existing between
locations, as well as some syntactico-semantic relations. A geometric representation
of the corresponding spatial pattern is finally generated using a geographic informa-
tion system. The work presented in (Ligozat et al. 2007) focuses on the automatic
graphical representation of spatio-temporal events, such as movements of troops on
a battlefield, based on informations extracted from natural language texts. A typol-
ogy of elementary scenes is used to this effect (Przytula-Machrouh et al. 2004).
The graphical representation uses “choremes”, an iconic representation developed
in geography. Similar approaches are also applied in the domain of security, e.g.
to detect or anticipate potentially dangerous events from textual data such as short
messages or breaking news: crowd management (Ligozat et al. 2011), detection of
epidemiological phenomena (Chaudet 2006), or, in a hostile country, the detection
of dangerous situations (Li et al. 2009a).

Connections with the geographical information and image-processing domains
also provide mutual inspiration. Those domains mainly use numerical data – vec-
tor or raster data – and the formal definition of spatial relations has to be based
on set-theoretical operations: based on seminal work by Egenhofer (1989), these
definitions have been adapted in France for the recognition of spatial objects and
structures on satellite images (Le Ber and Napoli 2003). Poupeau and Bonin (2006)
have extended this approach to 3D data: they combine geometrical and topologi-
cal models to compute spatial relations between blocks, as for example the “lay on”
relation. Furthermore, to bridge the semantic gap between qualitative knowledge and
numerical data, various approaches have been devised, including fuzzy approaches:
e.g., a fuzzy modeling of the “between” relation and of orientation relations has been
proposed to analyze medical images (Bloch 1999). A review of fuzzy approaches
in this context is given in (Bloch 2005). In (Atif et al. 2007), based on this type of
characterisation, spatial reasoning is performed in order to detect pathological cases
in brain images. Another approach consists in refining existing models, for example
by specifying the EC, PO relations with different border intersection cases (points,
lines, “thick” borders) (Alboody et al. 2010); this can be related to the notion of
“contact” studied in qualitative spatial reasoning.

6This preposition roughly corresponds to the English preposition on.
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Also pertaining to the image processing domain is Cotteret’s work (Cotteret 2005)
on the extraction of curvilinear elements (roads, watercourses), which mimicks the
activity of a human cartographer-analyst by focusing on specific zones. Local bits of
information thus obtained are then merged, based on qualitative models of proximity
and orientation, allowing the reconstruction of the global space.

In (Yang et al. 2015) a framework using a tableau method is described for gener-
ating and selecting potential explanations of the given image when the background
knowledge is encoded using a description that is able to handle spatial relations.

Applications to Other Domains

Qualitative models of time and space, and more generally qualitative reasoning
models have been applied in various domains distinct from Artificial Intelligence
and cognitive science. Some industrial or medical applications can be mentioned.
Qualitative models of time are especially used for default diagnosis, for example
based on constraint networks (Osmani and Lévy 2000).

Environmental assessment, urbanismor territorymanagement, historical sciences,
are obviously application domains, since they contain numerous problems relying
on qualitative and weakly formalised expertise. In archaeology, e.g., temporal qual-
itative models have been used for document annotation, in order to automatically
compare and merge several datings based on a constraint propagation mechanism
(Accary-Barbier and Calabretto 2008). Another work pertaining to deep-sea archae-
ology, has developed a preliminary representation of the observations and knowledge
about ancient ships; this representation is implemented within an ontology including
qualitative spatial and temporal relations (Jeansoulin and Papini 2007).

Qualitative models of time and space have also been used to facilitate user inter-
action (for such users as hydrologists or ecologists) in several computer systems and
various domains such as environment, prevention of natural hazards, or manage-
ment of natural species; these systems usually use several geographic information
sources, where the information is often numerical and has to be translated into qual-
itative terms (Bedel et al. 2008). Models of belief revision have been used in order
to merge spatial information sources about floods (Würbel et al. 2000; Ben-Naim
et al. 2004; Benferhat et al. 2010). In a closely related domain, a project has been
undertaken by the French INRA7 for modeling knowledge and reasoning about the
observation and diagnosis of farming territories: the aim is to provide an aid based
on an automatic monitoring to agronomists analyzing territories submitted to various
constraints and aggressions (urbanisation, deforestation, agricultural pollution). In
(Le Ber et al. 2003), spatial qualitative models are used to describe, compare, and
classify agricultural structures at the level of the farm or the rural community. These
models are also used for military terrain recognition and characterisation based on
typical features (Chevriaux et al. 2005). In (de Beuvron et al. 2015) ontological and
qualitative spatial reasoning are combined in order to interpret urban images.

The various applications mentioned above implement spatial and temporal mod-
els using knowledge representation languages, or object-based or logical languages

7French National Institute for Agronomic Research.
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(Le Ber et al. 2003; Bedel et al. 2008). Currently, many approaches use description
logics.

Software Tools

Implementing models of qualitative reasoning often relies on ad hoc approaches.
Nevertheless, as already previously mentioned, some generic tools have been pro-
posed to the community of researchers. The algebraic description of temporal and
spatial relations allowed to develop generic tools such asQAT (Condotta et al. 2006a),
in France, and SparQ (Wallgrün et al. 2006b) and GQR in Germany (Gantner et al.
2008). These tools can be used to solve constraint problems, for a given formalism
specified by its composition table.

Other generic tools have been developed in the domain of knowledge
representation.8 These tools allow to perform inferences (generalisation, speciali-
sation, composition of relations). In France, work undertaken with the object-based
knowledge representation tool Arom also involved space and time representation
(Miron et al. 2007).

4 Conclusion

This chapter described what we believe lies at the core of qualitative approaches
for reasoning on dynamical systems on the one hand, and on space and time, on
the other hand. Obviously, many connections exist between qualitative reasoning
and several topics of Artificial Intelligence considered in this book. This is true in
particular for modal and non-monotonic logics (see chapter “Knowledge Represen-
tation: Modalities, Conditionals, and Nonmonotonic Reasoning” of this volume),
on techniques for solving the SAT problem (see chapter “Reasoning with Proposi-
tional Logic: from SAT Solvers to Knowledge Compilation” of volume 2), on con-
straint based reasoning (see chapter “Constraint Reasoning” of volume 2), on natural
language processing (see chapter “Artificial Intelligence and Natural Language” of
volume 3), on pattern recognition and vision (see chapter “Artificial Intelligence and
Pattern Recognition, Vision, Learning” of volume 3) and on robotics (see chapter
“Robotics and Artificial Intelligence” of volume 3).
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Reasoning with Ontologies

Meghyn Bienvenu, Michel Leclère, Marie-Laure Mugnier
and Marie-Christine Rousset

Abstract This chapter considers the notion of a formal ontology, which is a
conceptual vocabulary equipped with a logical semantics. Three families of knowl-
edge representation and reasoning formalisms that put ontologies at the core of any
knowledge base are presented, namely: description logics, conceptual graphs and
existential rules. We present the main knowledge constructs and dialects of these
families, as well as the main reasoning problems with their complexity. We highlight
the relationships between these families and compare them from an expressivity
viewpoint.

1 Introduction

Knowledge-based systems exploit formal representations of knowledge to solve dif-
ferent kinds of problems. The fundamental formalism to represent and do reasoning
on knowledge is classical first-order logic. Whereas a significant amount of work in
knowledge representation aimed to extend classical logic to handle more complex
notions (like time, modalities, preferences, ...), most work on ontologies was devoted
to simpler logical fragments and to the study of tradeoffs between the expressivity
of the representation languages and the computational complexity of reasoning in
these languages.

A commonly adopted definition of an ontology is that of an explicit specification
of the conceptualisation of a domain (Gruber 1993). All ontologies include at least

M. Bienvenu (B) · M. Leclère · M.-L. Mugnier
LIRMM-CNRS and Université de Montpellier- Inria, Montpellier, France
e-mail: meghyn@lirmm.fr

M. Leclère
e-mail: leclere@lirmm.fr

M.-L. Mugnier
e-mail: mugnier@lirmm.fr

M.-C. Rousset
LIG-CNRS and Université de Grenoble, Grenoble, France
e-mail: Marie-Christine.Rousset@imag.fr

© Springer Nature Switzerland AG 2020
P. Marquis et al. (eds.), A Guided Tour of Artificial Intelligence Research,
https://doi.org/10.1007/978-3-030-06164-7_6

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06164-7_6&domain=pdf
mailto:meghyn@lirmm.fr
mailto:leclere@lirmm.fr
mailto:mugnier@lirmm.fr
mailto:Marie-Christine.Rousset@imag.fr
https://doi.org/10.1007/978-3-030-06164-7_6


186 M. Bienvenu et al.

a conceptual vocabulary, i.e., a set of terms (in the natural language sense) used
to model a domain, provided with a specification of their meaning. These terms
represent concepts (or classes), i.e., the categories of entities in the modeled
domain, as well as relations (or properties, roles) which may stand between entities.
Concepts and relations may be further specified in different ways, depending on the
expressivity of the ontological language. They are usually organized into a special-
isation/generalisation hierarchy by means of axioms stating that a concept (respec-
tively a relation) is a subconcept (respectively a subrelation) of another. Other typical
ontological axioms include concept disjointness (which expresses that two concepts
cannot have common instances), the domain and range of binary relations (which
specifies the classes of entities that can be linked by this relation), algebraic proper-
ties of relations (for instance that a relation is symmetric or transitive), mandatory
relations for instances of a class (for instance that every entity of a given class fulfils
a given property), and so on.

Ontologies are widely used in data and knowledge management and they are at the
core of the Semantic Web (see chapter “Semantic Web” of Volume 3). We refer the
reader to the chapter on knowledge engineering (chapter “Knowledge Engineering”
of this volume) for developments on building and using ontologies.

Without denying the importance of the linguistic aspects in ontologies, we focus
in this chapter on formal ontologies. Therefore, an ontology will be seen as a logical
theory that specifies the expected meaning of the conceptual vocabulary (Guarino
1998). More specifically, an ontology is given by a formal vocabulary (or signature)
and a set of formulas built on this vocabulary, which define the acceptable models
of the considered domain. Hence, any reasoning that takes into account an ontology
O considers only the models of O: for instance, given two pieces of knowledge G
and F , deciding if G is a logical consequence of F , which we denote by F |= G,
becomesO, F |= G, i.e., is every model ofO and F a model ofG? Moreover, in most
settings, the unique name assumption is made: in this case, distinct logical constants
are necessarily interpreted by distinct elements of the domain of any interpretation.

In this chapter, we consider knowledge bases composed of two types of knowl-
edge: on the one hand, ontological knowledge, which is general knowledge about
the modelled domain, and factual knowledge, composed of facts or assertions about
specific entities. Usually, a fact is a ground atom, i.e., has no variable.1

A parallel can be drawn between a knowledge base and a classical database (e.g.,
a relational database). Indeed, the database schema, which includes a vocabulary
and integrity constraints, can be associated with an ontology, while data can be
seen as factual knowledge. However, some important differences should be noted.
In databases, data are supposed to encode a complete description of the ‘world’. In
other words, the closed world assumption is made (everything that is not asserted in
the database is considered as false), as well as the related closed domain assumption
(the only existing entities are those encoded in the data). By contrast, the open
world assumption is made in knowledge bases (as well as the related open domain

1In the Semantic Web area, and specifically concerning the OWL language, the term ontology often
includes both kinds of knowledge. Hence, it corresponds to our notion of knowledge base.
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assumption); this often leads to more complex reasoning since a knowledge base
encodes a possibly infinite set of all of the descriptions of the world that include
the known facts and comply with the ontology. For that reason, the use of negation
is often restricted, as the excluded-middle law (stating that a proposition is either
true or false) leads to combinatorial explosion. The open world assumption may lead
to considering existentially quantified variables in facts (and not only constants) to
denote unknown individuals. Moreover, the primary aim of databases is to store and
retrieve data with efficient query answering techniques, whereas knowledge bases
are used to infer new knowledge that was only implicitly represented in the ontology.
However, the two domains are becoming progressively closer, especially under the
impulse of the Semantic Web. Indeed, there is an increasing interest in answering
complex queries on large knowledge bases, on the one hand, and, on the other hand,
dropping the closed world assumption in databases.

This chapter is devoted to several knowledge representation and reasoning for-
malisms used to build and exploit knowledge bases: description logics, graph-based
representations (issued from conceptual graphs) and the more recent existential rule
framework. Although description logics and graph-based representations are both
rooted in semantic networks (Lehmann 1992), their development from the 80’s fol-
lowed different research lines, as explained in the next sections. Existential rules
can be seen both as the logical counterpart of the graph-based framework and as a
generalisation of Datalog, the deductive database querying language.

Several different kinds of reasoning over knowledge bases have been considered,
among which we distinguish the following fundamental problems. Given a knowl-
edge base (KB) composed of an ontology O and a set of facts I , we consider the
following questions:

• Knowledge base satisfiability: determine if the KB is satisfiable (or consistent),
i.e., if it has at least one model.

• Ontological knowledge entailment: determine if a piece of ontological knowledge
o is entailed by the ontology O, i.e., if O |= o holds.

• Fact entailment: determine if a fact is entailed by the KB, i.e., if O, I |= o holds.
• Ontology-mediated query answering: compute the answers to a query q over the

KB; when q is a Boolean query (i.e., a query with a yes/no answer), the problem is
whether q is entailed by the KB, i.e., whether O, I |= q holds. The general form
of a query q is a first-order formula with possibly free variables, say (x1, . . . , xk).
Then an answer to q in the KB is a tuple of constants (c1, . . . , ck) such that the
Boolean query obtained from q by substituting each variable xi by the constant ci
is entailed by the KB.

The three formalisms presented in this chapter tackle the above problems, the
difference being in their expressivity and the kind of query considered. Description
logics traditionally allowed for rich descriptions of ontological axioms using differ-
ent kinds of constructors; standard reasoning tasks were KB satisfiability, concept
subsumption (determine if a concept is a specialisation of another, which is a special
case of ontological knowledge entailment) and instance checking (determine if a
specific individual is an instance of a given concept, which is a special case of fact



188 M. Bienvenu et al.

entailment). Hence, only very specific queries were considered (single atoms without
variables). The growing interest for exploiting large and complex data led the descrip-
tion logic community to investigate more expressive queries, however at the price
of less expressive description logics, known as lightweight description logics. The
queries most commonly considered so far in the context of ontology-mediated query
answering are so-called conjunctive queries, which are the basic queries in databases:
these are existentially quantified conjunctions of atoms. Conjunctive queries are nat-
ural queries in the graph-based and existential rule frameworks, but, on the other
hand, these formalisms do not offer the variety of ontological axioms found in clas-
sical description logics. Some lightweight description logics, however, can be seen
as special cases of the graph-based and existential rule frameworks.

The sequel of this chapter introduces each of these three formalisms and compares
them from an expressivity viewpoint.

2 Description Logics

Description logics (DLs) (Baader et al. 2003, 2017) are family of knowledge repre-
sentation languages corresponding to decidable2 fragments of first-order logic using
only unary and binary predicates. While the lack of higher-arity predicates may
seem a strong restriction, it turns out that unary and binary predicates (classes and
properties) capture a large part of modelling needs. Indeed, DLs provide the basis
of the OWL Web Ontology Language (W3C 2004a), a W3C-standardized ontology
language for the Semantic Web (Berners-Lee et al. 2001), and RDF (W3C 2004b),
a popular format for Web data, is likewise restricted to unary and binary predicates.

A DL knowledge base (KB) has two parts: a TBox that contains general knowl-
edge about the application domain, and an ABox that contains facts about particular
individuals. The TBox can be viewed as an ontology, which provides a conceptual
model for the data stored in the ABox. What distinguishes different DLs is the type
of knowledge that can be expressed in the TBox.

Traditionally, the main reasoning problems considered by the DL community are:
KB satisfiability, subsumption, and instance checking. Satisfiability testing is essen-
tial for identifying modelling errors, while instance checking and subsumption are
used to identify TBox axioms and ABox assertions that follow from the knowledge
of the KB. As the latter two tasks correspond to forms of logical entailment, they can
be reduced to unsatisfiability testing for all DLs that admit full negation. Our dis-
cussion of DLs will center on these traditional reasoning tasks. However, we should
point out that over the past decade, several additional reasoning tasks for DLs have
been investigated, most notably, ontology-mediated conjunctive query answering,
which allows for richer queries to be posed over the ABox, but which cannot be
reduced to satisfiability testing and thus required the development of new algorith-
mic techniques (see survey Bienvenu and Ortiz 2015 and references therein). There

2A few undecidable DLs have been studied.
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has also been quite a lot of work on reasoning support for building, debugging, and
evolving ontologies, e.g., providing explanations for why a given entailment holds
(Schlobach and Cornet 2003; Sebastiani and Vescovi 2009; Peñaloza and Sertkaya
2017), or extracting modules of an ontology that conform to some criterion (Grau
et al. 2008; Kontchakov et al. 2010; Konev et al. 2013).

Early work on DLs in the 1980’s mostly focused on building reasoning sys-
tems, and it was only later that it was discovered that some of these DLs were in
fact undecidable or at the very least intractable. These initial negative results led to
the introduction of simple DLs for which polynomial-time reasoning was possible,
but which turned out to be too limited in their expressivity. In the late 1990’s, how-
ever, new systems were developed based upon highly optimized tableaux algorithms,
which demonstrated acceptable performance for expressive DLs despite their high
worst-case complexity. This line of work continues to this day, with ever more sophis-
ticated optimisations targeting ever more expressive DLs. At the same time, there
has been renewed interest in lightweight DLs that provide the required scalability for
applications involving very large TBoxes and/or ABoxes. Importantly, however, this
new breed of low-complexity DLs provides combinations of modelling constructs
that are much better suited to the needs of real-world applications than the previous
generation of simple DLs.

Nowadays, there is an extensive body of results pinpointing the exact computa-
tional complexity of performing different kinds of reasoning in the whole range of
DLs, allowing one to choose the optimal trade-off between expressivity and effi-
ciency of reasoning for the application at hand. For an overview of the complexity
landscape, interested readers can consult the surveys (Ortiz and Simkus 2012) and
(Bienvenu and Ortiz 2015).

In this section, we introduce the basics of description logics, and then present
several concrete DLs and show how varying the expressivity of the DL impacts the
complexity of reasoning.

2.1 Preliminaries: DL Syntax and Semantics

In DL jargon, classes are called concepts and properties are called roles. DL knowl-
edge bases are built starting from a set NC of atomic concepts (unary predicates), a
set NR of atomic roles (binary predicates), and a set NI of individuals (constants). We
typically use A, B, . . . for atomic concepts, P, Q, . . . for atomic roles, and a, b, . . .
for individuals. More complex concept and role expressions can be built using dif-
ferent constructors, with the set of available constructors depending on the particular
DL (see further for more details). We will useC, D, . . . to denote (possibly complex)
concepts and R, S for (possibly complex) roles.

A DL knowledge baseK is a pair 〈T ,A〉, consisting of a TBox T and an ABox A.
ATBox is a finite set of axioms expressing the relationships holding between different
concepts and roles. The types of axioms allowed in the TBox depends on the choice
of DL, but the most common forms of TBox axioms are concept inclusions (C � D,
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withC, D possibly complex concepts) and role inclusions (R � S, with R, S possibly
complex roles). Equivalences between concepts (C ≡ D) and roles (R ≡ S) are also
common and can be seen as shorthand for inclusions in both directions (i.e., C ≡ D
is an abbreviation for the pair of inclusions C � D and D � C).

An ABox is a finite set of assertions expressing that an individual belongs to a
given concept (C(a)) or that a pair of individuals belongs to a role (R(a, b)). To
simplify the presentation, we will assume in what follows that ABoxes only contain
assertions involving atomic concepts and roles. This assumption can usually be made
without loss of generality. For example, if we want to include C(a) in the ABox,
with C a general concept, it suffices to use the atomic assertion AC (with AC a fresh
atomic concept) and add the inclusion C ≡ AC to the TBox.

The semantics of DL knowledge bases is defined in terms of (first-order) inter-
pretations. An interpretation I = (ΔI, ·I) consists of a non-empty domain ΔI and
an interpretation function ·I that assigns a set AI ⊆ ΔI to every atomic concept
A ∈ NC, a binary relation PI ⊆ ΔI × ΔI to every atomic role P ∈ NR, and an ele-
ment aI to every individual a ∈ NI. It is common in DLs to adopt the unique name
assumption, which states that distinct individuals are mapped to distinct elements of
the interpretation domain.

An interpretation I satisfies a concept inclusion C � D (resp. role inclusion
R � S) if CI ⊆ DI (resp. RI ⊆ SI). We say I is a model of a TBox T if it satisfies
every axiom in T . A TBox T logically implies an axiom α, written T |= α, if
every model of T satisfies α. A fundamental reasoning task for TBoxes is testing
subsumption between different concepts: given a TBox T and two conceptsC and D,
decide whether T |= C � D. An interpretation I satisfies a concept assertion A(a)

(resp. role assertion P(a, b)) if aI ∈ AI (resp. (aI, bI) ∈ PI). We call I a model
of an ABox A if I satisfies every assertion in A. An interpretation I is a model of a
knowledge base 〈T ,A〉 if it is a model of both T and A. A KB K is satisfiable (or
consistent) if it possesses at least one model. Testing satisfiability of a given KB is
another standard reasoning task.

A KB logically entails a TBox axiom or ABox assertion α, written K |= α, if
every model of K satisfies α. The instance checking problem is defined as follows:
given a KB 〈T ,A〉, a concept C , and an individual a, decide whether K |= C(a).

In the following sections, we give the syntax and semantics of the principal DL
constructors by presenting a variety of DLs, ranging from ‘simple’ DLs EL, FL0,
and DL-Lite which offer polynomial-time reasoning (Sects. 2.2 and 2.3), to ALC
(Sect. 2.4) which is often considered the prototypical DL, to highly expressive DLs
like SROIQ (Sect. 2.5), which provide the logical foundations for OWL.

2.2 Lightweight Description Logics: FL0 and EL

We begin by considering two DLs, FL0 and EL, which are deliberately restricted
in expressivity in order to allow for sound and complete polynomial-time reason-
ing. Both logics contain the concept conjunction constructor (C1 � C2), which corre-
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Prof � TeachingStaff TAssistant � TeachingStaff TAssistant � GradStudent
TeachingStaff � Staff AdminStaff � Staff UndergradStudent � Student
GradStudent � Student UndergradCourse � Course GradCourse � Course

Fig. 1 Example taxonomy of classes in the university domain

sponds to intersecting the classes represented byC1 andC2. Additionally,FL0 offers
qualified value restrictions (∀R.C), while EL offers qualified existential restrictions
(∃R.C), which provide suitably restricted forms of universal and existential quan-
tification. In EL, one can further use the top concept (�), which denotes the class of
all objects.

Figure 1 provides an example of a taxonomy of classes, formulated using a set
of inclusions between atomic concepts. Such simple axioms form the backbone of
real-world ontologies, and they are available in every DL (and in particular, in FL0

and EL). The axioms in the first line of Fig. 1 stipulate that professors and teaching
assistants are both kinds of teaching staff, and every teaching assistant is a graduate
student. The remaining axioms state that teaching staff and admin staff are two types
of staff and that students (resp. courses) can be specialized into undergraduate and
graduate students (resp. courses).

In FL0 and EL, we can additionally use the conjunction constructor to state that
every student that is part of the teaching staff must be a graduate student:

Student � TeachingStaff � GradStudent

By making use of qualified value restrictions, we can express inFL0 that graduate
students only take graduate courses and that a student that takes only graduate courses
is a graduate student:

GradStudent � ∀takes.GradCourse Student � ∀takes.GradCourse � GradStudent

In EL, we can use qualified existential restrictions to formulate the following
axioms:

Student � ∃takes.Course ∃teaches.� � TeachingStaff

∃teaches.GradCourse � Prof TeachingStaff � ∃teaches.Course

which state respectively that every student must take some course, that everyone who
teaches something is a member of the teaching staff, that everyone who teaches a
graduate course must be a professor, and that every member of teaching staff must
teach some course.

The semantics of complex concepts built using the preceding constructors is
defined recursively as follows (starting from the semantics of atomic concepts and
roles which is directly provided by each interpretation):
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Fig. 2 Translation from DLs
to first-order logic (1)

DL notation Corresponding FOL formula
C1 �C2 C1(X)∧C2(X)
∃R.C ∃Y [R(X ,Y )∧C(Y )]
∀R.C ∀Y [R(X ,Y ) →C(Y )]

• �I = ΔI

• (C1 � C2)
I = CI

1 ∩ CI
2• (∃R.C)I = {o1 | there exists (o1, o2) ∈ RI such that o2 ∈ CI}

• (∀R.C)I = {o1 | (o1, o2) ∈ RI implies o2 ∈ CI}
Every DL concept can be translated into a first-order logic formula with one free

variable. Figure 2 gives the first-order translation of concepts in FL0 and EL, using
X as the free variable. To improve readability, we commit a slight abuse of notation
by using C(X) to designate the translation of the concept C using free variable X .
For example, if C = A � ∃R.B, with A and B atomic concepts, then C(X) is the
FOL formula A(X) ∧ ∃Y [R(X,Y ) ∧ B(Y )].

Every TBox axiom can be translated into a corresponding FOL sentence (that is, a
formula without free variables): a concept inclusion C � D gives rise to the formula
∀X (C(X) → D(X)) and an equivalence axiom C ≡ D corresponds to the formula
∀X (C(X) ↔ D(X)).

The first polynomial-time reasoning procedures for lightweight DLs relied upon
structural subsumption, in which concept expressions are first put into a normal
form and then compared syntactically. This method can be used to show that sub-
sumption between concepts w.r.t. an empty TBox is tractable in both FL0 and EL.
However, in most applications, one wishes to compute subsumption in the presence
of a non-empty TBox. Rather interestingly, FL0 and EL exhibit dramatically dif-
ferent complexities for the general version of subsumption. In FL0, the problem
becomes EXPTIME-complete (and thus provably intractable) (Baader et al. 2005)
and remains coNP-hard even when restricted to TBoxes in the form of acyclic ter-
minologies (Nebel 1990). By contrast, in EL (and several of its extensions), sub-
sumption can be decided in PTIME in the presence of arbitrary TBoxes (Baader
et al. 2005). This tractability result relies upon forward-chaining algorithms that con-
struct in an iterative manner a subset of the axioms that are entailed from the TBox.
A similar approach can be used to handle instance checking in EL.

Nowadays, EL and its extensions have become popular ontology languages,
whereas FL0 is no longer much in use. This is due in large part to the much
more favourable computational properties of EL, but also to the utility of the con-
structors provided by EL. Indeed, while it was initially believed that value restric-
tions were more useful than existential restrictions, it turns out that (slight exten-
sions of) EL closely match the modelling needs of many applications, particu-
larly those in the biomedical domain. Indeed, the large-scale professional medical
ontology SNOMED CT3 (Systematized Nomenclature of Medicine, Clinical Terms),

3http://www.snomed.org/snomed-ct.

http://www.snomed.org/snomed-ct
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Fig. 3 Translation from DLs
to first-order logic (2)

DL notation Corresponding FOL formula
P− P(Y,X)
∃R ∃YR(X ,Y )
¬B ¬B(X)
¬R ¬R(X ,Y )

developed by an international consortium for use in the health-care systems of sev-
eral countries, is expressed in a tractable DL of the EL family. The importance of EL
is further witnessed by the inclusion of the OWL 2 EL profile (W3C 2012b), based
upon EL, in the latest version of the W3C OWL standard.

2.3 DL-Lite: Another Lightweight Description Logic

The DL-Lite family of description logics (Calvanese et al. 2007) was proposed in
the mid-2000’s with the aim of supporting tractable reasoning while at the same time
capturing the principal modelling primitives from conceptual modelling (more pre-
cisely, the entity-relationship models utilized in databases and information systems
(Chen 1976) and UML4 diagrams from software engineering). Another important
motivation for introducing the DL-Lite family was to make it possible to answer
more expressive queries by means of a reduction to relational databases.

In DL-Lite, complex concepts and roles can be constructed from atomic concepts
and roles according to the following syntax:

B:: = A | ∃R C :: = B | ¬B R:: = P | P− E :: = R | ¬R

where A is an atomic concept, P is an atomic role, and P− is the inverse of P . Here
B is called a basic concept, and C is a general concept. Likewise, we have basic
roles R and general roles E . For completeness, we formally state the semantics of
non-atomic concepts and roles:

• (P−)I = {(o2, o1) | (o1, o2) ∈ PI}
• (∃R)I = {o1 | there exists o2 and (o1, o2) ∈ RI}
• (¬B)I = ΔI \ BI and (¬R)I = ΔI × ΔI \ RI

Figure 3 gives the corresponding logical formulas. Note that when we write R(X,Y ),
we mean P(X,Y ) if R is an atomic role P and P(Y, X) if R is the inverse role P−.

There are several different DL-Lite dialects, each allowing for different TBox
axioms. In the core DL-Lite dialect, TBoxes are comprised of concept inclusions
B � C , where B is a basic concept and C a general concept. Observe that since only
basic concepts are allowed on the left-hand side of inclusions, negation can only
occur on the right-hand side.

4http://www.omg.org/uml.

http://www.omg.org/uml
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Fig. 4 Domain and range
constraints and role
inclusions in DL-Lite

∃teaches � TeachingStaff ∃teaches− � Course
∃coordinatorFor � Prof ∃coordinatorFor− � Course
∃takes � Student ∃takes− � Course
coordinatorFor � teaches

To illustrate the expressive power of DL-Lite (core), we return to our running
example of the university domain. We first remark that all of the atomic concept inclu-
sions from Fig. 1 can be expressed in DL-Lite. Figure 4 displays DL-Lite axioms that
constrain the domain and range of the roles teaches, takes, and coordinatorFor:

• if X teaches Y, then X is a member of teaching staff and Y is a course
• if X takes Y, then X is a student and Y is a course
• if X coordinatorFor Y, then X is a professor Y is a course

In DL-Lite, we can also express disjointness constraints, stating that two classes
or properties have no elements in common, as well as mandatory participation con-
straints, requiring that elements of a certain class appear in the first or second com-
ponents of a given binary relation. For example, the following axioms express that
Student and AdminStaff are disjoint classes, that every professor must teach some-
thing, and that every course is taught by someone:

Student � ¬AdminStaff Prof � ∃teaches Course � ∃teaches−

We remark that if we replaced the inclusionStudent � ¬AdminStaff byStudent �
¬Staff, then this would lead to an anomaly in the ontology. Indeed, using the
atomic concept inclusions in Fig. 1, we would be able to infer that teaching assistants
belong to the class Staff (from TAssistant � TeachingStaff and TeachingStaff �
Staff) as well as to its complement ¬Staff (using TAssistant � GradStudent,
GradStudent � Student, and Student � ¬Staff). This would mean that
TAssistant must always be interpreted as the empty class, and thus that includ-
ing even a single instance of TAssistant in the ABox would lead to an inconsistent
KB.

Two other common dialects, DL-LiteR and DL-LiteF , offer additional TBox
axioms. The former allows for role inclusions of the form R � E , while the latter
authorizes functionality axioms of the form ( f unct R), where R is a basic role,
i.e., without negation. For example, the following two axioms are expressible in
DL-LiteR and DL-LiteF respectively:

coordinatorFor � teaches ( f unct coordinatorFor−)

The first axiom expresses that when X coordinatorFor Y, then X teaches Y,
while the second one expresses that the role coordinatorFor− is functional: if Y
coordinatorFor X and Z coordinatorFor X then Y=Z.
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A role inclusion R � E is satisfied in an interpretation I if RI ⊆ EI , and a
functionality statement ( f unct R) is satisfied in I if the binary relation RI is a
function, i.e. (o, o1) ∈ RI and (o, o2) ∈ RI implies that o1 = o2.

It has been shown in Calvanese et al. (2007) that in both DL-LiteR and DL-LiteF ,
satisfiability, subsumption, and instance checking can all be performed in polynomial
time (more precisely, these tasks are NLOGSPACE-complete). Rather surprisingly,
however, if we consider the minimal DL that extends both DL-LiteR and DL-LiteF ,
then satisfiability testing becomes EXPTIME-complete (Artale et al. 2009). More-
over, in both DL-LiteR and DL-LiteF , it is possible to answer conjunctive queries in
polynomial time in the size of the ABox by means of a reduction to the problem of
answering first-order queries over relational databases, whereas no such reduction
is possible if both role inclusions and functionality axioms are allowed (Calvanese
et al. 2007). (Ontology-mediated conjunctive query answering and the technique of
first-order query rewriting will be discussed in more detail in Sects. 3 and 4.)

The importance of the DL-Lite family of DLs is witnessed by the inclusion of the
OWL 2 QL profile (W3C 2012b), based upon DL-LiteR, in the OWL 2 standard,
which is specifically designed to be the ontology language of choice for applications
involving querying of large amounts of data.

2.4 ALC: The Prototypical Description Logic

The description logic ALC can be seen as the result of adding (full) concept negation
to EL. In ALC, it is possible to construct the disjunction (or union) of two concepts
C1 � C2 (which is just shorthand for ¬(¬C1 � ¬C2)), qualified value restrictions
(since ∀R.C is equivalent to ¬(∃R.¬C)), and the bottom concept ⊥ (corresponding
to ¬�, which is always interpreted as the empty set).

ALC is often considered to be the prototypical DL because it is a fragment of a nat-
ural first-order logic (allowing the standard Boolean operators plus restricted forms
of universal and existential quantification) and because ALC concepts correspond
precisely to the formulas expressible in the basic multi-modal logic Kn (Blackburn
et al. 2006).

Returning to our university example, we first note since ALC extends both FL0

and EL, all axioms from Sect. 2.2 can be expressed in ALC. Additionally, the new
constructors available in ALC allow us to express disjointness constraints, as in
DL-Lite, and covering constraints, e.g., that every course is either an undergraduate
course or a graduate course:

Student � ¬Prof Course � UndergradCourse � GradCourse

For completeness, we formally specify the semantics of the new constructors:

• ⊥I = ∅
• ¬CI = ΔI \ CI

• (C1 � C2)
I = CI

1 ∪ CI
2
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The problem of testing satisfiability ofALC KBs has been shown to be EXPTIME-
complete (Schild 1991). The same result holds for subsumption testing and instance
checking, which can be straightforwardly reduced to (un)satisfiability:

• T |= C � D iff the KB 〈T ∪ {AC ≡ C, A¬D ≡ ¬D}, {AC(a), A¬D(a)}〉 is unsat-
isfiable

• K |= C(a) iff the KB K ∪ {A¬C ≡ ¬C}, {A¬C (a)} is unsatisfiable.

To determine whether a givenALC KB is satisfiable, one can use tableauxalgorithms,
which work by exploring in an exhaustive manner all ways of constructing a model
of the KB. If a (compact representation of a) model is found, the KB is satisfiable,
and if all attempts fail, then one can conclude that the KB is unsatisfiable.

2.5 FromALC to SHIQ to SROIQ: Highly Expressive DLs

The description logic ALC is the starting point for defining other (highly) expressive
DLs. For example, the DL SHIQ (Horrocks et al. 1999) extends ALC with inverse
roles (P−, as in DL-Lite), (qualified) cardinality restrictions (≥ n R.C , ≤ n R.C),
role inclusions (R � R′), and transitive roles (using transitivity axioms of the form
(Trans R)), where R, R′ can be either plain or inverse roles.

In our university example, we could use cardinality restrictions to express that
every professor must teach at least 2 courses, and students that take at most 3 courses
are part-time students:

Prof �≥ 2teaches.Course Student� ≤ 3takes.Course � PartTimeStudent

The even more expressive SROIQ (Horrocks et al. 2006), which provides the
logical underpinnings of OWL 2 (the latest version of OWL standard) (W3C 2012a),
extends SHIQ with nominals ({a}), the universal role (u), and more complex role
axioms of the forms R ◦ S � R and S ◦ R � R (where ◦ denotes role composition).
It further allows for roles to be declared as reflexive, irreflexive, or antisymmetric,
and for pairs of role to be declared disjoint.

The semantics of the new constructors is as follows:

• (≥ nP.C)I = {d ∈ ΔI | �{e | (d, e) ∈ PI and e ∈ CI} ≥ n}
• (≤ nP)I = {d ∈ ΔI | �{e | (d, e) ∈ PI and e ∈ CI} ≤ n}
• {a}I = {aI}
• uI = ΔI × ΔI

• (R ◦ S)I = {(d1, d3) ∈ ΔI × ΔI | there exists d2 ∈ ΔI such that (d1, d2) ∈ RI

and (d2, d3) ∈ SI}
An axiom of the form (Trans R) is satisfied in I if RI is a transitive relation,
i.e., (d1, d2) ∈ RI and (d2, d3) ∈ RI implies (d1, d3) ∈ RI . TBox axioms declaring
roles to be reflexive, irreflexive, or antisymmetric are handled analogously.
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In the DL SHIQ, the standard reasoning tasks (satisfiability, subsumption, and
instance checking) are all EXPTIME-complete, and thus of the same complexity as
in ALC. For the DL SHOIQ obtained by adding nominals to SHIQ, the com-
plexity rises to NEXPTIME-complete, and for SRIQ, which extends SHIQ with
complex role inclusions and additional types of axioms concerning roles, the prob-
lem becomes 2EXPTIME-complete. If we move all the way up to SROIQ, then
reasoning becomes even more difficult (2NEXPTIME-complete).

The preceding complexity results show that automated reasoning with (highly)
expressive DLs like ALC, SHIQ, and SROIQ may require (doubly) exponential
time in the worst case. However, in practice, modern DL reasoners,5 mainly employ-
ing highly optimized tableaux algorithms, demonstrate acceptable performance for
reasonably-sized ontologies. The reason is that the type of ontological constraints
that are needed to model even complex real-world applications do not give rise to
the pathological combinations of constructors that are required for establishing the
negative complexity results.

Finally, several proposals have been made to overcome a limitation of description
logics, which is the tree-shaped structure of terminological descriptions, in particular
by combining them with Datalog rules. These proposals impose restrictions on the
interaction between DL axioms and datalog rules, as early work has shown undecid-
ability of standard reasoning if no restriction was made (Levy and Rousset 1998).
The existential rules presented in Sect. 4 can be seen as another way of overcoming
the tree-shaped structure limitation of description logics.

3 Conceptual Graphs

Conceptual graphs (Sowa 1976, 1984) are mainly rooted in semantic networks, nat-
ural language processing and Peirce’s existential graphs, a diagrammatical system of
logic alternative to predicate logic. They have been studied along different directions.
One research line consists in developing conceptual graphs as a graphical interface to
first-order logic. Another research line follows the existential graph approach: con-
ceptual graphs are then seen as diagrams, rather than graphs in the graph-theoretic
meaning, and inferences are based on diagrammatic operations that do not aim to be
automated (see, in particular, Dau 2003). A third research line, which is the one pre-
sented in this chapter, develops conceptual graphs as a knowledge representation and
reasoning formalism, equipped with its own reasoning mechanisms. This formalism
is both graph- and logic-based: on the one hand, the basic objects are labelled graphs
and reasoning is based on graph operations, with graph homomorphism at the core;
on the other hand, these objects have a logical semantics and reasoning mechanisms
are sound and complete with respect to this semantics. This approach to concep-
tual graphs is similar to the description logic approach in the sense that it defines
and studies a family of formalisms that offer different tradeoffs between expressiv-

5See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/ for an up-to-date list of DL reasoners.

http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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ity and complexity of reasoning. However, we will see in Sect. 3.5 that the logical
fragments studied in both families are quite different. The interested reader will find
an in-depth presentation of theoretical and algorithmic results on conceptual graphs in
(Chein and Mugnier 2009). All aspects presented here are implemented in the
software tools CoGUI6 and CoGITaNT.7

3.1 The Kernel: Basic Conceptual Graphs

A basic conceptual graph (BG) defines entities and relationships among these entities.
Hence, it is a bipartite graph: one class of nodes, called concept nodes, represents
entities, and the other class, called relation nodes, represent relationships among
these entities. Nodes are labelled according to a vocabulary, which contains a set of
concept types and a set of relation symbols, with both sets being partially ordered
by specialisation. This vocabulary can be seen as a lightweight ontology, which
can be further enriched by rules and constraints in more complex conceptual graph
fragments.

3.1.1 Syntax

A vocabulary, also called a support, is a triple (TC , TR, I ) where:

• TC is a finite set of concept types, partially ordered by ≤, and provided with a
greatest element, denoted by �;

• TR is a finite set of relation symbols (or simply relations) of any arity, partially
ordered by ≤, such that only relations with the same arity are comparable;

• I is a possibly infinite set of elements called individual markers; furthermore, the
symbol ∗ denotes the generic marker, with ∗ /∈ I . The set of all markers I ∪ {∗}
is partially ordered by ≤ as follows: for all m ∈ I , m ≤ ∗, and elements in I are
pairwise incomparable.

• TC , TR and I are pairwise disjoint sets.

The partial orders on TC and TR encode a specialisation relation, i.e., t ′ ≤ t means
that “t ′ is a specialisation of t”. Figure 5 pictures a set of concept types, which
correspond to the set of DL inclusions from Fig. 1 except for the part in italics.
Each individual marker refers to a specific and distinct entity (i.e., the unique name
assumption is made) and the generic marker refers to an unspecified entity.

A basic conceptual graph (BG) G = (CG, RG, EG, lG) defined over a support
S = (TC , TR, I ) is a finite, labelled, undirected and bipartite multigraph (i.e., there
may be several edges between two nodes), where CG is the set of concept nodes, RG

6http://www.lirmm.fr/cogui
7http://cogitant.sourceforge.net

http://www.lirmm.fr/cogui
http://cogitant.sourceforge.net


Reasoning with Ontologies 199

Fig. 5 A set of concept types

is the set of relation nodes, EG is the multiset of edges, and lG is a labelling function
of the nodes and edges that satisfies the following conditions:

• each concept node c is labelled by a concept type tc and a marker m such that
(tc,m) ∈ TC × (I ∪ {∗}) ; if m = ∗, c is called generic, otherwise it is individual;

• each relation node r is labelled by a relation tr ∈ TR and the number of edges
incident to r is equal to the arity of tr ; these edges are labelled from 1 to the arity
of tr ; we denote by (c1 . . . ck) the list of arguments of r , where c j denotes the
extremity of the jth edge incident to r .

Note that a BG is not necessarily connected. By convention, concept nodes are
pictured as rectangles and relation nodes as ovals. For instance, the BG H pictured
in Fig. 6 may represent the following knowledge “there is a professor coordinator for
a course on databases and a course on logics in the graduate degree MSc IA”. A BG
can also be seen as a hypergraph, with the relations being encoded by hyperedges.
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Fig. 6 Basic Conceptual Graphs
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Then the graph view of a BG corresponds to the incidence bipartite graph of this
hypergraph.

The notion of a support can be extended to allow for multi-instantiation. Then a
concept node is labelled by a set of concept types, called a conjunctive type, instead of
a single concept type. For instance, a course can be both a course in mathematics and
a course in computer science, which is denoted by the conjunctive type {Maths,CS}.
The set of concept types TC is then defined in intension by a partially ordered set of
primitive types, and its elements are all the conjunctive types that can be built with
from primitive types. The partial order on conjunctive types is the natural extension
of the order on primitives types: given conjunctive types t1 and t2, t2 ≤ t1 if for all
primitive type t1i in t1, there is a primitive type t2 j in t2 with t2 j ≤ t1i . For instance,
{Logics} ≤ {CS, Maths} (note that {CS, Maths} � {Logics}).

3.1.2 Semantics

This basic formalism is provided with a semantics in first-order logic by a translation
denoted by Φ. Concept types are translated into unary predicates, relation symbols
into predicates with the same arity and individual markers into constants (for simplic-
ity, the same names are used for the elements of the support and their translation). To
a support S is assigned a set of formulas Φ(S) that translates the partial orders on TC
and TR , i.e., if t2 ≤ t1, one has the formula ∀x1 . . . xk (t2(x1 . . . xk) → t1(x1 . . . xk)),
where k is the arity of predicates t1 and t2.

A BG is translated into a formula Φ(G) built as follows: to each concept node
is assigned a term, which is a new variable if its marker is generic, otherwise
the constant assigned to its individual marker; to each relation (resp. concept)
node is assigned an atom t (e1, . . . , ek) where t is the predicate assigned to its
label (resp. concept type) and (e1, . . . , ek) is the list of terms assigned to its
arguments (resp. the term assigned to the concept node); Φ(G) is then the exis-
tential closure of the conjunction of these atoms. For instance, for H in Fig. 6:
Φ(H) = ∃x∃y∃z(Prof (x) ∧ DBs(y) ∧ Logics(z) ∧ coordinator For(x, y) ∧
coordinator For(x, z) ∧ curriculum(y, MScI A) ∧ curriculum(z, MScI A) ∧
GradDegree(MScI A)).

The BG fragment is equivalent to the existential, positive and conjunctive frag-
ment of first-order logic (without functional symbols except for constants). Indeed, a
polynomial translation of the support and BGs, which preserves logical entailment,
allows one to obtain a “flat” support S′ for which Φ(S′) = ∅.

The fundamental notion for reasoning on BGs is a homomorphism (often called
“projection” in the conceptual graph community). A homomorphism from a BG G to
a BG H is a mapping from CG ∪ RG to CH ∪ RH that preserves the node bipartition
and the edges, and may specialize node labels, i.e.,

• for all relation r ∈ RG with arguments (c1 . . . ck), h(r) has arguments
(h(c1) . . . h(ck)) (equivalently: for all edge rc in G, there is an edge h(r)h(c)
with the same label in H ) ;
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• for all node x ∈ CG ∪ RG , lH (h(x)) ≤ lG(x) (for concept nodes one considers the
product order on TC × (I ∪ {�}), i.e., (t,m) ≤ (t ′,m ′) if t ≤ t ′ and m ≤ m ′).

Consider the graphs in Fig. 6 and assume that coordinatorFor ≤ teaches is the
only comparable pair of distinct relations: there are two homomorphisms from G to
H . The first one maps concept nodes in this way: a �→ x , b �→ y, c �→ z, d �→ t ,
e �→ t ; each relation node teaches is mapped to a relation node coordinatorFor and
each relation node curriculum is mapped to a node with the same label. Note that
both entities of type GradDegree are mapped to a single entity, which is identified as
“the MSc AI”. The second homomorphism maps concept nodes in this way: a �→ x ,
b �→ z, c �→ z, d �→ t , e �→ t . This homomorphism uses the fact that Logics is a
specialisation of both Maths and CS, which allows one to map b and c to z.

BG-homomorphism induces a preorder on BGs, called the “specialisation / gen-
eralisation” relation: in the following, we note H ≤ G (H is a specialisation of G)
if there is a homomorphism from G to H . This relation is sound and complete with
respect to logical entailment on the formulas assigned to the BGs (also using the
formulas assigned to the support), i.e., for all BGs G and H on a support S, H ≤ G
if and only if Φ(S),Φ(H) |= Φ(G). Completeness is up to a normality condition
for H : an individual marker has to occur at most once in H (in other words, two dis-
tinct nodes cannot refer to the same identified entity). The following problem, called
BG-Homomorphism is thus the fundamental problem on BGs: given two BGs G
and H , is there a homomorphism from G to H? This problem is NP-complete in
general, but belongs to PTime when the source graph (i.e., G) is an acyclic graph
(or an acyclic hypergraph, this latter notion being more general than the former), and
more generally if it has a bounded treewidth (or hypertreewidth).

Homomorphism being a fundamental notion in the study of relational structures, it
is not surprising that BG-Homomorphism is strongly equivalent to other fundamental
problems in AI and databases, which allows one to import algorithmic techniques
from one domain to another. The logical translation of a BG is the same as a (Boolean)
conjunctive query (CQ) in databases. The problems of evaluating a conjunctive query
(e.g., given a CQ q and a relational database instance D, does D contain an answer to
q?) or determining if a conjunctive query is contained in another (given two CQs q1

and q2, is the set of answers to q1 included in the set of answers to q2 for any database
instance?) are essentially the same as BG-Homomorphism. The same remark holds
for the basic constraint satisfaction problem (CSP): given a constraint network (in
which constraints are given in extension), does this network have a solution? (see
chapter “Constraint Reasoning” of Volume 2).

Finally, let us consider the ontology-mediated query answering problem in the
conceptual graph framework, where the knowledge base is composed of a support
(the ontology) and of BGs (the facts), and the query is itself a BG. Checking if
the query is entailed by the KB is NP-complete in combined complexity (since it
amounts to a BG-homomorphism test) and polynomial in data complexity.8

8For query answering problems, the distinction between combined and data complexities is often
made: data complexity is the complexity with respect to the size of the data (here the fact base),
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Fig. 7 Relations and their signatures

3.2 Simple Extensions of the Support

Two simple extensions of the support are often considered, namely relation signatures
and concept type incompatibility. A relation signature specifies the maximal type of
each of its arguments. Formally, one adds to the support a mapping σ that assigns to
each relation r with arity k a signature σ(r) ∈ (TC)k . Let σi (r) denote the ith element
of σ(r); the formula assigned to σ(r) is:

∀x1 . . . xk(r(x1 . . . xk) → σ1(r)(x1) ∧ . . . ∧ σk(r)(xk))

Figure 7 shows a partially ordered set of relations with their signature that corre-
sponds to the set of DL inclusions from Fig. 4, except for the part in italics.

Relation signatures must be covariant with respect to the partial orders on concept
types and relations: for all relations r1 et r2 with arity k, if r1 ≤ r2 then σ(r1) ≤ σ(r2),
i.e., for all i , σi (r1) ≤ σi (r2). This covariance condition translates the fact that when
a relation is specialized into another, the maximal type of each argument can be
specialized as well, but not generalized. For instance, if the relation teaches links an
entity of type TeachingStaff to an entity of type Course, its specialisation into the
relation coordinatorFor may enforce that the first argument is of type Prof, which is
a specialisation of TeachingStaff.

The support added with relation signatures can be seen as a generalisation of the
ontological part of RDFS (i.e., the schema) with relations of any arity (see Baget
et al. 2010 for translations between RDFS and basic conceptual graphs).

When multi-instantiation is allowed, i.e., when conjunctive concept types are
considered, it is useful to express incompatibility between concept types. This can
be achieved by stating that some conjunctive types are forbidden. The logical formula
assigned to a banned type {t1, t2} is the following:

∀x¬(t1(x) ∧ t2(x))

The set of banned types is said to be compatible with the set of primitive types
if no primitive type is a specialization of a banned type. For instance, the banned
type {Student, Staff } (which corresponds to the DL inclusion Student � ¬Staff )
is not compatible with Student ≤ Staff, a fortiori with GradStudent ≤ Staff. A BG

while combined complexity considers all components of the problem (here, the knowledge base
and the query).
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complies with the set of banned types if no node is labelled by a concept type that
specializes a banned type. Note that the logical translation Φ(S) of a support S added
with banned types is always consistent. However, for a BG F on S, Φ(S) ∪ Φ(F)

may be inconsistent.

3.3 Conceptual Graph Rules

Rules of the form “ if premise then conclusion” are an essential knowledge construct
in AI. They represent implicit knowledge that can be made explicit by applying them
to factual knowledge. A basic graph rule is a pair R = (P(c11 . . . c1k ),C(c21 . . . c2k )),
where k ≥ 0, P and C are BGs, and the c1i (respectively c2i ) are distinct generic
concept nodes from P (respectively C) called the frontier nodes of the rule. In Fig. 8
the bijection between the frontier nodes of the premise and of the conclusion is
depicted by dotted lines; the blue nodes form the conclusion of the rule. This rule
represents the following knowledge: “if a student X takes a course Y then there is a
teaching staff member Z who teaches Y and teaches to X”.

The logical translation of a BG-rule R = (P(c11 . . . c1k ),C(c21 . . . c2k )) is the
formula Φ(R) = ∀x1 . . . xk (Φ ′(P) → Φ ′(C)), in which the same variable xi is
assigned to frontier nodes c1i and c2i , and Φ ′(P) (resp. Φ ′(C)) is obtained from
Φ(P) (resp. Φ(C)) by leaving variables x1 . . . xk free. Equivalently, all the variables
in the premise of the rule can be universally quantified, in which case their scope
is the whole formula. The logical translation of a rule is thus exactly an existen-
tial rule, as defined in the next section. For instance, the logical translation of the
rule R from Fig. 8 is Φ(R) = ∀x∀y((Student (x) ∧ Course(y) ∧ takes(x, y)) →
∃z(T eachingSta f f (z) ∧ teaches(z, y) ∧ teachesT o(z, x))).

BG-rules are provided with forward and backward chaining mechanisms that
proceed directly on their graphical form. A BG-rule R is applicable to a BG F if
there is a homomorphism h from its premise to F ; applying R to F according to
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h consists of adding C to F , then merging each frontier node c2i from C with the
node h(c1i ) from F .9 Rule application is the basis of a sound and complete forward
chaining mechanism, i.e., given a knowledge base K = (S, F,R), where S is the
support, F is the fact base (remember that a BG needs not to be connected) and R is
the set of rules, and a BG Q (which can be seen as a query), Φ(K) |= Φ(Q) if and
only if there is a sequence of applications of rules in R leading from F to a BG F ′
such that F ′ ≤ Q.

The backward chaining mechanism relies on a specific unification operation
(between two subgraphs, respectively of a rule conclusion and of the current BG
query), which exploits the complex structure of rule conclusions induced by non-
frontier concept nodes (see the existential variables in existential rules). Hence,
instead of processing a goal atom by atom as backward chaining a la Prolog would
do, entire subgraphs are unified at once. This mechanism is also sound and complete.

Note that the partial orders on concept types and relations can be encoded
by BG-rules. Indeed, t1 ≤ t2 is logically translated into the logical rule
∀x1 . . . xk(t1(x1...xk) → t2(x1...xk)), where k is the arity of the associated predi-
cates. However, the fact that the partial orders are intrinsically taken into account
in BG-homomorphism (which allows one to compare concept types or relations in
constant time, or almost constant time, depending on the order encoding) leads to
better algorithmic efficiency.

BG-rules are able to simulate the behavior of a Turing machine, hence they pro-
vide a model of computation. Therefore, the associated entailment problems are
undecidable. However, many decidable cases obtained by syntactic restrictions on
rules, or sets of rules, have been defined, mostly in the framework of existential rules
(see Sect. 4.3).

3.4 Conceptual Graph Constraints

A BG-constraint has the same shape as a BG-rule. It can be positive or negative,
depending on whether it expresses an obligation or a prohibition. A positive constraint
(P,C) expresses knowledge of the form “whenever P is true, C must also be true”.
It is satisfied by a BG if every homomorphism from P to F can be extended to a
homomorphism from C to F (i.e., given h the considered homomorphism from P to
F , there is a homomorphism h′ from C to F such that h′(c2i ) = h(c1i ) for all frontier
nodes). A negative constraint (P,C) expresses knowledge of the form “whenever
P is true, C must not be true”. It is satisfied by a BG if no homomorphism from P
to F can be extended to a homomorphism from C to F . A negative constraint can

9If c1i and c2i have the same concept type, the obtained node is labelled by the same label as h(c1i )

; if the type of c2i is strictly more specific than the type of c1i , it may happen that the labels of
h(c1i ) and c2i are incompatible (with respect to banned types), which points to an inconsistency in
the knowledge base; otherwise, the label of the obtained node is the greatest lower bound of both
labels: the obtained type is the conjunction of the types of h(c1i ) and c2i and the obtained marker
is the smallest of both markers.
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also be represented as a BG, let C−, obtained by merging P and C on their frontier
nodes (with each c1i being merged with c2i ); then C− is satisfied by F if there is no
homomorphism from C− to F .

For instance, the constraint that a student cannot belong to the administrative
staff can be expressed by the formula ∀x(Student (x) → ¬AdminSta f f (x)), which
corresponds to the form (P,C), or by the equivalent formula ¬∃x(Student (x) ∧
AdminSta f f (x)), which amounts to forbid a BG. Note that the extensions to the
support introduced in Sect. 3.2 can be encoded by constraints, namely relation signa-
tures by positive constraints and banned types by negative constraints. Other frequent
forms of constraints in ontologies are cardinality constraints: positive constraints
allow one to express the condition “at least 1” (like “every professor must teach at
least one undergraduate course”) and negative constraints the condition “at most 0”
(like “no teaching assistant can be coordinator for a course”).

Negative constraints can actually be seen as particular positive constraints (withC
restricted to a concept node with banned type). Positive constraints strictly generalize
negative constraints, in the sense that the associated consistency problems are not in
the same complexity class: the problem of determining whether a given BG satisfies
a given constraint is co-NP-complete if the constraint is negative, and Π2

P -complete
otherwise.

Finally, equality is represented in conceptual graphs by so-called “co-reference
links” which pairwise connect concept nodes that refer to the same entity. While
co-reference links do not increase the expressivity of BG (though their use may be
interesting for visualisation purposes), they do increase the expressivity of BG-rules,
allowing in particular to express functional dependencies.

3.5 Relationships with Description Logics

Description logics and conceptual graphs are both rooted in semantic networks. They
both remedy two criticisms on these common ancestors, i.e., the lack of distinction
between factual and ontological knowledge, and the lack of formal semantics. Due
to these common properties, their relationships have often been questioned.

Provided that relations are restricted to binary relations, a support can be seen
as a simple TBox composed of atomic concept and atomic role inclusions. Relation
signatures then correspond to the notions of domain and range, and banned concept
types to class disjointness constraints. On the other hand, an ABox can be seen as a
particular BG without generic concept nodes.

With the aim of characterizing the intersection of BGs (on a simple sup-
port) and DLs, two equivalent fragments were identified in Baader et al. (1999b).
On the CG side, we obtain rooted BG trees with binary relations. On the DL side, we
obtain the DL ELIRO1 (a DL specially tailored for the comparison), in which the
constructors are ∃R.C (existential restriction),C � D (concept intersection), R−(role
inverse), R � R′ (role intersection) and {i} (unary one-of, where i is an individual,
which allows one to integrate specific individuals in concept expressions). It is to be
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noticed that this comparison with conceptual graphs was one of the sources of the
EL family, in which homomorphism is a central notion (Baader et al. 1999a).

In this intersection, both formalisms lose some natural features: on the CG side,
relations of any arity and unrestricted structure, in particular cycles on generic concept
nodes, while, on the DL side, the variety of constructors.

Other results support the claim that both formalisms are quite “orthogonal”. On
the one hand, it is known that even the most expressive DLs cannot express the whole
existential positive conjunctive fragment of first-order logic (Borgida 1996). On the
other hand, BG-homomorphism cannot handle negation in a logically complete way,
even when restricted to atomic negation on primitive concept types.

More relationships between DLs and CGs can be found if we turn our attention to
richer fragments of conceptual graphs including some classes of BG-rules and nega-
tive BG-constraints on the one hand, and to the ontology-mediated query answering
problem on the other hand. Indeed, description logics historically focused on reason-
ing about the ontology (i.e., the TBox). The instance checking problem can only be
seen as a very specific querying problem, which asks if a given individual belongs to
a given concept. To handle conjunctive queries, new description logics were consid-
ered more recently (see Sects. 2.2 and 2.3), such as the DL-Lite family, specifically
designed to query data, the EL family, and more generally Horn description logics.
These DLs can be seen as specific fragments of the existential rule framework (see
the next section), which in turn can be seen as the logical translation of the conceptual
graph framework described in this section.

4 Existential Rules

As already mentioned, the increasing volume of complex and heterogeneous data has
spurred an intense research effort on the issue of ontology-mediated query answering
in recent years. This work has deeply modified the description logic field and led to
the emergence of new dialects and algorithmic techniques (Sect. 2.3). Meanwhile,
the framework of existential rules has been developed to address this issue. The
existential rule framework has a double origin: on the one hand it corresponds to
the logical translation of the conceptual graph fragment (BGs, rules and negative
constraints) presented in the previous section (Baget et al. 2011a), on the other hand
it has been proposed as an extension to Datalog, the language of deductive databases,
under the name Datalog± (Calì et al. 2009).

In the relational database field, Datalog was originally designed to provide first-
order queries (or equivalently, core SQL queries) with recursivity (Abiteboul et al.
1995). In its plain version (i.e., without negation nor disjunction), a Datalog query can
be seen as a set of rules, which are closed formulas of the form ∀x1 . . . xn (B → H),
where B andH, respectively called the body and the head of the rule (according to the
logic programming terminology), are conjunctions of atoms; moreover, these rules
satisfy the constraint of being “range-restricted”, i.e., all the variables that occur
in the head of a rule must also occur in its body. Hence, a plain Datalog rule is
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logically translated into a Horn clause without function symbols. These rules could
be used as a means of encoding implicit background knowledge. However, they lack
a property considered crucial for representing ontological knowledge, which is the
ability to reason on open domains. Indeed, when the open-world assumption is made,
it cannot be assumed that the only existing entities are those encoded in the data.
Hence, one should be able to infer knowledge on unknown individuals, which may
(or may not) be equal to entities from the data. These considerations motivated the
extension of Datalog rules with existentially quantified variables in rule heads.

4.1 The Existential Rule Framework

Formally, an existential rule is of the form R = ∀x∀y (B[x, y] → ∃z H [y, z]), where
x, y and z are sets of variables, and B, H are conjunctions of atoms, also denoted by
body(R) and head(R). The frontier of R is the set of variables shared between the
body and the head of R, i.e., y. The existential variables in R are the existentially
quantified variables, i.e., z.

We now consider knowledge bases of the form K = (F,R), where F is a fact
base10 and R is a set of (pure) existential rules.

The logical translation of the BG-rules seen in the preceding section
yields existential rules. For instance, the formula assigned to the BG-rule
R from Fig. 8 is Φ(R) = ∀x∀y((Student (x) ∧ Course(y) ∧ takes(x, y)) →
∃z(T eachingStaff(z) ∧ teaches(z, y) ∧ teachesT o(z, x))), where the frontier is
{x, y} (note that here all the variables from the body are frontier variables) and the only
existential variable is z. Any conceptual graph KB of the form K = (S, F,R) can be
translated into a logically equivalent existential rule KB of the form K′ = (F ′,R′),
and reciprocally. In the following, we omit quantifiers in rules as there is no ambi-
guity.

Beside these “pure” existential rules, two other kinds of rules are generally consid-
ered in the framework: negative constraints, which are existential rules with a head
restricted to ⊥, and equality rules, which are existential rules with a head restricted
to an equality of the form e1 = e2, where the ei are variables from the body or con-
stants. These rules also correspond to constructs in the conceptual graph framework,
namely negative BG-constraints and BG-rules with a conclusion restricted to two
co-referent concept nodes.

Existential rules and classical description logics like ALC are incom-
parable with respect to expressivity. For instance, the ALC inclusions
∃coordinatorFor.Course � Prof or the SHIQ transitivity axiom (Trans P)

can be expressed by existential rules, but not the ALC inclusion Course �

10A fact is usually defined as a ground atom. However, in the existential rule setting, a more general
notion of a fact can be considered, where a fact is an existentially closed conjunction of atoms,
which is in line with the view of a fact as a rule with an empty body. This generalized notion allows
one to encode unknown values in a natural way.
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UndergradCourse � GradCourse which would require a disjunctive head, and the
existential rule R from the previous example cannot be expressed in a description
logic.

On the other hand, existential rules are strictly more expressive than so-called
Horn description logics, which can be seen as DLs whose logical translation yield
existential rules (in other words, the skolemisation of their logical translation yields
Horn clauses with possibly functional symbols). The lightweight description logics
EL and the DL-Lite dialects seen in Sect. 2 are examples of Horn description logics.
Existential rules can be seen as overcoming two limitations of (Horn) description
logics: first, predicates of any arity are allowed; second, there is no restriction on the
atoms composing the body and the head of a rule, which allows one to describe com-
plex relationships between entities (see e.g., the above rule R), whereas description
logics are essentially limited to “acyclic” structures.

4.2 Relationships with Database Theory

An important connection with relational database theory has to be pointed out.
Indeed, existential rules have the same logical form as Tuple-Generating Depen-
dencies (TGDs), a high-level class of database constraints that generalize many con-
straints of practical database systems (and correspond to the CG positive constraints
from the preceding section). Negative constraints are also considered in databases
and equality rules (with equality between two variables) have the same logical form
as the database Equality Generating Dependencies (EGDs), which generalize con-
straints on keys (see e.g., Abiteboul et al. 1995). Note that, despite their syntactic
correspondence, database constructs and rules have different roles: TGDs/EGDs act
as constraints to check the consistency of a database instance, whereas rules act as
ontological knowledge to generate new data. However, in the database setting, it
is possible to repair constraint violations with respect to TGDs/EGDs by applying
them in a forward chaining manner as if they were rules. This process, known as the
chase, is considered as one of the fundamental tools in database theory. The similari-
ties between the studied objects explain that many theoretical results obtained in one
domain are actually of interest to the other. In particular, it has long been shown that
the entailment of an atom from a set of TGDs (hence a set of pure existential rules)
and a database instance is an undecidable problem when no restriction is made.

An existential rule R can be applied to a fact base F if there is a homomorphism
h from body(R) to F , i.e., a substitution h of the variables in body(R) by terms in F
such that h(body(R)) ⊆ F (both seen as sets of atoms). Applying R to F according
to h consists in adding h(head(R)) to F , where h(head(R)) is obtained from H
by substituting each frontier variable x by h(x) and safely renaming existential
variables by fresh existential variables. The saturation of the fact base consists in
iteratively applying rules on it until no rule application is possible. This process may
of course not terminate since entailment is undecidable. Several forward chaining
(or chase) variants have been defined, which differ in how they deal with the possible
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redundancies introduced by existential variables. It is well known that the (possibly
infinite) saturation obtained by any of these chase variants forms a universal model
of the knowledge base, i.e., a model that can be mapped by homomorphism to any
other model of the KB. Hence, a universal model acts as a representative of all models
of the KB, sufficient to decide conjunctive query entailment from the KB.

4.3 Decidability Results

Interest in the existential rule framework gave rise to fruitful work on finding classes
of existential rules for which (conjunctive) query answering is decidable. A wide
range of rule classes offering various expressivity/tractability tradeoffs is now known
(see e.g., Mugnier 2011; Gottlob et al. 2012; Thomazo 2013; Mugnier and Thomazo
2014 for syntheses). Most of these classes can be understood according to abstract
properties that underlie decidability:

1. The set of rules R ensures that any KB K = (F,R) has a finite universal model.
In other words, some chase variant is guaranteed to halt on any fact base. Hence,
for any (Boolean) CQ q, K |= q if and only if F∗ |= q, where F∗ is the saturation
of F . Such sets of rules are called finite expansion sets (fes) (Baget et al. 2011a).

2. The set of rulesR ensures that any (Boolean) CQ q can be rewritten using the rules
into a (finite) union of conjunctive queries Q such that for any KB K = (F,R)

holds that K |= q if and only if F |= Q. Such sets of rules are called UCQ-
rewritable or finite unification sets (fus) (Baget et al. 2011a). More general forms
of rewritings can be considered, such as first-order queries, which may produce a
more succinct rewriting, or Datalog queries, which may provide a finite rewriting
when there is no finite rewriting as a first-order query (see Gottlob and Schwentick
2012; Bienvenu et al. 2018 among others). It is known that UCQ-rewritability
and first-order rewritability are actually equivalent properties (e.g., Gottlob et al.
2014).

3. The existence of a finite universal model may not be guaranteed, but the set
of rules R ensures that the saturation of any KB K = (F,R), seen as a graph,
has a bounded treewidth. This allows for finite encodings of infinite saturations.
Such sets of rules are called (greedy) bounded-treewidth sets ((g)bts) (Baget et al.
2011a, b; Thomazo 2013).

The two first families of rules clearly enable one to come back to a classical
database query answering problem: either the knowledge that can be entailed by the
rules is encoded in the facts, or the relevant part of the rules is encoded in the query.
In the third case, querying the finite encoding is more involved. Deciding whether
a given set of rules satisfies one of these three abstract properties is undecidable,
however each abstract property admits some “concrete” cases defined by recogniz-
able syntactic criteria. Generalisations or combinations of these properties have been
defined, however their presentation is outside the scope of this chapter.
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Table 1 Fundamental classes of existential rules with polynomial-time data complexity

Rule class Data complexity

Datalog PTime-c (Dantsin et al. 2001)

Weakly-acyclic PTime-c (Dantsin et al. 2001) (LB) (Fagin et al. 2005) (UB)

aGRD AC0(1)

Linear AC0 (Calì et al. 2009) (1)

Sticky AC0 (Calì et al. 2010) (1)

Guarded PTime-c (Calì et al. 2009)

Frontier-guarded PTime-c (Baget et al. 2011b)

Frontier-1 PTime-c (Baget et al. 2011b)

Table 1 presents the main currently known concrete rule classes for which
ontology-mediated conjunctive query answering has polynomial time data complex-
ity. We chose to present the simplest classes, in order to highlight the fundamental
ideas, even if most of these classes admit generalisations that often keep the same
data complexity. The existence of a finite universal model (fes property) is ensured
by some acyclicity conditions that prevent infinite creation of new variables during
the chase. Such classes include range-restricted rules (i.e., Datalog rules), weakly-
acyclic rules, and aGRD rules. These two last classes are both defined by an acyclicity
condition on a directed graph, which encodes variables sharing between positions
in predicates in the first case, and dependencies between rules in the second case.
In the first graph, called position (dependency) graph (Fagin et al. 2005), the nodes
represent all positions in predicates occurring in rules, i.e., the node (p,i) represents
the position i in some predicate p. Then, for each rule R and each variable x in
body(R) occurring in position (p, i), edges with origin (p, i) are built as follows: if
x is a frontier variable, there is an edge from (p, i) to each position of x in head(R);
furthermore, for each existential variable y in head(R) occurring in position (q, j),
there is a special edge from (p, i) to (q, j). A set of rules is said to be weakly acyclic
if its position graph has no circuit passing through a special edge. Intuitively, this
condition ensures that the introduction of an existential variable in a given position
can never lead to create another existential variable in the same position, hence an
infinite number of existential variables.

For example, let R1 = h(x) → p(x, y) and R2 = p(u, v), q(v) → h(v). The
position graph of {R1, R2} contains a special edge from (h, 1) to (p, 2) due to R1

and an edge from (p, 2) to (h, 1) due to R2. Hence, {R1, R2} is not weakly-acyclic.
Range-restricted rules are a special case of weakly-acyclic rules since they do not

have existential variables at all.
The second graph is called graph of rule dependencies (GRD) (Baget et al. 2011a;

Grau et al. 2013). Intuitively, a rule R j depends on a rule Ri if there is a fact base
such that an application of Ri on this fact base leads to a new application of R j . This
abstract condition can be effectively computed by a specific unifier between the head
of Ri and the body of R j . The GRD of a set of rules R has a set of nodes in bijection
with R and edges (Ri , R j ) whenever the rule R j depends on the rule Ri . A set
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of rules is aGRD if its GRD has no circuit. In the above example, R1 depends on R2

but not the contrary (indeed, one can check that an application of R1 can never lead
to trigger an application of R2: it produces an atom of the form p(x, y), where y is
a new existential variable, but it does not produce the atom q(y), which on the other
hand cannot exist in the fact base since y is new, hence no new application of R2

is made possible); hence, {R1, R2} is aGRD. Weak-acyclicity and aGRD are in fact
incomparable properties, but they admit common generalisations (Grau et al. 2013;
Rocher 2016).

The fus property is ensured by conditions that allow one to bound the maximal size
of a non-redundant CQ generated during the rewriting. Concrete fus classes include
in particular linear rules and sticky rules (these two classes being incomparable).
A linear rule has a body restricted to a single atom. The stickiness of a set of rules
is defined by a marking procedure of the variables occurring in rules; then the set of
rules is said to be sticky if no marked variable in a rule body occurs in two different
atoms; intuitively, this ensures that a variable generated during the rewriting process
occurs in at most one atom (Calì et al. 2010; Thomazo 2013). The decidability of
ontology-mediated query answering for sets of rules with the bts property comes
from an indirect argument (following a result by Courcelle), which does not directly
provide a suitable algorithm. However, the expressive subclass known as gbts allows
one to greedily build a tree decomposition of the (possibly infinite) saturated fact
base, such that this tree decomposition has a bounded width. Concrete rule classes
in the gbts family are also known as the guarded family, inspired by the guarded
fragment of first-order logic. We list here the main members of this family (Calì
et al. 2008; Baget et al. 2011a). A rule is guarded if an atom of its body (called a
guard) contains all the variables that occur in its body. Note that a linear rule is by
definition guarded, hence it is not only fus but also gbts. A rule is frontier-one if
it has only one frontier variable. A rule is frontier-guarded if an atom of its body
guards all the variables of its frontier (hence, this class generalizes both guarded and
frontier-one rules).

Most Horn description logics belong to the gbts family, except those including
transitivity, and more generally composition, of binary relations. Indeed, transitivity
destroys the tree-like structure of the saturation. For instance, EL and ELHI are
frontier-guarded, while DL-LiteR is linear (hence, also fus).

5 Conclusion

Reasoning with ontologies is becoming central in many data-centric applications for
which ontologies are a way to integrate heterogeneous data by providing a common
conceptual vocabulary. In this setting, it is crucial to deeply understand the impact of
the ontological constructs on the complexity of the main reasoning problems. This
chapter provides the required formal background and results to help data practition-
ers to choose the knowledge representation formalism with the best expressivity /
complexity tradeoff regarding their application needs.
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Ontology-mediated query answering is a vibrant area at the crossroads of several
domains, namely data management, knowledge representation and reasoning, and the
Semantic Web. Undoubtedly, many issues remain to be solved before the widespread
adoption of the framework in practice. We will mention some of the challenges
currently addressed in the area, without any claim to be exhaustive. Up to recently,
most work were limited to conjunctive queries, or slight extensions of them, while the
ability to process more complex queries is required. The combination of conjunctive
queries and navigational queries has begun to be investigated (e.g., Stefanoni et al.
2014; Bienvenu et al. 2015; Baget et al. 2017). New algorithmic techniques are being
developed to meet the challenge of scalability beyond simple ontological languages
(e.g., approaches that combine materialization of inferences and query rewriting Lutz
et al. 2013; Feier et al. 2015). The integration of heterogeneous data under the form
of a (possibly virtual) fact base relies on so-called mappings from these data to facts
over the ontological vocabulary (Poggi et al. 2008): while mappings are a classical
notion in data integration, their introduction poses new challenges in the presence of
an ontology (e.g., Bienvenu and Rosati 2016; Botoeva et al. 2016). Representing and
reasoning with temporal and spatial data, as well as information about their reliability
and provenance, are of uttermost importance in most data-centric applications and
have only recently begun to be explored in the context of ontology-mediated query
answering (Artale et al. 2015; Borgwardt et al. 2015; Bereta and Koubarakis 2016;
Brandt et al. 2017). Last but not least, practically robust query answering has to be
tolerant to data inconsistencies, which are likely to occur in large datasets especially
when the data issues from multiple data sources (e.g., Lembo et al. 2015; Lukasiewicz
et al. 2015; Bienvenu and Bourgaux 2016).
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Compact Representation of Preferences

Souhila Kaci, Jérôme Lang and Patrice Perny

Abstract This chapter presents the main families of representation languages for
preferences on combinatorial domains (composed by several attributes or variables
with discrete value domains). In the first part of the chapter, we present the prob-
lem in its full generality. A large part of these languages are said to be graphical,
because they work by expressing elementary preferences in a local way, using struc-
tural independence properties that are represented under the form of a graph. In the
second (respectively, third) part of the chapter we review graphical languages for
expressing ordinal (respectively, cardinal) preferences. Another class of preference
representation languages makes use of (propositional) logic; they will be reviewed
in the fourth part of the chapter, together with proper ‘preference logics’.

1 Introduction

The specification of a decision making problem includes the expression of the pref-
erences of an agent, or of several agents, on the set of available alternatives. This is
for instance the case in planning, where an autonomous agent acts for the user who
programmed it. This is also the case in individual or collective decision aid, where an
autonomous agent has to help a user or a group of users to make a decision; examples
of such decision aid problems are recommender systems, product configuration etc.
In each of these examples, specifying a goal, as for instance in classical planning,
is often insufficiently expressive, since it does not allow to choose a suboptimal
decision, but yet satisfactory, when the objective is not reachable.
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Preference modelling consists in studying different classes of mathematical struc-
tures for preference and characterizing them axiomatically. These models can be
numerical (preferences are then modelled by utility functions mapping alternatives
into numbers), qualitative (the numerical scale being replaced by an ordered qualita-
tive scale) or ordinal (preferences are then binary relations, generally orders or weak
orders).

This being said, the choice of a mathematical model for modelling the preferences
of an agent does not say how they are represented, or more precisely, how they are
specified in a satisfactory way. Of course, a possibility is to write them explicitly
by listing all possible alternatives with their utility value (in the case of numerical
preferences) or by listing them in their order of preference (in the case of ordinal
preferences).

Clearly, this explicit mode of representation is feasible in practice only if the
number of possible alternatives is small enough with respect to the computational
resources available and the time we allow the user to interact with the system. This
assumption is often unrealistic, in particular when the set of alternatives has a com-
binatorial structure, that is, when each alternative consists of the assignment of a
value to each of a set of decision variables: in this case, the set of alternatives is
the Cartesian product of the value domains for these variables, and its size increases
exponentially with the number of variables.We give two illustrative examples below.

In the first example, an agent is asked to express her preferences about meals
consisting of a first dish, a main dish, a dessert and a wine, with six possibilities
for each: this makes 64 alternatives. This would not be a problem if the preferences
between the values of a variable were independent of the value taken by other vari-
ables: in such a case it would be enough to ask the agent to specify her preferences
independently on each of the value domains, and the joint preference over the set
of all alternatives would be determined for instance via an aggregation function. In
our example, expressing a utility function over the 64 alternatives would come down
to specifying four utility functions on six alternatives each. But this becomes much
more complicated of the agent wishes to express dependencies between variables,
such as “I prefer white wine if the first dish or the main dish is made out of fish, and
none of them is meat, red wine if one of the dishes is made out of meat, and I am
indifferent between white wine and red wine in all other cases”.

Our second example is a hiring problem: a committee has to recruit k new assistant
professors out of n applicants. The space of alternatives cannot be identified to the
set of applicants: it is instead the set of all subsets of k applicants among n, and thus
it has a combinatorial structure. A committee member may express her preferences
in an explicit way only if the dependencies between applicants can be ignored, which
means that she cannot express correlated preferences between applicants, such as:
“My favorite candidate is A, the next one is B, and lastly, C; however, A and B work
in the same field, while C works in a totally different field, therefore I prefer to hire
A and C together, and even B and C together, rather than A and B together.”

For such problems, the size of the space of alternatives and the impossibility
to decompose the description of the agent’s preferences into smaller descriptions
bearing each on an isolated variable makes it practically infeasible to ask the agent
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to give her utility function or her preference relation in an explicit way under the
form of a table or a list. Therefore, allowing the expression of a utility function or a
preference relation over such a set of alternatives requires first to design a language
for expressing preferences in a concise (or succinct) way. These languages, which
we call succinct preference representation languages, should not only be succinct
but should ideally be as expressive as possible, that is, to allow representing a set of
utility functions or preference relations as large as possible.

The key problem in succinct preference representation is the expression of pref-
erential dependencies between variables, as in the two examples above. In general,
a tradeoff must be made between the expressivity of the language and its succinct-
ness, which can translate into specific assumptions on the nature of the preferential
dependencies we want to be able to express. The succinctness of the language then
comes from the exploitation of these preferential independencies between variables.

Upstream the problemof representing preferences is the problemof eliciting them,
that is, to interact with the user so as to acquire enough information on her preferences
to suggest her a satisfactory (or, in some cases, optimal) alternative. The design of
an elicitation protocol depends on the chosen preference representation language,
and generally exploits specific assumptions on the structure of the user’s preferences
so as to reduce the amount of information to elicit and the cognitive effort required
to communicate them; moreover, the difficulty of the elicitation process sometimes
requires a trade-off between expressivity and communication complexity.1 Besides,
to make elicitation easier, it is important that the chosen language be cognitively
relevant, i.e., close enough to intuition; ideally, the specification of preferences in a
representation language should be easily translated from the way the agent expresses
them in natural language.

Lastly, these languages must be equipped with algorithms that should be as effi-
cient as possible, so as to allow the automation of the comparison of alternatives, of
the ranking of several alternatives, and of the search for an optimal alternative.

Such preference representation languages have been particularly well-studied in
the Artificial Intelligence literature, and more specifically within the research com-
munities “Knowledge Representation and Reasoning” and “Uncertainty in Artificial
Intelligence”, that gather in, respectively, biennal and annual conferences, as well
in the biennal specialised conference Algorithmic Decision Theory and the almost
annual specialised workshop International Multidisciplinary Workshop on Prefer-
ence Handling.

A large part of these languages are said to be “graphical”, because they consist
in expressing elementary preferences in a local way (that is, on variables or subsets
of variables), by exploiting structural preferential independence relations under a
graphical form, as do for instance Bayesian networks for the representation of joint
probability distributions.

1The communication complexity of an individual or collective decision problem is the minimal
amount of information to be communicated by the agents so that the outcome of the decision
problem be completely determined.
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After listing in more detail, in Sect. 2, the features of preference representation
languages, each of the subsequent sections will be dedicated to a particular class
of languages. In Sects. 3 and 4 we will survey graphical representation languages
for, respectively, ordinal and cardinal preferences. In Sect. 5 we will survey logical
preference representation languages, which we will briefly connect with preference
logics.

2 Compact Preference Representation Languages

In this section, we first give the general definition of a preference representation
language, then we formally describe the criteria for evaluating them.

In the rest of this chapter, we consider a set of feasible alternatives X . A utility
function over X is a function u : X → IR. A preference relation � over X is
partial weak order, that is, a reflexive, transitive relation (not necessarily complete
nor antisymmetric). The strict preference induced by � is the strict order � defined
by: x � x ′ if and only if x � x ′ and not (x ′ � x). The indifference relation induced by
� is the equivalence relation∼ defined by x ∼ x ′ if and only if x � x ′ and x ′ � x . If u
is a utility function then the preference relation�u induced by u is defined by x �u x ′
if and only if u(x) ≥ u(x ′). We will use the terminology “preference structure” for
designating, whichever is the case, a utility function (also called cardinal preference
structure) or a preference relation (also called ordinal preference structure).

A preference representation language is a pairR = 〈L ,I 〉, where L is a formal
language, and I a function mapping each Φ ∈ L to a preference relation �Φ over
X or a utility function uΦ overX , depending on the ordinal or cardinal nature of the
language L . For example, propositional logic can be seen as a compact preference
representation language: L is the set of all propositional formulas built on a finite
set of propositional symbols PS, X is the set of all truth assignments on PS, i.e.,
X = 2PS , and I (ϕ) is the function uϕ defined by: for all x ∈ 2PS , uϕ(x) = +1 if
x |= ϕ and 0 if x |= ¬ϕ; or, if one prefers an ordinal output,I (ϕ) is the preference
relation �ϕ defined by: for all x, y ∈ 2PS , x � y if and only if x |= ϕ or y |= ¬ϕ.

The criteria according to which the different languages can be evaluated are their
expressivity, their succinctness power, their cognitive relevance, and the complexity
of the associated computational tasks.

The expressivity of a language 〈L ,I 〉 is the set of all preference structures that
can be expressed in L , that is,I (L). For example, the set of all preference relations
expressible by propositional logic is the set of all dichotomous preference relations,
that is, the set of all relations � such that X can be partitioned into X + and
X −, with x � x ′ if and only if x ∈ X + or x ′ ∈ X −: X + represents the set of all
“good” alternatives and X − the set of “bad” ones. A language 〈L1,I1〉 is at least
as expressive as a language 〈L2,I2〉 if I1(L1) ⊇ I2(L2).

The succinctness power of a language is a relative notion: a language 〈L1,I1〉
is at least as succinct as a language 〈L2,I2〉 in, informally, every preference struc-
ture that can be expressed in L2 can also be expressed in L1 without significative
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superpolynomial increase of the representation size; or, formally, if there exists a
function f : L2 → L1 such that (a) I2 = I1 ◦ f and (b) there exists a polynomial
p such that for all Φ ∈ L2, | f (Φ)| ≤ p(|Φ|). Obviously, if 〈L1,I1〉 is at least as
succinct as 〈L2,I2〉 then 〈L1,I1〉 is at least as expressive as 〈L2,I2〉. For exam-
ples of comparison between languages from the point of view of expressivity and
succinctness, see for instance Coste-Marquis (2004) and Uckelman et al. (2009).

The computational difficulty of a language L consists in determining the compu-
tational complexity, and designing efficient algorithms, for the following tasks:

• comparison: given two alternatives x and x ′, determine whether x � x ′;
• optimality: given an alternative x , determine whether x is nondominated, that
is, if there does not exist an alternative x ′ such that x ′ � x ;

• optimisation: find a non-dominated alternative, either in the full set of alterna-
tives, or in a subset of feasible alternatives defined by a feasibility constraint.

3 Graphical Languages and Ordinal Preferences: CP-Nets,
Variants and Extensions

3.1 Preferential Independence

Let V = {X1, . . . , Xn} be a set of variables, or attributes, associated with finite
value domains D1, . . . , Dn . A variable Xi is binary if Di has two elements, which
by convention we note xi and xi . The set of available alternatives is, by default,X =
DV = D1 × · · · × Dn; sometimes, it will be a subset of D1 × · · · × Dn defined by
feasibility constraints. If W ⊆ V , we let DW = ×Xi∈W Di . Elements of X will
generally be denoted using vectorial notation x. For all disjoint subsets disjoints U
andW of V , the concatenation of the assignments u ∈ U and w ∈ W , denoted uw,
is the (U ∪ W )-assignment, which assigns to the variables ofU (resp.W ) the value
assigned by u (resp. w). If x ∈ X andU ⊆ V , we note x↓U the projection of x on
the variables of U .

Conditional Preference Networks, for short CP-nets (Boutilier et al. 2004a), are
a graphical language for the representation of preferences based on the notion of
preferential independence (Keeney and Raiffa 1976). Let {U ,V ,W } be a partition
of the set of the variables V , and � a strict preference relation. U is preferentially
independent of V given W w.r.t. � if for all u1, u2 ∈ DU , v1, v2 ∈ DV and w ∈
DW , we have u1v1w � u2v1w if and only if u1v2w � u2v2w.2 Unlike probabilistic
independence, preferential independence is a directed notion: X can be preferentially
independent of Y given Z without Y being preferentially independent of X given Z .
If, for every variable Xi ∈ V , Xi is preferentially independent of V \ {Xi }, then the
preference relation � is said to be weakly separable.

2This notion can be analogously be defined for weak orders � exactly in the same way.
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For example, let V = {A, B,C} with DA = {a, a}, DB = {b, b}, DC = {c, c},
and the preference relation � defined par

abc � abc � abc � abc � abc � abc � abc � abc.

With respect to �, A is preferentially independent of {B,C}, C is preferentially
independent of A given B, but depends on B given A, and B depends both on A and
C . An example of a weakly separable preference relation is

abc � abc � abc � abc � abc � abc � abc � abc � abc.

Here, A = a is preferred to A = awhatever the fixed values of B andC , and similarly
for B and C .

3.2 CP-Nets

A CP-net (Boutilier et al. 2004a) is composed of a directed graph representing the
dependences between variables and of a set of conditional preference tables express-
ing, for each variable, the local preferences on the values of its domain given every
combination of values of its parents.

Formally, a CP-net over a set of variables V = {X1, . . . , Xn} is a pair N =
〈G, P〉 where G is a directed graph on V and P is a set of conditional preference
tables CPT (Xi ) for each Xi ∈ V . For each variable Xi , Par(Xi ) denotes the set of
the parents of Xi inG, andwe let NonPar(Xi ) = V \ ({Xi } ∪ Par(Xi )). The edges
ofG express preferential dependencies: each variable is preferentially independent of
its non-parents in G given its parents. Each conditional preference table associates a
linear order3 on Di with each instantiation u of Par(Xi ), denoted u :>; the meaning
of u : x j

i > xki is that for each instantiation z of NonPar(Xi ), we have ux j
i z � uxki z.

Inmore readable terms: whenU = u, X = x j is preferred to X = xi , everything else
being equal (ceteris paribus).

Example 1 A user is looking for a plane ticket. Let there be three variables: T (time
of the flight), with possible values d (day) and n (night); S (stop), with possible
values s (yes) and s (no); and C (airline), with possible values c1 and c2. The user
has the following preferences:

• she prefers a day flight to a night flight, unconditionally;
• for a day flight she prefers to have a stop, but for a night flight she prefers not to;
• for a day flight with a stop she prefers airline c1 because she will be able to spend
a few hours in an airport she likes; in all other cases she prefers c2.

3It is also possible to define CP-nets with indifferences—see Boutilier et al. (2004a), which does
not change much to the definitions nor to the results. For the sake of concision, we will omit this
possibility.
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Fig. 1 A CP-net N with
acyclic dependencies T S C

d > n
d : s> s
n : s> s

ds : c1 > c2
ds : c2 > c1
ns : c2 > c1
ns : c2 > c1

The preferences of the user are expressed by the CP-net N whose set of the
variables is V = {T, S,C}, the set of the alternatives is DT × DS × DC = {d, n} ×
{s, s} × {c1, c2}, and the conditional preference tables are represented on Fig. 1.

3.3 Semantics of CP-Nets

The semantics of a CP-net is defined as follows. A strict preference relation � sat-
isfies N if for every variable Xi , for all values xi , x ′

i ∈ Di , all assignments u of
Par(Xi ), and every assignment z of NonPar(Xi ), we have uxiz � ux ′

iz if and
only if CPT (Xi ) contains the entry u : xi > x ′

i . A CP-net is satisfiable if there
exists a preference relation that satisfies it. For any satisfiable CP-net N , �N

is defined as the smallest preference relation that satisfies N , or equivalently, as
the transitive closure of {uxiz � ux ′

iz | i = 1, . . . , n; xi , x ′
i ∈ Di ; u ∈ Par(Xi ); z ∈

NonPar(Xi );CPT (Xi ) contains u : xi > x ′
i }.

Example1, Continued

• Par(T ) = ∅ and NonPar(T ) = {S,C}; the table associatedwith T indicates that
T = d is preferred to T = n ceteris paribus, that is, for each fixed pair of values
for S andC ; this represents the following four pairs in the preference relation�N :

{dsc1 �N nsc1, dsc2 �N nsc2, dsc1 �N nsc1, dsc2 �N nsc2}.

• Par(S) = {T } and NonPar(S) = {C}; the table associated with S indicates that
when T = d, S = s is preferred to S = s, and when T = n, S = s is preferred to
S = s; this represents the following four pairs in �N :

{dsc1 �N dsc1, dsc2 �N dsc2, nsc1 �N nsc1, nsc2 �N nsc2}.

• Par(T ) = {S,C} and NonPar(T ) = ∅; the table associated with C represents
the following four pairs in �N :

{dsc1 �N dsc2, dsc2 �N dsc1, nsc2 �N nsc1, nsc2 �N nsc1}.

The induced preference relation �N is represented on Fig. 2 (the edges obtained by
transitivity are omitted).
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Fig. 2 Preference relation
�N induced by
the CP-net N

dsc1 dsc2 dsc2

dsc1

nsc2 nsc1

nsc2

nsc1

Fig. 3 An unsatisfiable
CP-net X1 X2

x2 : x1 > x1
x2 : x1 > x1

x1 : x2 > x2
x1 : x2 > x2

x1x2 x1x2

x1x2 x1x2

Fig. 4 A satisfiable CP-net
with cyclic dependencies X1 X2

x2 : x1 > x1
x2 : x1 > x1

x1 : x2 > x2
x1 : x2 > x2

x1x2 x1x2

x1x2 x1x2

A particularity of Example1 is that the dependency graph of G is acyclic. Numer-
ous works on CP-nets assume this, which makes many things simpler, because under
this assumption, the CP-net is guaranteed to be satisfiable, and the associated queries,
consisting in comparing two alternatives or in searching for a non-dominated alter-
native, are computable in polynomial time (Boutilier et al. 2004a).

When the dependency graph G is cyclic, the CP-net may be unsatisfiable, as we
can see on the following example (Fig. 3).

Besides, a CP-net whose dependency graph contains cycles can sometimes be
satisfiable, as the example on Fig. 4 shows.

The preference relation �N induced by a CP-net N is generally not complete.
The complete preference relations extending�N can be seen as the possible models
of the user’s preferences, and an assertion on her preferences satisfied in each of
these models can be seen as a consequence of the CP-net (Boutilier et al. 2004a).
Thus we also define a notion of consequence in a CP-net: N |= x � x′ if x � x′
is verified in each complete preference relation � extending �N . Finally, for every
preference relation � there exists a satisfiable CP-netN (whose dependency graph
can possibly contain cycles) such that � extends �N . These remarks allow for a
better understanding of the meaning of CP-nets. For the sake of clarity, in the rest
of this paragraph we assume that all the variables Xi are binary. We first define
the hypercube associated with D1 × · · · × Dn as the set of pairs of alternatives that
differs only on the value of one variable (such a pair will be called pair of adjacent
alternatives). A directed hypercube associated with D is a function that for each
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edge of the hypercube, specifies a direction (that is, specifies which of the two
adjacent alternatives is preferred to the other). When an agent expresses a CP-net,
she expresses only a part of her preference relation, that corresponds to the projection
of her preference relation on the hypercube associated with X . Thus, expressing a
CP-net often implies a loss of information. For example, in the example of Fig. 4,
the agent, by expressing the CP-net that corresponds to her preferences, has not been
able to express her preference between x1x2 and x1x2, nor her preference between
x1x2 and x1x2. There are four preference relations compatible with the expressed
CP-net:

• x1x2 � x1x2 � x1x2 � x1x2;
• x1x2 � x1x2 � x1x2 � x1x2;
• x1x2 � x1x2 � x1x2 � x1x2;
• x1x2 � x1x2 � x1x2 � x1x2.

From these observations, let us now discuss the expressivity of CP-nets. There
are two different ways of doing so. If one sticks to the formal definition of a compact
preference representation languages, as defined in Sect. 2, then the function I nd
is defined by I nd(N ) =�N : the field of expressivity of the CP-nets is therefore
reduced to directed hypercubes. But this does not correspond to the practical use of
CP-nets: whatever the application domain, there is no reason for assuming that the
agent is only able to compare pairs of adjacent alternatives; then, the language of
CP-nets allows only for an agent to express a part of her preference relation (that is,
its projection on the hypercube), but does not require any restriction on the possible
preferences of the agent: indeed, as we said above, for every preference relation �
there exists a satisfiable CP-net N such that � extends �N . In some sense, CP-
nets are fully expressive (because they do not impose any restriction on the user’s
preferences) but not fully informative (because they lead to a loss of information).

3.4 CP-Nets: Comparison and Optimisation

One of the main objectives of a preference representation language is to help answer-
ing various requests of the decider, such as the comparison of alternatives and the
search for an optimal alternative. CP-nets are not only an intuitively satisfactory lan-
guage for eliciting the preferences of a user, but they also allow (in many cases) to
solve other tasks relatively easily.

3.4.1 Comparison

When the CP-netN is satisfiable, the induced preference relation �N can be char-
acterised equivalently in terms of flipping sequences. A descending flipping sequence
is a sequence x1, . . . , xk , where for each i = j, . . . , k − 1, (a) x j and x j+1 differ on
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one single variable Xi , and (b) CPT (Xi ) contains u : xi > x ′
i , whereU = Par(Xi )

and u = x↓U
i = x↓U

i+1. We then have the following property (Boutilier et al. 2004a):
for all x, y ∈ X , x �N y if and only if there exists a descending flipping sequence
from x to y.

Thus, on Example1, there are three descending flipping sequences from dsc2 to
nsc1:

dsc2, dsc2, nsc2, nsc1, nsc1
dsc2, dsc2, dsc1, nsc1, nsc1
dsc2, dsc2, nsc2, nsc2, nsc1

This property shows that in practice, one can solve the dominance problem in
CP-nets by looking for flipping sequences. One can also notice a strong structural
proximity between the search of flipping sequences and strips planning restricted to
operators that with effects on a single variable (Boutilier et al. 2004a, b; Goldsmith
et al. 2008).

The complexity of the problem of comparing alternatives depends on the structure
of the dependency graph and of the nature (binary or not) of the variables: the problem
is polynomial when the variables are binary and G is a hyper-tree (Boutilier et al.
2004a), NP-complete if the variables are binary and G verifies the property that the
number of paths between two variables is bounded by a polynomial in the size of the
CP-net (Boutilier et al. 2004a), and PSPACE-complete without any assumption on
G, and this even if the variables are all binary (Goldsmith et al. 2008).

3.4.2 Optimisation

When the dependency graph of theCP-net is acyclic, there exists a unique dominating
alternative (and a fortiori a unique non-dominated alternative), and this alternative
can be determined in polynomial time by the forward sweep procedure, consisting in
considering the variables in an order compatible with G (without loss of generality,
X1 > · · · > Xn) and in choosing, for each variable Xi , the preferred value of Xi for
the values of X1, . . . , Xi−1 already chosen. For example, with the CP-net of Fig. 3,
the forward sweep procedure runs as follows:

• step 1: the preferred value of T (unconditionally) is d; this leads to the assignment
T := d.

• step 2: the preferred value of S given T = d is s; this leads to the assignment
S := s.

• step 3: the preferred value of C given T = d and S = s is c1; this leads to the
assignment C := c1, and one finally obtains the alternative dsc1.

The forward sweep algorithm does not work anymore in the general case where
G contains cycles; the problem of the existence of a non-dominated alternative is
in this case NP-complete, and the search for a non-dominated alternative can be
translated into a model finding problem in propositional logic (in the binary variable



Compact Representation of Preferences 227

Fig. 5 An unsatisfiable
CP-net can have
nondominated alternatives A B C

c : a> a
c : a> a

a : b> b
a : b> b

ab : c> c
ab : c> c
ab : c> c
ab : c> c

case) or of the search of a solution in a CSP in the general case (Brafman and
Dimopoulos 2004). In the binary case, each entry u : x � x (respectively u : x � x)
of each table is translated into the clause u → x (respectively u → ¬x). Thus, in
Example2, the clauses corresponding to the entries are b → a, ¬b → ¬a, a → b,
¬a → ¬b; their conjunction is the formulaΦN = (b → a) ∧ (¬b → ¬a) ∧ (a →
b) ∧ (¬a → ¬b), which is equivalent to a ↔ b. The set of the models of ΦN is
{ab, ab}: these are the non-dominated alternatives forN .

Note that ΦN can be satisfiable even when N is unsatisfiable, as it can be seen
on the following example (Fig. 5):

Example 2 �N has a cycle: abc � abc � abc � abc � abc. ΦN ≡ (a ↔ c) ∧
(b ↔ a) ∧ (c ↔ (a ↔ b)) ≡ ¬a ∧ ¬b ∧ c; ΦN is satisfiable and its unique model
is {abc}, which means that abc is undominated.

This shows how we can perform optimisation tasks from of an unsatisfiable CP-
net.

The following table gives the complexity of the main queries, w.r.t. the structure
of the dependency graph of the CP-net, when the variables are binary:

G hypertree G acyclic Any G
Optimisation P P NP-hard
Comparison P NP-hard (in NP?) PSPACE-complete
Optimality P P P
Satisfiability trivial trivial PSPACE-complete

The random generation of CP-nets following a uniform distribution is addressed
in Allen et al. (2016).

3.5 Constrained CP-Nets

In many concrete problems, not all assignments of X correspond to feasible alter-
natives. A constrained CP-net consists in a CP-net N and a set of constraints Γ

restricting the feasible alternatives. Constrained optimisation is particularly relevant
for example for configuration problems (Domshlak et al. 2001).
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dsc1 dsc2 dsc2

dsc1

nsc2 nsc1

nsc2

nsc1× × ×

dsc1 dsc2 dsc2

dsc1

nsc2 nsc1

nsc2

nsc1× ×

Fig. 6 Constrained CP-nets: two examples

The constraints can be expressed in a compact representation language, typically
in the language of the constraint satisfaction problems (CSP), or, in the case of binary
variables, of propositional logic. Every alternative satisfying Γ is said to be feasible.
The goal is to find an alternative x both feasible and undominated, that is, such that
there is no feasible alternative x′ such that x′ �N x (Boutilier et al. 2004b).

A different way of defining the optimal solutions in a constrained CP-net is sug-
gested in Domshlak et al. (2006): x dominates x′ if there exists a sequence of elemen-
tary flips from x to x′ that passes only through feasible alternatives, and again, one
looks for undominated alternatives, or equivalently, of feasible alternatives x such
that there exists no elementary flip from another feasible alternative to x.

Example 3 Consider again Example1, and let us add the constraint that it is not
possible to have a day flight with a stop: T = d ⇒ S = s, and the constraint that
airline c2 has only night flights: C = c2 ⇒ T = n. Alternative dsc1, which was the
optimal alternative of �N , is now unfeasible. The new undominated alternatives,
w.r.t. the two above definitions, are dsc1 and nsc2. Suppose now that we have the
constraint C = c2 ⇒ T = n. According to Domshlak et al. (2006), dsc1 and nsc2
are undominated, whereas only dsc1 is non-dominated according to Boutilier et al.
(2004b). The two examples are represented on Fig. 6.

3.6 Extensions and Variants of CP-Nets

CP-nets allow to represent preferences between different values of a variable, con-
ditionally on the values of its parents, but they do not allow to express importance
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relations between variables, nor explicit preferences between tuples of values of sev-
eral variables. Several extensions of CP-nets have been defined so as to cope with
this lack of expressivity.

TCP-nets (Brafman et al. 2006) enrich CP-nets by allowing the expression of
relative importance relations between variables, conditionally to the values of other
variables.ATCP-net contains (1) somepreference statements (exactly as inCP-nets);
(2) unconditional importance statements of the form A � B (A is more important
than B); and (3) conditional importance statements of the form A = a : B � C (if
A = a then B is more important than C).

Example 4 Consider the TCP-net on the set of the three binary variables {A, B,C},
containing the conditional importance statements

a : B � C
a : C � B

and the conditional preference statements

a > a
a : b > b
a : b > b

c > c

The preference relation induced by this TCP-net is depicted on Fig. 7.

This relative importance notion � comes with a gain of expressivity. It allows,
for instance, to express the preference (a, b, c) � (a, b, c) by resolving the conflict
between a � a and b � b by the fact that A � B. However, if one considers a third
value b′ in the domain of B such that b > b′, the decision maker might feel that
(a, b′, c) is preferred to (a, b, c), considering that falling from b to b′ on B is too
important for being compensated by an amelioration of a in a on A. In order to
express this second preference in the language of the TCP-nets we would need to add
B � A, which contradicts the importance inequality A � B above. This difficulty
comes from the fact that one does not take into account the values of the relevant
attributes for expressing a notion of relative importance between attributes and that
one does not really allow compensations. We will see further that with quantitative
models, it is easier to represent these phenomena, since preference intensities can be
expressed; for a discussion on this topic, see Gonzales et al. (2008). Obviously, this
leads to an additional elicitation effort.

abc abc abc

abc

abc

abc

abc abc

Fig. 7 A TCP-net and its associated preference relation
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CP-theories (Wilson 2004) are even more general: they allow the expression of
preferences on the values of a variable, conditionally on the values of its parent
variables, given that some of the remaining variables can vary when the preferential
statement is interpreted, as for instance

if A = a then B = b � B = b whatever the value of C , ceteris paribus (the values
of D, etc. being fixed)

This statement validates for instance the comparison abcd � abcd, but does not
validate the comparison abcd � abcd .

The language considered in Wilson (2009) is even more general: the preferential
statements allow not only to compare values of single variables but also tuples of
values of several variables.

Conditionally lexicographic preferences allow a user to express importance
between variables depending on the values assigned to more important variables;
they can be represented compactly using lexicographic preference trees (Wilson
2009, 2014, 2017; Booth et al. 2010; Liu and Truszczynski 2015), which are closely
related to TCP-nets and CP-theories.

Conditional Importance Networks (CI-nets) (Bouveret et al. 2009) allow to
express preferences of the form

if A = a and B = b then {C, D, E}, together, are more important than {F,G}
together, ceteris paribus.

They are particularly well suited to the expression of preferences between sets of
objects in fair division problems with ordinal criteria.

Probabilistic CP-nets (Bigot et al. 2013; Cornelio 2013) aim at expressing com-
pactly a probability distribution over preference relations; uncertainty may come
either from the ill-defined context of the comparison between alternatives, or by the
fact that the represented preferences are a collective synthesis of individual prefer-
ences of a population of agents.

3.7 Elicitation and Learning

One major interest of CP-nets is that when the dependency graph is simple enough,
their elicitation is relatively easy: il suffices to ask the user to report her preferences
on each of the variables conditionally on the values of its parents (provided that the
dependency graph has been learned beforehand, or that it is obvious). The number of
queries needed to elicit a CP-net is studied in the framework of learning with queries
(Koriche and Zanuttini 2009; Alanazi et al. 2016), whereas the passive learning
of CP-nets (from observed comparisons between alternatives) has been studied in
Dimopoulos et al. (2009), Lang andMengin (2009), Liu et al. (2014). See Chevaleyre
et al. (2010) for a survey.
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3.8 Applications

Constrained optimisation is particularly relevant for configuration problems (see
for instance Domshlak et al. 2001 for an application of CP-nets to the personalized
configuration of web pages content). An other form of optimisation under constraints
can come from the fact that an alternative is feasible if and only if there exists a plan
that allows to realize it; in Brafman and Chernyavsky (2005), preferences between
states are specified using a TCP-net, and one looks for a plan that results in an
optimal alternative, that is, a state α such that no other state reachable from the initial
state dominates α. CP-nets have been applied to expressing preferences between
documents in information retrieval (Boubekeur et al. 2006). An extension of CP-nets
has been applied to recommender systems (Trabelsi et al. 2010).

Beyond individual decision making, CP-nets are particularly well suited to col-
lective decision making on combinatorial domains (see Lang and Xia 2016 for a
survey) and to the compact description of players’ preferences in noncooperative
game theory (Bonzon et al. 2009). An other approach relating CP-nets to games is
studied in Apt et al. (2005), where CP-nets are seen as games in normal form and
vice versa: each player corresponds to a variable of the CP-net, whose domain is the
set of the actions available to the player.

4 Graphical Languages and Cardinal Representations
of Preferences: Utility Networks

Ordinal graphical models such as CP-nets and TCP-nets provide compact languages
to describe ceteris paribus preferences including conditional judgements (the prefer-
ences related to groupof variablesmaydependon the values taken byother variables).
However, these models do not provide the usual advantages of numerical models
based on a utility function u defined over X , such that x � y ⇔ u(x) ≥ u(y) for
all x, y ∈ X . A utility function can easily represent any weak order on a finite set
of alternatives; moreover it makes it possible to compare any pair of alternatives by
simply computing their respective utilities, and to reduce the search of the preferred
alternatives to a utility maximization problem. Last but not least, when the prefer-
ence information is sufficiently rich, utility functions allow cardinal information to
be expressed under the form of preference intensities corresponding to utility differ-
ences u(x) − u(y), thus providing more information than simple preference order-
ings. It can be useful to express strength of preferences, but also to better discriminate
between groups of alternatives, and to make better decisions under uncertainty. In
order to combine the advantages of graphicalmodels likeCP-netswith those of utility
functions, several graphical languages involving utility functions have been proposed
to compactly represent preferences over a set of multiattribute alternatives. For the
sake of simplicity, we first introduce additively decomposable utility functions and
then the associated graphical models.
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4.1 Additively Decomposable Utilities

In order to characterize the utility function of an agent,weneed to know the valueu(x)
of each element x in the set of alternatives X , but this may be sometimes difficult,
especially when this set has a combinatorial structure and is defined implicitly. In this
case, storing the numbers u(x), x ∈ X formultiple userswould require a prohibitive
memory cost. Fortunately, individual preferences over multiattribute objects often
have an underlying structure due to independence between groups of attributes,
allowing the decomposition of the utility function under amore compact form and the
simplification of the elicitation process. The simplest example of such a preference
decomposition over a product setX = D1 × · · · × Dn is given by the additive utility
of the form u(x) = ∑n

i=1 ui (xi ) for all x = (x1, . . . , xn) ∈ X . In thismodel,we only
need to know the marginal utilities ui (xi ) for all xi ∈ Xi to characterize the utility
function. However, such a decomposition is not always appropriate because it rules
out any possibility of interaction between attributes. When the agent’s preferences
are more complex, a more sophisticated model is necessary, as illustrated in the
following Example:

Example 5 Let X be a set of menus (X1, X2, X3) where D1 = {meat (m), fish
( f )} represents the choice of the main dish, D2 = {red wine (r), white wine (w)}
represents the choice of the wine and D3 = {cake (c), ice cream (i)} represents the
choice of the dessert.

First Case. Let us suppose that an agent explains her preferences in natural language
as follows:

• I always prefer a menu with meat to a menu with fish.
• With meat, I prefer red wine to white wine. This is also the case for fish.
• I prefer the cake to the ice cream, everything else being equal.

These preferences are based on ceteris paribus judgements. The preferences over
various possible instances of a given variable Xi characterizing amenu do not depend
on the values taken by other variables; such preferences can be elicited independently
on each variable. In this simple case, the preferences can be represented by an addi-
tive utilityu(x) = u1(x1) + u2(x2) + u3(x3) characterized by the followingmarginal
utilities: u1(m) = 4; u1( f ) = 0; u2(r) = 2; u2(w) = 0; u3(c) = 1; u3(i) = 0.Hence
the utilities of the 23 possible menus x (i) are:

u(x (1)) = u(m, r, c) = 7; u(x (2)) = u(m, r, i) = 6; u(x (3)) = u(m,w, c) = 5;
u(x (4)) = u(m,w, i) = 4; u(x (5)) = u( f, r, c) = 3; u(x (6)) = u( f, r, i) = 2;
u(x (7)) = u( f,w, c) = 1; u(x (8)) = u( f,w, i) = 0;

which leads to the following preferences:

x (1) � x (2) � x (3) � x (4) � x (5) � x (6) � x (7) � x (8)
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Second Case. Let us suppose that another agent has the following preferences:
x (1) � x (2) � x (3) � x (4) � x (7) � x (8) � x (5) � x (6). Note that such preferences are
perfectly rational and could be described as follows: (i) a menuwithmeat is preferred
to any menu with fish; (ii) then, the second most important goal is to match the main
dish with the wine (red wine with meat, white wine with fish); and (iii) the cake is
preferred to the ice cream, everything else being equal.

Although rational, such preferences are not representable by an additive util-
ity function because x (1) � x (3) ⇒ u2(r) > u2(w) but x (7) � x (5) ⇒ u2(w) > u2(r)
thus yielding a contradiction. However, it is possible to resort to a less decom-
posed representation in order to model such preferences. For example we may use
u(x) = u1,2(x1, x2) + u3(x3) with u1,2(m, r) = 6, u1,2(m,w) = 4, u1,2( f,w) = 2,
u1,2( f, r) = 0, u3(c) = 1, u3(i) = 0. This indeed represents the agent’s preferences.
Note here that the choice of the wine depends on the choice of the main dish but not
on the dessert. This explains why we do not need any factor linking wine and dessert.

Third Case. Let us suppose that the preferences of a third agent are: x (2) � x (1) �
x (4) � x (3) � x (7) � x (8) � x (5) � x (6). Such preferences are similar to those intro-
duced in the second casewith a slight sophistication concerning the dessert. The agent
prefers the cake to the ice cream when the main dish is fish but this is the opposite
when the main dish is meat. In that case, one can see that the previous decomposi-
tion does not fit anymore due to the new interaction between attributes X1 and X3.
Nevertheless, these preferences can be represented by an additively decomposable
utility of the form: u(x) = u1,2(x1, x2) + u1,3(x1, x3), by setting:

u1,2(m, r) = 6; u1,2( f,w) = 2; u1,2(m,w) = 4; u1,2( f, r) = 0;
u1,3(m, c) = 0; u1,3(m, i) = 1; u1,3( f, c) = 1; u1,3( f, i) = 0.

One could object here that the latter representation is not more compact than the
extensive representation (8 utility values must be stored in both cases) but this is
due to the small size of the domain of variables Xi . Assuming for instance that the
cardinality of Xi is m for every i , the above utility decomposition requires to store
2m2 values instead of m3, which saves some memory space as soon as m > 2; of
course the space saving becomes more important as m increases.

Such a decomposition of the utility function as the sum of overlapping factors
is named GAI (Fishburn 1970; Bacchus and Grove 1995), where GAI refers to the
GeneralizedAdditive Independence axiom satisfied by any preference represented by
such a decomposition. GAI utilities include additive and multilinear decompositions
as special cases, but they aremore flexible since they allow some interactions between
attributes without making any a priori assumption on the form of these interactions.
More precisely, GAI decompositions can formally be introduced as follows:

Definition 1 (GAI-decomposable utility) Let X = ×n
i=1Di . Let C1, . . . ,Ck be k

subsets of N = {1, . . . , n} such that N = ⋃k
i=1 Ci . For all i , let DCi = × j∈Ci D j ; in

other words DCi is the the product set of attributes domains associated to the variables
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of Ci . The utility function u(·) representing � is GAI-decomposable with respect to
subsets DCi if and only if there exists k functions ui : DCi �→ IR, i = 1, . . . , k, such
that:

u(x) =
k∑

i=1

ui (xCi ), ∀x = (x1, . . . , xn) ∈ X ,

where xCi is the n-tuple formed by x j , j ∈ Ci .

4.2 Graphical Models Associated with a Decomposable
Utility Function

Graphical representations of GAI-decomposable utility functions are named Utility
Networks. Different variants of utility networks have been proposed for the compact
representation of GAI-utilities and we introduce them below.

4.2.1 UCP-Nets

A UCP-net is an extension of a CP-net allowing a compact encoding of a GAI
utility function representing ceteris paribus preferences (Boutilier et al. 2001).
Like CP-nets, UCP-nets are based on directed dependency graphs, but preferences
are measured by utilities. The conditional preference tables of CP-nets are here
replaced by local utility tables. Considering the third case of Example5 men-
tioned above, we can represent the dependence structure between variables by a
CP-net containing the edge X1 → X2 to model the fact that the choice of the
wine (X1) depends on the main dish (X2), and on the other hand, X3 is dis-
connected from the rest of the graph to express that the choice of the dessert is
independent of the other variables characterizing the menu. A convenient GAI
decomposition for this graph is: u(X1, X2, X3) = v1(X1) + v12(X1, X2) + v3(X3)

with v1(m) = 4, v2( f ) = 0, v12(m, r) = v12( f,w) = 2 and v3(c) = 1 and v12(i) = 0
which is represented by the following UCP-net:

Remark that the function u used in the UCP-net corresponds exactly to the utility
function introduced in the second case of Example5 under the form u(X1, X2, X3) =
u12(X1, X2) + u3(X3). The correspondence easily appears by setting u12(X1, X2) =
v1(X1) + v12(X1, X2) and u3(X3) = v3(X3). Swapping fish for meat on attribute
X1 saves 4 points, a decisive advantage that cannot be compensated by another
swap on variable X2 or X3. Moreover, the order induced by the utility function over
menus refines the partial order induced by the underlying CP-net, allowing some
incomparabilities to be ruled out. Beyond this example, one can generally define a
UCP-net as follows:
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Fig. 8 An example of UCP-net

Definition 2 Let u(X1, . . . , Xn) be a utility function representing � the preference
of the Decision Maker. A UCP-net for u (or UCP network) is characterized by a
directed acyclic graph G over variables X1, . . . , Xn and an additive decomposition
of u(X1, . . . , Xn) into factors ui (Xi |P(Xi )) representing the utility of Xi given its
parents P(Xi ) in the graph, in such a way that:

• u(X1, . . . , Xn) = ∑n
i=1 ui (Xi |P(Xi ));

• G is the directed graph associated with � in the sense of Sects. 3.1 and 3.2: w.r.t.
�, every variable Xi is independent of the other variables in G, conditionally to
its parents (see Sects. 3.1 and 3.2)

for all x1, x2 ∈ Di ,∀y ∈ DP(Xi ), for all z1, z2 ∈ DN\{i∪P(Xi )},
we have x1yz1 � x2yz1 if and only if x1yz2 � x2yz2.

In the example ofUCP-net represented on Fig. 8, the utility decomposition defined
by u(X1, X2, X3) = v1(X1) + v12(X1, X2) + v3(X3)matches the definition since X1

and X3 have no parent and the factor v12(X1, X2) provides the utility of X2 given X1,
playing the role of u2(X2|X1). The decomposability property of the utility function
required in this definitionmakes u aGAI decomposable function, compatiblewith the
underlying CP-net. The structure imposed by the underlying CP-net is constraining
but it has the advantage of simplifying the elicitation process, especially when the
CP-net graph is acyclic (it is sufficient to start the elicitation process with variables
that do not have any parent in the graph, and then to continue with their descendants
ordered according to the dependency graph of the CP-net). Let us remark however
that some GAI decomposable utility functions cannot be represented by a UCP-net.
Wepresent belowanother graphical representation that fits to anyGAI-decomposable
utility function.

4.2.2 GAI Networks

GAI decompositions can be represented by non-directed graphical structures named
GAI networks (Gonzales and Perny 2004) orGAI-nets. Such structures are similar to
junction graphs used for Bayesian Networks see Jensen and Graven-Nielsen (2007)
and chapter “Languages for Probabilistic Modeling over Structured and Relational
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Domains” of volume 2. Roughly speaking, this is a graph composed of one or several
trees whose nodes correspond to the factors of the GAI decomposition, where an
edges connecting a pair of nodes corresponds to the presence of a factor having at least
one variable in common. Typically, in the third case of Example5, a convenient GAI
network would be a graph with two nodes corresponding to two factors u1,2(x1, x2)
with variables {X1, X2}, and u1,3(x1, x3) with variables {X1, X3}. These two nodes
are connected by an edge labelled by variable X1 linking the two factors. More
generally, a GAI-network is defined as follows:

Definition 3 (GAI-network) Let X = ×n
i=1Xi . Let C1, . . . ,Ck be k subsets of N =

{1, . . . , n} such that N = ⋃k
i=1 Ci . Let us assume that � is representable by a GAI

utility u(x) = ∑k
i=1 ui (xCi ) ∀x ∈ X . A GAI network representing u(·) is a non-

directed graph G = (C ,E ) satisfying the following properties:

1. C = {XC1 , . . . , XCk };
2. if (XCi , XCj ) ∈ E then Ci ∩ C j �= ∅.
3. for all XCi , XCj such that Ci ∩ C j = Ti j �= ∅, there exists a path G linking XCi

and XCj such that all its nodes include all the indices in Ti j (Running intersection
property).

The nodes of C are called cliques. Every edge (XCi , XCj ) ∈ E is labelled by
XTi j = XCi∩C j and is called a separator.

The cliques are represented by ellipses and the separators by rectangles. Here,
we only consider acyclic GAI networks. As recalled and illustrated in Gonzales
and Perny (2004), this is not restrictive since general GAI networks can always be
recompiled into acyclic GAI networks grouping some factors to eliminate cycles. In
a GAI network, any edge connecting two cliques reflects a non-empty intersection
between the sets of attributes present in the two cliques. The intersection being a
commutative operation, it is convenient to define a GAI net as a non-directed graph.
This differs from UCP nets where dependencies between factors are conditional and
justify the use of directed graphs. Let us give an example of GAI network derived
from Gonzales and Perny (2005).

Example 6 If we consider the following utility function defined using 7 attributes:

u(A, B,C, D, E, F,G) = u1(A, B) + u2(C, E) + u3(B,C, D) + u4(B, D, F) + u5(B,G)

then, as shown in Fig. 9, the cliques are: AB,CE , BCD, BDF et BG. By Property 2
of Definition3, the set of edges of a GAI network can be determined using algorithms
preserving the running intersection property (see Cowell et al. 1999).

This running intersection property is very useful because it allows an easy identifi-
cation of conditional independencies between variables by looking at the separators.
In the above example (Fig. 9), the separators are the groups of variables appearing
in squares. If the variables of a separator are instantiated, one necessarily divides
the GAI network (which is a tree) into several connected components which become
preferentially independent (conditionally to the instantiation). This can be used to



Compact Representation of Preferences 237

Fig. 9 A GAI tree

elicit some utility tables without taking the rest of the graph into account. This can
also be useful to perform optimization; one can indeed optimize over some variables
of the networkswithout taking the other variables into account. Let us give an illustra-
tion using the example of Fig. 9. If separator B is instanciated into b, on can see that
u(A, b,C, D, E, F,G) can be decomposed into two independent factors, namely
u1(A, b) and u2(C, E) + u3(b,C, D) + u4(b, D, F) + u5(b,G), with no common
variable. Given that B = b one can therefore elicit the preferences over A without
taking care of the other variables. Similarly, in optimization, one can optimize the
value of A conditionally to each possible value of B without taking care of the other
variables. These principles which are in the core of GAI networks are largely used in
elicitation and optimization algorithms (Gonzales and Perny 2004, 2005; Braziunas
and Boutilier 2005). In particular, when one wants to determine the tuple of maximal
utility, one can resort to a non-serial dynamic programming (Bistarelli et al. 1999)
based on a variable elimination sequence (Koller and Friedman 2009); this type of
algorithm is exponential in the treewidth of the GAI tree, defined as the size of the
largest clique of the graph. Knowing that agents are rarely able to express interactions
involving more than two or three variables in practical cases, the utility factors of a
GAI decomposition are generally relatively small, which allows fast optimizations.

For the sake of illustration, we give below an example of optimization performed
using the GAI network of Fig. 9 where A = {a0, a1, a2}, B = {b0, b1},C = {c0, c1},
D = {d0, d1}, E = {e0, e1, e2}, F = { f 0, f 1}, G = {g0, g1}, with the utility tables
given in Fig. 10. Determining the optimal tuple amounts to solving the following
problem: maxa,b,c,d,e, f,g u1(a, b) + u2(c, e) + u3(b, c, d) + u4(b, d, f ) + u5(b, g).
The following properties can be used to efficiently solve this problem.

1. computing max u(X1, . . . , Xn) over the set of variables X1, . . . , Xn can be
decomposed into maxX1 maxX2 . . .maxXn u(X1, . . . , Xn) and the order of vari-
ables in the sequence has no importance;

2. if u(X1, . . . , Xn) can be decomposed into f () + g() where f () does not depend
on variable Xi , then maxXi [ f () + g()] = f () + maxXi g();

3. in a GAI network, the running intersection property guarantees that a variable
present in an outer clique XC and not in the neighbor clique of XC will be absent
of any other clique of the GAI network.

In order to determine an optimal tuple, Properties 2 and 3 suggest a strategy con-
sisting first in maximizing over variables appearing only in outer cliques; the results
are then transmitted to the neighbor cliques and the outer cliques are removed. This
process is iterated from outer cliques to inner cliques until all cliques are removed.
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Fig. 10 Utility tables for
u(·) u1(a,b) b0 b1

a0 8 2
a1 4 3
a2 1 7

u2(c,e) e0 e1 e2

c0 6 3 5
c1 3 4 0

b0 b1
u3(b,c,d)

d0 d1 d0 d1

c0 0 2 7 1
c1 5 1 2 4

b0 b1
u4(b,d, f )

f 0 f 1 f 0 f 1

d0 4 2 5 8
d1 3 8 9 0

u5(b,g) g0 g1

b0 0 9
b1 6 4

Let us illustrate this iterative optimization process on the running example. The
optimization problem:

max
b,c,d

[u3(b, c, d) + max
f

[u4(b, d, f ) + max
g

u5(b, g)]
+[max

e
u2(c, e)] + [max

a
u1(a, b)]] (1)

is solved using the following operations:

1. in the clique AB, compute u∗
1(b) = maxa∈A u1(a, b) for all b ∈ B;

2. in the clique CE , compute u∗
2(c) = maxe∈E u2(c, e) for all c ∈ C ;

3. in the clique BG, compute u∗
5(b) = maxg∈G u5(b, g) for all b ∈ B;

4. in the clique BDF , substitute u4(b, d, f ) by u4(b, d, f ) + u∗
5(b) for all tuples

(b, d, f ) ∈ B × D × F . Then, compute u∗
4(b, d) = max f ∈F u4(b, d, f ) for all

tuples (b, d) ∈ B × D;
5. in the clique BCD, substitute u3(b, c, d) by u3(b, c, d) + u∗

1(b) + u∗
2(c) + u∗

4
(b, d) for all tuples (b, c, d) ∈ B × C × D. Then, compute maxb,c,d u3(b, c, d),
the maximal utility (we obtain 34).

Figure11 shows the content of u∗
i and ui after substitution. At the end of step

5 we obtain the maximal utility value (here 34), defined by Eq. (1). At the end of
the collect phase, the optimal value of u over X is known. In order to determine
an optimal tuple corresponding to this value (i.e., an optimal solution) we resort to
an instantiation and diffusion phase that consists in retropropagating the arguments
achieving the maximum at any step, in the reverse order of variables as the one
used for the collect phase. Thus, at the last step of the collect phase, one can see
that utility 34 for u3 corresponds to the tuple (b1, c0, d0), which entails that, in the
optimal tuple, we have B = b1,C = c0, D = d0. At step 4, u∗

4(b
1, d0) corresponds

to u4(b1, d0, f 1) = 14 which implies that F = f 1. Then, at step 5, one can see that
u∗
5(b

1) = 6 corresponds to u5(b1, g0) and therefore G = g0, which completes the
characterization of the optimal tuple. We finally obtain (a2, b1, c0, d0, e0, f 1, g0) as
an optimal solution (Fig. 12).

The algorithm used for the optimisation of GAI functions is similar to the algo-
rithm used for computing the most plausible explanation in a Bayesian network
(Nilsson 1998). This algorithm is founded on the principle of non-serial dynamic
programming (Bertele and Brioschi 1972); it is also used to solve valued constraint
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b0 b1

u∗
1(b) 8 7

c0 c1

u∗
2(c) 6 4

b0 b1

u∗
5(b) 9 6

b0 b1
u4(b,d, f )

f 0 f 1 f 0 f 1

d0 13 11 11 14

d1 12 17 15 6

u∗
4(b,d) b0 b1

d0 13 14

d1 17 15

b0 b1
u3(b,c,d)

d0 d1 d0 d1

c0 27 33 34 29

c1 30 30 27 30

Fig. 11 Content of u∗
i and ui after the substitutions

Fig. 12 Steps 1 to 5 to obtain the optimal utility

satisfaction problems (Bistarelli et al. 1999). This is not surprising because there is a
clear similarity betweenGAI networks, junction trees used in Bayesian networks and
hypergraphs resulting from the triangulation of a cost constraint network. Whether
we want to optimize a multiattribute utility function, a joint probability law or the
overall cost induced by a constraint network, in all cases we use a decomposition of
the objective function into factors whose scopes include only a subset of variables,
and it is this decomposition which is efficiently exploited in graphical models to
perform the optimization efficiently. One can however highlight some specificities
of GAI networks compared to the two other types of networks:

• the number of variables in utility networks is generally reasonably small (the
variables represent here the descriptive attributes of the alternatives). Moreover,
the factors used in the decomposition often include only a limited number of
attributes; interactions between attributes do not involve many attributes due to
cognitive limitation of agents. This is an important difference with constraint
networks that may have to deal with global constraints whose scope includes all
variables. In Bayesian networks, there also may exist large sets of interdependent
variables, making the cliques larger than in GAI networks.

• the problems addressed in utility networks sometimes differ from those considered
in other types of networks. For example, preference elicitation is a different exer-
cise than learning a Bayesian network or a constraint network, even if there are
some bridges between the two problems. Moreover, utility networks have multia-
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gent or multicriteria extensions which lead to consider complex utility functions
that are no longer additively decomposable. In such cases, the variable elimination
process does not apply directly and requires the implementation of more complex
optimization algorithms (Gonzales et al. 2008, 2011).

As mentioned above, GAI networks are non-directed graphs that seem natural to
handle preferences represented by a GAI decomposable utility function. However,
one may wonder if it would not be more informative to resort to a directed graph,
as for UCP nets, to specify which group of variables depends on the other group
in an interaction and to simplify the elicitation process. In order to benefit both
from the advantages of GAI networks and those of CP-nets, one could introduce
another type of directed graph, closer to a Bayesian network than to a junction
tree. For example, when the preferences over the instances of X2 depend on the
instance of X1, wemay decompose theGAI factor u12(X1, X2) into the sum v1(X1) +
v12(X1|X2) and thus introduce an edge X1 → X2 to represent this dependency. The
resulting directed graph is similar to a Bayesian network excepted that utility tables
replace probability tables and are aggregated using a sum instead of a product. This
idea has been proposed by Brafman and Engel (2009). Structurally, the resulting
networks are strongly related to GAI networks since one can pass from these directed
graphs to GAI networks as we pass from Bayesian nets to junction trees. Finally,
an interesting variant of GAI networks, called CUI networks, has been investigated
by Engel and Wellman (2008) with the idea of relaxing GAI independence into a
weaker independence condition.

5 Logical Languages

We now give a briefer overview of the main classes of preference representation
languages based on logic. Some of these languages are not logics on their own but
rather make use of logic. Preferences are expressed in these languages by means of
logical formulas expressing goals, associated with ordinal or cardinal labels express-
ing their importance. We give an overview of these languages in the first part of this
section. In the second part we give a brief overview of preference logics. From now
on, the set of variables V is a set of propositional symbols, and the set of alternatives
X is the set of possible worlds associated with V , namely 2V . As in the rest of the
chapter, alternatives are denoted by x, y etc.

5.1 Logics, Priorities and Weights

5.1.1 Weights

Numerical preferences over a combinatorial domain composed of binary variables
can be represented by means of weighted propositional logic formulas. Existing log-
ics differ from each other on the interpretation of weights associated with formulas.
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A set of weighted formulas is a set of pairs

G = {〈ϕ1, a1〉, . . . , 〈ϕn, an〉},

where ϕi is a propositional logic formula and ai is a real number representing how
much the satisfaction of ϕi contributes to the utility of the agent. In general, the utility
function uG is defined as the aggregation of weights associated with non-satisfied
formulas: for every x ∈ X = 2V ,

uG(x) = −F({ai | x |= ¬ϕi })

where F is a function from IR+ × IR+ to IR+, nondecreasing, commutative and asso-
ciative.4

A first choice consists in interpreting the weights as penalties, namely the price
to pay if the formula is not satisfied (Haddawy and Hanks 1992; Dupin de Saint-
Cyr et al. 1994; Pinkas 1995; Lafage and Lang 2000). The more important the goal
expressed by a formula, the higher the associatedweight. Therefore, given aweighted
formula (ϕ, a), an alternative x has a penalty 0 if it satisfies ϕ and a penalty a if it
falsifies ϕ. The weights associated to formulas are aggregated additively: given a
set of weighted formulas Δ = {〈ϕi , ai 〉|i = 1, . . . , n}, the penalty associated to an
alternative is the sum of its penalties w.r.t. each formula of Δ:

∀x ∈ X , pΔ(x) =
∑

{ai |〈ϕi , ai 〉 ∈ Δ, x �|= ϕi }.

The penalty of an alternative is its disutility, that is, uΔ(x) = −pΔ(x).

Example 7 (Example1 continued) Suppose that the user’s preferences are repre-
sented by means of the following penalty base:

Δ = {〈d, 100〉, 〈d → s, 30〉, 〈n → ¬s, 30〉, 〈d ∧ s → c1, 5〉, 〈n ∨ ¬s → c2, 5〉}

These preferences stand for:

• taking a day flight is important (the associated penalty is 100),
• making a stopover for a day flight, and symmetrically, not making a stopover for
a night flight, is important too, but less so (the associated penalty is 30),

• the choice of the company is much less important (penalty 5): the agent has a slight
preference for traveling with c1 for a day flight with a stopover and to travel with
c2 otherwise.

4Equivalently, one can define the utility function of an alternative by aggregating the weights of all
satisfied formulas, that is,

uG(x) = F({ai | x |= ϕi }).
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The penalty (or disutility) degrees associated to alternatives are the following:

pΔ(ns̄c1) = 105 pΔ(ns̄c2) = 100pΔ(nsc1) = 135 pΔ(nsc2) = 130,

pΔ(ds̄c1) = 35 pΔ(ds̄c2) = 30pΔ(dsc1) = 0 pΔ(dsc2) = 5.

Uckelman et al. (2009) give a thorough study of this representation language: they
compare various sublanguages corresponding to specific syntactical restrictions on
the allowed formulas and specific restrictions on the allowed weights, according to
their expressivity, their succinctness, and the computational complexity of the main
reasoning tasks.

The additive behaviour of penalty logic allows to express compensation between
goals: the non-satisfaction of several less important goals might be compensated by
the non-satisfaction of a more important goal. These valuation systems can be com-
pared to those used in the GAI utility functions presented in Sect. 4: each weighted
formula can be seen as a factor of the function GAI which takes the value 0 or the
penalty depending on whether the formula is satisfied or not.

The choice of F = max leads to define the disutility of an alternative as the impor-
tance of the most important goal that it satisfies. This choice is equivalent to (up to a
transformation of the utility scale) possibilistic logic (see chapter “Representations
of Uncertainty in Artificial Intelligence: Probability and Possibility” of this Volume).
Its expressivity, succinctness and complexity as a preference representation language
have been studied in Uckelman and Endriss (2008).

Example 8 (Example7 continued) Suppose that user’s preferences given in
Example7 are represented by Δ defined as follows:

Δ = {〈d, 9〉, 〈d → s, 7〉, 〈n → ¬s, 7〉, 〈d ∧ s → c1, 3〉, 〈n ∨ ¬s → c2, 3〉}

The utility function induced by Δ is then:

uΔ(ns̄c1) = uΔ(ns̄c2) = uΔ(nsc1) = uΔ(nsc2) = −9,

uΔ(ds̄c1) = uΔ(ds̄c2) = −7, uΔ(dsc1) = 0, uΔ(dsc2) = −3.

and the associated preference relation is: dsc1 �π dsc2 �π ds̄c1 ∼π ds̄c2 �π

ns̄c1 ∼π ns̄c2 ∼π nsc1 ∼π nsc2.

Weighted logics have been used for the compact expression of utility functions in
fair division (Bouveret and Lang 2008), bidding in combinatorial auctions (Boutilier
and Hoos 2001; Nisan 2006) and more generally collective decision making (Greco
and Lang 2015).

A similar language, called marginal contribution nets (Ieong and Shoham 2005)
has been developed with the specific aim of expressing compactly coalitional value
functions in cooperative games. Marginal contribution nets have been used for
expressing compactly preferences in coalition structure generation (Ohta et al. 2009;
Rahwan et al. 2015) and hedonic games (Elkind and Wooldridge 2009), while the
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impact of compact representation by MC-nets for computing power indices in coop-
erative games has been studied in Ieong and Shoham (2005), Elkind et al. (2009).

5.1.2 Priorities

The ordinal counterpart of weighted logical languages is the family of logical lan-
guageswith priorities.A set of preferenceswith prioritiesΔ is an-uple 〈G1, . . . ,Gn〉,
where Gi is a multi-set of propositional formulas with priority i . By convention, G1

contains the highest priority goals and Gn those of lowest priority. We denote by
sat (x,Gi ) and nonsat (x,Gi ), respectively, the sets of formulas in Gi satisfied and
nonsatisfied by x, that is,

sat (x,Gi ) = {ϕ ∈ Gi | x |= ϕ}

and
nonsat (x,Gi ) = Gi \ sat (x,Gi )

The aim is to define a weak order over X from Δ, i.e. from a weak order over
formulas define a preorder over alternatives. The usual choices (see Brewka 1989;
Benferhat 1993; Lehmann 1995) are:

“Best-out” Alternatives are compared according to the priority level of their most
important non-satisfied goals: Let ρ(x,Δ) = min{i, nonsat (x,Gi ) �= ∅}.

x ≥best−out
Δ x′if and only if ρ(x,Gi ) ≥ ρ(x′,Gi )

This is equivalent to the choice of F = max in the previous section and doesn’t
bring anything new. Moreover it suffers from the so-called “drowning” effect:
the presence of a non-satisfied goal with priority i inhibits the effect of all goals
with degree j > i (as well as all other goals with degree i). The following two
refinements of “best-out” prevent the drowning effect.

“Discrimin” Two alternatives are compared according to the most important goals
that one alternative satisfies but not the other one.

x >discrimin
Δ x′ if and only if ∃i ≤ n such that

(
sat (x,Gi ) ⊃ sat (x′,Gi )

∀ j ≤ i, sat (x,G j ) = sat (x′,G j )

)

x ∼discrimin
Δ x′ if and only if ∀i ≤ n, sat (x,Gi ) = sat (x′,Gi ), and

x ≥discrimin
Δ x′ if and only if x >discrimin

Δ x′ ou x ∼discrimin
Δ x′

“Leximin” Two alternatives are compared by first identifying the highest priority
level for which they do not satisfy the same number of goals. Then the alternative
which satisfies more goals at this level is preferred. Let us denote #sat (x,Gi ) the
cardinality of sat (x,Gi ), namely the number of goals of level i satisfied by x.
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x >leximin
Δ x′ if and only if ∃k ≥ 1,

⎛

⎝
such that
(i)#sat (x,Gk) > #sat (x′,Gk)

(ii)∀ j < k, #sat (x,G j ) = #sat (x′,G j )

⎞

⎠

x ∼leximin
Δ x′ if and only if ∀i ≤ n, #sat (x,Gi ) = #sat (x′,Gi )

x ≥leximin
Δ x′ if and only if x >leximin

Δ x′ or x ∼leximin
Δ x′

An equivalent expression of this criterion consists in defining the vector sΔ(x) =
〈#sat (x,G1), . . . , #sat (x,Gn)〉 and compare sΔ(x) and sΔ(x′) according to the
lexicographic order. ≥leximin

Δ is a total preorder.
We also have the following implications:

• x >bestout
Δ x′ ⇒ x >discrimin

Δ x′ ⇒ x >leximin
Δ x′;

• x ≥discrimin
Δ x′ ⇒ x ≥leximin

Δ x′ ⇒ x ≥bestout
Δ x′.

Lastly Brewka (2002) proposes a novel logical connector, the noncommutative
disjunction ⊗, where ϕ ⊗ ψ reads “I would like to see ϕ satisfied, and if it is not,
I would like to see ψ satisfied”. Brewka (2004) goes further and proposes a more
expressive representation language permitting the coexistence of different interpre-
tation criteria of priorities in the same set of preferences.

5.2 Preference Logics

In the previous part, presented formalismsmake use of propositional logic but are not
preference logics in the following sense: a preference logic consists of a semantics
and/or a formal system conceived to reason on dyadic preferences between proposi-
tional formulas.

Although an important part of the literature on preference logics only lies at
the margin of Artificial Intelligence, this research topic has been addressed in a
huge number of AI journals and conferences so that it deserves to be presented in
this chapter. We first briefly present a large family of preference logics constructed
on the basis of ceteris paribus principle to interpret preferences over propositional
formulas. Then we present another large family of preference logics that are all based
on conditional logics.

5.2.1 Ceteris Paribus Preferences

When an individual expresses a preference in natural language such as I prefer an
apartment on the sixth floor to an apartment on the ground floor, she does not express
that she prefers any apartment on the sixth floor to any apartment on the ground
floor. The principle at use in the interpretation of such a preferential statement is
that alternatives should be compared everything else being equal (ceteris paribus), or
more generally, all properties irrelevant to the preferential statement at hand being
equal.
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Interpreting a statement of the form “ϕ is preferred toψ”, that we formallywrite as
ϕ � ψ , is simple when ϕ andψ are “complete” formulas (each is satisfied by a unique
alternative): if ϕ andψ respectively correspond to alternatives x and x′, then the pref-
erential statement naturally corresponds to x � x′. Now, preferences expressed by
individuals do not always refer to single alternatives but often to formulas repre-
senting sets of alternatives that are generally not singletons, neither disjoint sets.
Therefore an individual may express a statement like I prefer ice cream to cake, even
there exist several kinds of ice creams and cakes and if it is permitted to have both
at the same time. This statement is generally equivalent to the statement I prefer an
ice cream and no cake to a cake and no ice cream (Halldén 1957; vonWright 1963):
ϕ � ψ may then be written as ϕ ∧ ¬ψ > ¬ϕ ∧ ψ ,5 where > expresses a compari-
son between mutually exclusive (or contradictory) formulas. Lastly, we can consider
contexts with conditional preferences: if γ is a propositional formula, γ : ϕ � ψ

expresses that the preference of ϕ over ψ applies only when γ is true. Therefore we
can rewrite γ : ϕ � ψ into γ ∧ ϕ � γ ∧ ψ .

Then we have to specify how preference between contradictory formulas (ϕ > ψ ,
where ϕ ∧ ψ is inconsistent) is related to preference over alternatives. A particularly
intuitive principle, which goes back to vonWright (1963), is the ceteris paribus inter-
pretation: ϕ � ψ is interpreted as everything else being equal, I prefer an alternative
satisfying ϕ ∧ ¬ψ to an alternative satisfying ψ ∧ ¬ϕ. Now we have to formally
define the notion of all else being equal. The case where ϕ andψ are opposed literals
(ϕ = p and ψ = ¬p, or vice versa) is simple: x and x′ are identical ceteris paribus
if they give the same valuation to all propositional symbols other than p. When ϕ

and ψ are complex formulas, the interpretation of ϕ > ψ is less obvious; several
definitions have been proposed and studied both in the literature on philosophical
logic (see for example von Wright 1972; Hansson 2001; Roy et al. 2009) and that of
artificial intelligence (see for example Doyle and Wellman 1991; Doyle et al. 1991;
Tan and Pearl 1994).

These logics share with CP-nets and their extensions the ceteris paribus princi-
ple for interpreting preferential statements. We can show that these graphical com-
pact preference representation languages, as well as prioritized goals presented in
Sect. 5.1.2, correspond to particular fragments of preference logics that are suffi-
ciently expressive (Roy et al. 2009; Bienvenu et al. 2010).

5.2.2 Defeasible Preferences and Conditional Logics

Preferences are sometimes expressed with respect to a context which is more or less
specific. Consider for example the following preferential statements:

1. I prefer to commute by bike;
2. If there is a storm, I prefer to commute by metro.

5This principle must be modified in the extreme case where ϕ is a logical consequence of ψ or vice
versa—see Hansson (2001).
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The preferential statement 1 is defeasible, or a default preference: 1 applies not
only when we know that there is no storm, but also when no weather information is
provided: in this case, we jump to the conclusion that the world is normal. However,
upon further learning that a storm is predicted, 2, which is more specific than 1, is
triggered and takes priority over 1. It is worth noticing that 1 and 2 are not contradic-
tory. They should be read as: normally, I prefer commute by bike, except when there
is a storm. Reasoning on such preferences is nonmonotonic: The application of a
preferential statement can be revised in the light of a more specific information. This
kind of reasoning has been widely addressed in Artificial Intelligence, especially for
reasoning about beliefs (see chapter “Knowledge Representation: Modalities, Con-
ditionals, and Nonmonotonic Reasoning” this of Volume). This principle, which
consists in assuming that the world is among the most normal possible worlds given
our current beliefs, allows a concise and modular description of preferences: con-
cise because an economy of representation is made possible by avoiding to explicitly
specify all exceptional circumstances inwhich a preferential statement is not applied;
and modular because a set of such preferential statements can be completed at any
moment without necessarily entirely reconsidering the description of preferences.
Therefore we can add to the previous preferential statement the following statement:

3. if there is an earthquake then I prefer commute by bike, even if there is a storm.

This statement will have precedence over statement 2 in the double exceptional
circumstance there is a storm and an earthquake.

The formalization of contextual and defeasible preferences use conditional log-
ics. In order to simplify the presentation of these logics, we suppose that preference
statements are expressed between two opposite formulas: P(ψ > ¬ψ | ϕ), or for
short, P(ψ |ϕ), expresses that “in the context ϕ, ψ is preferred to ¬ψ”. This pref-
erential statement means that the set of alternatives satisfying ϕ ∧ ψ is preferred to
alternatives satisfying ϕ ∧ ¬ψ . What remains to be done is to give a precise meaning
to “a set of alternatives is preferred to another set of alternatives”.

Let � be a preference relation over X .

• � satisfies P(ψ |ϕ) following the optimistic semantics iff ∃x |= ϕ ∧ ψ , ∀x′ |=
ϕ ∧ ¬ψ , we have x � x′ (Pearl 1990).

• � satisfies (ψ |ϕ) following the pessimistic semantics iff ∃x′ |= ϕ ∧ ¬ψ , ∀x |=
ϕ ∧ ψ , we have x � x′ (Benferhat et al. 2002).

• � satisfies (ψ |ϕ) following the strong semantics iff ∀x |= ϕ ∧ ψ , ∀x′ |= ϕ ∧ ¬ψ ,
we have x � x′ (Benferhat and Kaci 2001).

Given a set of conditional preferences P = {P(ψi |ϕi )|i = 1, . . . , n} and a
semantics, a preference relation associated with P must satisfy every preference
P(ψi |ϕi ) inP . The optimistic and pessimistic semantics, which better suit the idea
of conditional logics, are particularly appropriate to express exceptions. Moreover, a
uniqueweak order can be associated to a set of preferences following these semantics
(Pearl 1990; Benferhat et al. 1992, 2002; Boutilier 1994). We can also use again the
principle of ceteris paribus comparison or its generalizations, that we presented in
Sect. 5.2.1, but at the price of moving away from the spirit of conditional logics.
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Conditional logics go back to Lewis (1973). However, the idea of using condition-
als to reason about preferences is originally due to Boutilier (1994), and then further
developed in other works (Lang 1996; Lang et al. 2002; Benferhat et al. 2002; Lang
and van der Torre 2003). These logics have been extended in Kaci and van der Torre
(2008b) to allow users refer to several semantics at the same time; they generalize
CP-theories (Wilson 2004).

Example 9 (Example1, continued) Consider the following set of conditional pref-
erences

P = {P(|d), P(d|s), P(n|s̄), P(ds|c1), P(n ∨ s̄|c2)}

We interpret these preferences following each of the three semantics described above:

1. Strong semantics: The set P is inconsistent, i.e., no acyclic preference relation
satisfies all preferences inP following this semantics. This is due to preferences
P(n|s̄) and P(n ∨ s̄|c2)which respectively stipulate that ns̄c1 is preferred to nsc2
and that nsc2 is preferred to ns̄c1.

2. Optimistic semantics: P is satisfied by the weak order

dsc1 � ns̄c2 ∼ ds̄c2 ∼ dsc2 � ns̄c1 ∼ nsc1 ∼ nsc2 ∼ ds̄c1

3. Pessimistic semantics: P is satisfied by the weak order

dsc1 � dsc2 � ns̄c1 ∼ ns̄c2 ∼ nsc2 ∼ ds̄c1 ∼ ds̄c2 � nsc1

Conditional preference logics have been used in argumentation (Kaci and van der
Torre 2008a) and database queries (Chomicki 2003). They have also been used in a
sustainable development application (Brockhoff 2014).

6 Conclusion

Decision making spans a diverse set of situations, each with a specific type of avail-
able information about the user’s preferences and with different requirements con-
cerning the time and the cognitive effort to be devoted to the elicitation of the user’s
preferences and to the computation of a suitable decision. The languages and tools
we surveyed in this chapter show us that there needs to be trade-off between, on
the one hand, the expressivity of the language used for eliciting and representing
preferences, and its complexity in terms of communication and computation. In this
chapter we have shown why it is important to represent preferences in a succinct
way, and we have surveyed the main succinct preference representation languages
developed in the decision sciences and the AI literature. For the sake of brevity, we
have mostly left aside the preference elicitation task, which needs to be performed
before comparing alternatives or finding an optimal alternative.
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Representing and eliciting preferences, as well as reasoning about them, is crucial
for various application fields of decision aid, especially in electronic commerce. A
key application field is that of recommender systems, where the system must reason
on the preferences of a user so as to recommend her some items that are likely to
satisfy her. It is also an important topic for the research community interested in user
modeling.

Preference elicitation refers to actively querying an agent so as to learn enough
of their preferences, and is closely related to a field called active learning. More
generally, preferences can be learned by observing an agent making choices or rank-
ing alternatives: this is the field of preference learning (Fürnkranz and Hüllermeier
2010), which is developing rapidly and that we left out of our study.

As said in several parts of this chapter, compact representation of preference has
strong links with valued constraint satisfaction (chapters “Constraint Reasoning”
and “Valued Constraint Satisfaction Problems” of volume 2) and knowledge repre-
sentation, especially nonmonotonic reasoning (chapter “Knowledge Representation:
Modalities, Conditionals, and Nonmonotonic Reasoning” of this volume) and graph-
ical models for uncertainty (chapter “Languages for Probabilistic Modeling over
Structured and Relational Domains” of volume 2); moreover, its applications span
a lot of AI fields such as planning (chapter “Planning in Artificial Intelligence” of
volume 2), collective decision making (chapter “Collective DecisionMaking” of this
volume), multicriteria decision making (chapter “Multicriteria Decision Making” of
this volume), machine learning (chapter “Designing Algorithms for Machine Learn-
ing and Data Mining” of volume 2) and specifically preference learning, electronic
commerce and specifically recommender systems.
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Norms and Deontic Logic

Frédéric Cuppens, Christophe Garion, Guillaume Piolle
and Nora Cuppens-Boulahia

Abstract Deontic logic (from Ancient Greek déon, what is right) aims to formal-
ize the links existing between the notions of obligation, prohibition, permission and
optionality. Deontic logic is at the origin of normative systems which are used to
model obligations, prohibitions and sanctions in organizations. In this chapter, we
will first present standard deontic logic, then we will analyze its drawbacks. A syn-
thesis of some problems tackled in normative systems is then presented: conditional
obligations, norms with exceptions, violations, norms with deadlines and collective
obligations. Finally, several application domains for deontic logic are examined.

1 Introduction

Deontic logics are formalisms that aim to translate philosophical notions related to
norms into mathematical formulas. The first use of the expression “deontic logic” is
due to the Austrian philosopher Ernst Mally (Mally 1926). This expression covers
the study of normative concepts such as obligation, duty, permission, prohibition,
law as well as exemption. Even if other systems have been proposed before, the
work of Finnish philosopher Georg Henrik vonWright is generally considered as the
foundation of deontic logic (von Wright 1951). Von Wright proposed the first viable
reasoning system on deontic concepts. This system is largely based on the analogy
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between the deontic concepts of obligation and permission and the alethic concepts
of necessity and possibility.

Deontic logic is a branch of symbolic logic. The viability of a logical deontic
system is based on its capacity to model the reasoning that both controls and coordi-
nates our daily life. Deontic logic can thus be used to analyze reasoning in domains
such as moral, law, trade or security. Applications of deontic logic traditionally
include study of fundamental concepts intervening in regulatory or legislative texts
(Jones and Sergot 1996; Sergot et al. 1986). However, since (Meyer et al. 1998)
several works have investigated how to use deontic logic to specify information sys-
tems. A synthesis of possible applications of logic deontic in this context is given in
Wieringa and Meyer (1993).

It is important to distinguish a norm, which has no truth value, from a norma-
tive proposition, which has a truth value. To understand this distinction, consider
a normative expression such as “you have the permission to borrow this book and
to keep it for one month”. This expression can be used by an authority to grant a
permission. It can also be used to describe an existing norm. In the first case, the
creation of new norms corresponds to a “regulation” activity. In the second case, the
objective is to specify that a normative proposition, corresponding in the previous
example to a permission, exists in the current state. This activity is only descriptive.
These two activities are generally regarded as being exclusive and the first objec-
tive of deontic logic is generally to define how to reason on normative propositions.
However, some studies have proposed to formalize the norm creation activity with
speech acts (Demolombe and Louis 2006). These speech acts allow a normative
authority to create a norm and thus to ensure that some normative proposition
becomes true. For instance, when a father says to one of his children “I permit
you to come back at midnight tonight”, the permission for the child to come back at
midnight is created throughout the speech act while it did not exist before.

Deontic logic is thus a powerful tool to reason on normative propositions. Several
dimensions are to be considered when specifying normative propositions:

• What: what does the normative proposition deal with? The different models can be
classified into two categories: normative proposition on a state of the world (e.g.
permission to have an overdraft) or on the realization of an action (e.g. obligation
to repay a loan).

• When: in which circumstances is a normative proposition activated,1 i.e. becomes
true? The objective is to specify conditional or contextual normative propositions.
In the case of an obligation or a prohibition, it is also to specify in which cir-
cumstances a normative proposition is violated. In particular, recent works have
investigated the concept of obligations with deadlines.

• For whom: who is concerned by the normative proposition? In the case of
obligation,2 this leads to specify individual obligations or group (or collective)

1The date of creation of a normative proposition is distinguished from its activation date: a regulation
can be activated after its creation.
2The same reasoning applies on permissions and prohibitions.
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obligations. The entity concerned by the obligation can be a physical entity
(a physical person) or a legal person.

• To whom: to which authority should we be accountable and what is the norma-
tive system the proposition belongs to? The aim is to specify responsibilities and
activities (i.e. communication acts) allowing the transfer of these responsibilities,
for instance delegation activities.

This chapter is organized as follows. Section 2 presents the “what?” dimension and
examines the logics representing obligations to be and obligations to do. Section 3
studies the “when?” dimension with the conditional and contextual obligations per-
spective, as well as the problem of exceptions and violations handling. Section 4
completes the “when?” dimension with the analysis of obligations with deadlines.
Section 5 deals with collective obligations. Finally, Sect. 6 concludes and proposes
a summary of possible applications of deontic logic in information systems.

2 Obligation to Be and Obligation to Do

There are many deontic logic variants, each one with its specific features, advan-
tages and drawbacks regarding adequacy for a given class of problems. The major
distinction among these logics lies on the object of obligations. An obligation to be
is a constraint over a state, a formula that the system must satisfy. It can be seen as
an obligation of result. Standard deontic logic is the most prominent illustration of
this vision. Conversely, an obligation to do imposes the realization of an action or a
process, allowing for the representation of an obligation of means.

2.1 Standard Deontic Logic

Standard deontic logic (SDL) is a normal modal logic (see chapter “Knowledge
Representation: Modalities, Conditionals, and Nonmonotonic Reasoning” in this
volume) in which the universal modality, Ob, represents the concept of obligation.
A primitive version of deontic logic was introduced by von Wright in von Wright
(1951). However, SDL takes into account several improvements proposed by both
the scientific community and von Wright himself. In particular, the initial proposal
lied on an “obligation to do”, whereas the stable version of SDL is based on an
“obligation to be”, easier to manipulate. The SDL formula Ob ϕ should then be
understood as an obligation for ϕ to be true, ϕ being, possibly, the resulting state of
one or several actions not represented in the formula. The deontic concept covered by
an SDL obligation is itself subject to interpretation and adaptation. It might represent
a notion of duty, of a norm imposed by an external entity or even of the ideality of
a given state (Ob ϕ representing the fact that situation ϕ is ideal for an unspecified
reason).
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As we will see in the rest of the section, standard deontic logic only imperfectly
represents the notion of obligation, yet its mechanisms make up a commonly used
basis for the design of more complex logics.

2.1.1 Modalities and Axiomatics

If obligation (Ob) is considered as the primitive (universal)modality, then permission
(Per ), prohibition (For ), optionality (Opt) or gratuity (Gra) of a formula can be
defined as syntactic abbreviations using Ob (formulas (1) to (4)). In SDL, prohibition
is therefore an obligation on the negation of a formula and permission is an absence
of prohibition. Optionality denotes the absence of an obligation (or a permission
over the negation of a formula) and gratuity is the conjunct absence of obligation
and prohibition.

Per ϕ
def= ¬Ob¬ϕ (1)

For ϕ
def= Ob¬ϕ (2)

Opt ϕ
def= ¬Ob ϕ (3)

Gra ϕ
def= ¬Ob ϕ ∧ ¬Ob¬ϕ (4)

Base modality Ob has a K D axiomatics (see chapter “Knowledge Represen-
tation: Modalities, Conditionals, and Nonmonotonic Reasoning” in this volume),
which means that obligation is distributive over implication (axiom K ) and that SDL
obligations must be coherent, in the sense that obligation implies permission (axiom
D). As a consequence, the simultaneous obligation and prohibition of a same formula
(situation known as a dilemma) lead to the logical inconsistency of any SDL system.
Furthermore, SDL obligations satisfy the necessitation rule: theorems are obligatory
formulas.

As stated in the introduction, one can build an analogy between the concepts of
obligation and necessity on the one hand, and of permission and possibility on the
other hand. It should be noted however that the concept of necessity is generally
associated with a K T axiomatics: if a formula is necessary, then this formula is true
(axiom T ). By contrast, formula Ob ϕ ∧ ¬ϕ is satisfiable in SDL and represents the
violation of an obligation on ϕ.

2.1.2 Semantics

Being a normal modal logic, standard deontic logic may be interpreted over Kripke
models (see chapter “Knowledge Representation: Modalities, Conditionals, and
Nonmonotonic Reasoning” in this volume), in which the accessibility relation
(the deontic accessibility relation), is serial: from any world there is at least one
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accessible world. That is to say, if a given (consistent) set of deontic formulas is
attached to a given world (for instance the world actually representing the current
state of a system), then there is at least one world in which the obligations and
prohibitions in those formulas are fulfilled. This feature is the consequence of the
hypothesis of coherency of obligations. It expresses the fact that a set of SDL formu-
las cannot prevent (through the obligations, prohibitions, permissions…it contains)
its own realization, under pain of being logically inconsistent. Since all the deontic
formulas of a given world are fulfilled in the worlds reachable through the deontic
accessibility relation, those worlds are sometimes called “ideal”.

Using a possible world semantics for standard deontic logic relies on a simple
representation. However, the benefits are not as clear as with linear temporal logic,
for instance. Indeed, in the case of deontic logic it is hardly conceivable that an
agent or a program maintains a representation of possible worlds according to the
deontic context, whereas it may directly represent and reason on instants in time.
The standard semantics attached to SDL is therefore mostly conceptual and hardly
appeals to intuition.

2.1.3 Limitations

Standard deontic logic suffers from a number of limitations. Some of them are restric-
tions in terms of expressivity imposed by the initial design choices of the language.
For instance, the structure of the obligation modality does not allow for the represen-
tation of the entity issuing the obligation, or of the entity subject to it. Furthermore,
no temporal notion is natively included in the language, and any conflicting situation
between two or several formulas formally leads to the inconsistency of the whole
system. This kind of limitation can be at least partially overcome by the means of
extensions such as obligation modality differentiation or articulation with a temporal
logic (Åqvist 2004).

Other limitations are more fundamentally linked to the logical structure of SDL
and are less easily avoided. They are traditionally called “paradoxes” and are the
main source of criticism regarding SDL. Paradoxes are either logically correct for-
mulas or derivationswith counter-intuitive interpretations, or sets of formulas looking
intuitively sound but leading to logical contradictions.

For instance, the Ross paradox, results of a dissonance between the intuitive
meaning of disjunctions and their formal definition. It refers to the formula Ob p →
Ob (p ∨ q), which may be interpreted as “if I ought to post a letter, then I ought
either to post it or to destroy it”, which is not an intuitive reasoning. In a similar
fashion, the paradox of derived obligation (Prior 1954) stems from the structure of
logical implication, while the good samaritan Paradox (Prior 1958) is a consequence
of the necessitation rule characterizing normal modal logics. A more detailed anal-
ysis of formal and philosophical limitations of standard deontic logic can be found
in McNamara (2006).
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2.2 Deontic Logic of Actions

Obligations to do are another possible representation choice for deontic logics. The
idea is to make obligations bear not on states, but essentially on actions (and possibly
on their outcomes). A first approach consists of mixing operators from standard
deontic logic (or one of its variants) with operators from a dynamic logic, i.e. based
on the notion of action. A first proposal in this direction was proposed by Meyer
in Meyer (1988). It is an instance of a “reductionist” approach, which reduces the
definition of deontic concepts down to the notion of “violation”.3 This approach uses
the [α]ϕ operator of dynamic logic, indicating that propositionϕ becomes necessarily
true as soon as α is executed, as well as a deontic constant V representing a state
of violation. The obligation to execute action α, noted Ob α, and the interdiction to
execute α, noted For α, are respectively defined as follows:

Ob α
de f= [ᾱ]V (5)

For α
de f= [α]V (6)

The formula [ᾱ]V says that the state of violation V is a consequence of the absence
of execution of action α (noted ᾱ). Permission and optionality modalities are then
respectively defined as the negation of interdiction and the negation of obligation.

More recently, a non-reductionist approach of the deontic logic of actions has been
proposed in Broersen et al. (2001). Reference (Balbiani 2005) and (Cuppens et al.
2005) proposed as well, in 2005, amulti-modal logic associating, among others, SDL
obligations to modalities of an extension of Propositional Dynamic Logic (PDL). In
this formalism, obligations and permissions bear on process combinations. Since
those works also consider the possibility of obligations with delays, we will refer
to them again in Sect. 4. A recent work of Knobbout et al. (2016) mixes state-based
norms and action-based norms.

Another way of taking actions into account in deontic logic is by relying on stit
(“see to it that”) operators. Those operators, like Pörn’s Ea modality (Pörn 1977),
Belnap and Perloff’s “achievement stit” (Belnap and Perloff 1988) or von Kutschera
and Horty’s “deliberative stit” (von Kutschera 1986; Horty 1989), build a direct
relation between an agent and a state formula, resulting from its actions. The structure
of those operators aims to capture the notion of responsibility that an agent may have
for the realization of the target formula, through the causality between its choices
(the actions it undertakes) and the possible resulting states. Thus, a “stit” operator
cannot link an agent to a state which could have occurred independently from its
actions, or which it cannot influence (like tautologies or antilogies). The ability of
an agent to perform an action or to ensure the occurrence of a state is a key concept

3As early as 1958, Anderson (Anderson 1958) had proposed to define the obligation to be Ob by
using the alethic necessity operator � and a deontic constant V , representing a state of violation:

Ob ϕ
de f= �(¬ϕ −→ V ). Intuitively, this definition says that if ϕ is not realized, then a violation

occurs.



Norms and Deontic Logic 259

of “stit” operators. In this way, when an SDL deontic operator is applied to “stit”
formulas, the distinction between the obligation for a proposition to be true in a given
state and the obligation to ensure that this proposition becomes true in this state is
made explicit. The representation of absurd or impossible obligations can then be
avoided. Even though the obligation modality remains subject to the necessitation
rule or the nature of logical connectors, using elaborate “stit” operators allows one to
avoid some of the paradoxes of SDL, like the Ross paradox. The comfort guaranteed
by “stit” operators may however become a handicap when it becomes necessary to
workwith obligations impossible to fulfil, for instancewhenworkingwith conflicting
norm sets.

3 Conditional and Contextual Obligations

One of the earliest problem tackled in deontic logic is the study of conditional and
contextual obligations. A conditional or contextual obligation is an obligation which
is taken into account only under certain conditions or in a particular context. For
instance, “if it is raining, you must turn on your headlights” is a conditional obligation:
the obligation of turning on your headlightsmust be taken into account onlywhen it is
raining.4 Reasoning on conditional and contextual obligations leds to three problems
that we will present in this section:

• the difficulty to define a dyadic deontic operator to model such obligations. Such
an operator should allow to take into account not only the proposition on which
the deontic notion is directed, but also a proposition representing the application
context of the norm.Wewill present inSect. 3.1 severalmodels for dyadic operators
and the expected properties of these operators.

• management of exceptions: what happens if a general obligation is contradicted by
a more particular obligation? We will present in Sect. 3.2 the notions of conflicts
and defeasible norms using a semantics of preferred worlds.

• management of violations, particularly through the problem of contrary-to-duties
that will be presented in Sect. 3.3.

3.1 Dyadic Deontic Logic

We want to define a dyadic modal operator for obligation Ob(ϕ|ψ) where ϕ is a
proposition on which the obligation holds and ψ is the context of the application
of the obligation. In the following, the remarks and expected properties about this
operator may also be applied to other deontic notions like permission or prohibition.

4Of course, there may be other cases when turning on your headlights is mandatory: at night, when
going through a tunnel etc.
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There are two possible models for such an operator:

• define Ob(−|−) using an operator modelling a non-conditional obligation
• define Ob(−|−) without using an unary obligation operator.

3.1.1 Using an Unary Operator to Define a Dyadic Obligation Operator

Using an unary obligation operator Ob(−), there are two ways to define O(ψ |ϕ):

Ob(ϕ|ψ)
def=ψ → Ob(ϕ) (7)

Ob(ϕ|ψ)
def=Ob(ψ → ϕ) (8)

If we consider that SDL is used to model the unary obligation operator Ob(−),
both definitions allow to derive the following properties for all propositions ϕ, ψ

and γ :

� Ob(ϕ) ↔ Ob(ϕ|�) (9)

� Ob(ϕ|ψ) → Ob(ϕ|ψ ∧ γ ) (SA)

Property (9) indicates that it is possible to represent non conditional obligations
with the dyadic operator: simply use a tautology as the conditional part of the dyadic
obligation. Property (SA), called strengthening of the antecedent is more problem-
atic: it denotes that this representation is not sufficient to represent normswith excep-
tions as we will see in Sect. 3.2.

If definition (7) is chosen to represent the dyadic obligation, the two following
properties can be derived:

� ¬ψ → Ob(ϕ|ψ) (10)

� ψ ∧ Ob(ϕ|ψ) → Ob(ϕ) (DF)

The first theorem is problematic. For instance, if it is not raining, then “if it is not
raining, then is is obligatory to put a bathing suit” can be deduced. Notice that “put
a bathing suit” can be replaced by any satisfiable proposition. The second theorem,
called factual detachment, shows how to derive non conditional obligations from
conditional obligations and facts. For instance, if it is mandatory to drive on the left
side of the road if you are in Great Britain, then if you are effectively in Great Britain,
it is obligatory to drive on the left side of the road. Factual detachment allows one to
derive obligations that apply in a particular situation: these obligations will be called
effective obligations.

If definition (8) is chosen to represent dyadic obligations, the two following prop-
erties are obtained:
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� Ob(¬ψ) → Ob(ϕ|ψ) (11)

� Ob(ψ) ∧ Ob(ϕ|ψ) → Ob(ϕ) (DD)

As in the previous case, the first theorem is problematic: any proposition ismanda-
tory if some proposition is forbidden. For instance, if it is forbidden to drive on the
left side of the road, then it is mandatory to kill your neighbors if your are driving
on the left side of the road. The second theorem, called deontic detachment, allows
one to derive non conditional obligations from both conditional and non conditional
obligations. Using this theorem, ideal obligations are derived: these obligations do
not consider the actual situation, but only the set of normative sentences representing
a regulation.

The definition of a dyadic deontic operator from an unary deontic operator leads
to problems, whatever the chosen option is. Let us however notice that two properties
are interesting and should be verified by any dyadic deontic operator:

• factual detachment, used to find what are the obligations that must effectively be
applied in a particular situation;

• deontic detachment, that allows one to deduce the obligations that should ideally
be applied from a set of normative sentences representing a regulation.

3.1.2 Direct Definition of a Dyadic Operator

The problems raised by the use of SDL and its limitations suggest a more complete
and semantically richer understanding of obligation by directly defining dyadic deon-
tic operators. We will rely here on Hansson (1971) and more details can be found in
Spohn (1975), van der Torre and Tan (1997), Lewis (1974).

In Hansson (1971), Hansson presents three deontic logics, DSDL1, DSDL2 and
DSDL3, whose semantics is based on the notion of ideality: some worlds are more
ideal than others and the propositions true in these ideal worlds are the obligations to
be modelled. There may be several ideality levels representing “degraded” situations
and thus solving the problem of representing norms with exceptions (cf. Sect. 3.2).
DSLDL1 andDSDL2 are rather weak systems and the focus is put onDSDL3, whose
accessibility relation, representing ideality, is transitive and total and corresponds to a
preference relation. Let us notice that the three DSDL logics do not validate property
(SA).

Several logics use the same semantics (cf. (Hansson 1990; van der Torre and Tan
1999b) for instance) and a complete axiomatization of DSDL2 can be found in Parent
(2009). We will come back to these logics with preferential semantics in Sects. 3.2
and 3.3, because they may be used to manage exceptions and violations in normative
systems. On amore “proof-theoretic” point of view, (Parent and van der Torre 2017a)
presents a logical framework to reason on detachment in normative systems.
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3.2 Exceptions

In a normative system, theremaybe a general rule and a rule that applies in a particular
context such that both rules allow to deduce inconsistent normative statements. For
instance, a regulation R in a university may stipulate that “it is forbidden to take
emergency exits”, but that “in case of fire, it is mandatory to take the emergency exits
to go out the building”. If we use a dyadic operator Ob that represents obligation,
then regulation R may be modelled as follows:

Ob(¬exits|�) (12)

Ob(exits|fire) (13)

Formula 12 represents the non-conditional prohibition of taking the emergency
exits (cf. formula 9). Formula (13) represents the conditional obligation of taking the
emergency exits in case of fire.

The norms we should actually take into account in such a regulation should
be determined in a particular context. We will suppose in the following that C is
a consistent set of propositional formulae representing the context in which the
regulation should be evaluated. To find what are the obligations to be taken into
account, we should find formulae ϕ such that R |= Ob(ϕ|C ) (denoting by C the
conjunction of formulas in C ).5

In our example, whatever model based on SDL among the two presented
in Sect. 3.1 is chosen, we can show that R |= Ob(exits|fire) ∧ Ob(¬exits|fire).
A dilemma is obtained: it is both mandatory and prohibited to take the emergency
exits in case of fire.

This problem is well-known in logic and is usually solved using a non-monotonic
logic (cf. chapter “Knowledge Representation: Modalities, Conditionals, and Non-
monotonicReasoning” in this volume). The prohibition of taking the emergency exits
must apply in all situations except when there is a fire. The obligation of not taking
the emergency exits should not be derivable from regulation when there is a fire, as
it does not apply anymore. Van der Torre and Tan speak about overridden defeasi-
bility (van der Torre and Tan 1997), because the rule represented by formula (13)
is more specific than the rule represented by formula (12) and should be cancelled
when the context allows it.

From a more technical point of view, dyadic operators models based on SDL
presented in Sect. 3.1.1 imply that the rule (SA) may be used. Ob(¬exits|fire) may
then be deduced fromOb(¬exits|�), which is not acceptable. The use of (SA) should
therefore be blocked if norms with exceptions should be taken into account, because
it represents the monotonicity of obligations derivation according to the context.

To address this issue, a preferential Kripke semantics can be used for the Ob
operator as presented in Sect. 3.1.2: the accessibility relation between possibleworlds
is then a preference relation, denoted here by≤ (most preferredworlds are classically

5Notice that the reasoning is the same for the other deontic notions (prohibition, permission etc).
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the minimal worlds for ≤). An obligation may be seen as a constraint on preferences
between the worlds. For instance, the obligation of not taking the emergency exits
may be represented by the following constraint: the worlds in which ¬exits is true
are preferred to those in which exits is true in most cases. The obligation to take the
emergency exits in case of a fire may be represented by the following constraint: the
worlds in which exits ∧ fire is true are preferred to those in which ¬exits ∧ fire is
true. A possible model of R with such semantics would then be:

¬exits
¬fire ≤ exits

fire ≤ ¬exits
fire ≤ exits

¬fire

To find the actual obligations with such semantics, the algorithm is pretty simple:
find the most preferred world among those which satisfy the context. In our example,
when there is no particular context, the most preferred world is one in which ¬exits
is true: it is forbidden to take the emergency exits. On the other hand, if we consider
that there is a fire, then the most preferred satisfying the context is the one in which
exits is true: it is mandatory to take the emergency exits.

3.3 Violations

Violations detection may seem rather simple: it seems sufficient to verify that if ϕ

is actually mandatory, then ¬ϕ is not true or else the obligation is violated. If the
question of violations management in deontic logic is examined more accurately, the
problem of Contrary-to-Duties (CTD) arises rapidly. Lots of works are tackling this
problem, see for instance (Carmo and Jones 2002; van der Torre and Tan 1999b,
1998; Tan and van der Torre 1997; Prakken and Sergot 1996, 1997; Cholvy and
Garion 2001; van Benthem et al. 2014; Calardo et al. 2014).

A CTD is an obligation that must be applied only in sub-ideal situations. For
instance, the obligation to apologize when not keeping your promise is only effective
when the obligation of keeping your promises has been violated. The most famous
examples of CTD can be found in Chisholm (1963), Forrester (1984) and lead to
paradoxes. For instance, Chisholm’s paradox may be presented as follows:

1. Mr X must help his neighbors
2. if Mr X does not help his neighbors, then Mr X must not let them know he is

coming
3. if Mr X does help his neighbors, then Mr X must let them know he is coming
4. Mr X does not help his neighbors.

First obligation (sentence 1) is called prima facie and the second one (phrase
2) is the Contrary-to-Duty. Intuitively, the four sentences constituting the paradox
are consistent. The objective is thus to find a formalism in which a prima facie
rule and its CTD can be represented consistently and independently (i.e., the two
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formulas representing the prima facie rule and its CTD are logically independent),
while allowing to represent the contextual obligation 3.

Several approaches have been proposed to solve the problem of Contrary-to-
Duties. For instance, some temporal approaches (cf. (Åqvist and Hoepelman 1981))
distinguish two moments in time: when an obligation is violated and when the sec-
ondary obligation of the CTD is fulfilled. There exist also approaches based on action
logics that distinguish the condition of a conditional obligation which is considered
as a state and the obligation itself that is considered as an action (Castañeda 1981;
Meyer 1988). Chisholm’s paradox can perfectly be represented in these two kinds of
logics, because it is easy to identify in this paradox a temporal dimension and dis-
tinguish “it is obligatory to do something” from “it is obligatory to be in a particular
state”.

However, let us consider the following example proposed by Prakken and Sergot
in Prakken and Sergot (1996) (this example could be part of a subdivision by-law):

there must be no dog (PF)

if there is a dog, there must be a warning sign (CTD)

there must be no warning sign (DM)

there is a dog (F)

This example is interesting because time and action notions are not present in
the subdivision by-law. The three sentences are applicable at the same time and no
action appears in the regulation. Let us notice that formalisms presented in Sect. 3.1
are not sufficient to correctly represent these four sentences: SDL reductions using
definitions (7) and (8) are too strong and make (DM), (CTD) and (F) inconsistent (if
using (7)) or (DM), (CTD) and (PF) inconsistent (if using (8)). Let us notice similarly
that DSDL3 is too weak to detect the dilemma.

Several approaches claim that reasoning with CTD is simply a particular kind of
defeasible reasoning and thus that techniques for non-monotonic reasoning could be
applied directly on this scenario (cf. (McCarthy 1994) for instance). If the principles
of non-monotonic reasoning can be easily adapted to reason on moral dilemmas or
conflicting obligations (Prakken 1996; van der Torre and Tan 1998, 1999b; Horty
1994), it is not the case for CTD: prima facie rule does not “defer” to the CTD, it is
always in effect and is in particular violated if the CTD must be applied.

In the dog example, the sentence “if there is a dog, there must be a warning sign”
expresses the fact that some non-ideal worlds are more ideal than other non-ideal
worlds. The worlds in which there is a dog are clearly non-ideal, but among them the
worlds in which there is a warning sign are “better” than the worlds in which there
is no warning sign. It seems therefore interesting to use a preferential semantics to
represent CTD, like for instance in Prakken and Sergot (1997), van der Torre and
Tan (1999b), Cholvy and Garion (2001). An hybrid approach using defeasible logic
and preference logic is also proposed in van der Torre and Tan (1997).

The diversity of approaches used to tackle the problem of representation and
reasoning with CTD shows that this problem is still open. In particular, there is no



Norms and Deontic Logic 265

consensus on the formal representation of a scenario involving CTD. Carmo and
Jones suggested in Carmo and Jones (2002) eight postulates which, according to
them, should be verified by an approach trying to model CTD. For instance, one
of these postulates states that the logical representations of the four sentences must
be logically independent, another one that the formalism must be applicable on
non-temporal examples etc. This initiative provides a “minimal” consensus on what
should be expected from logical formalisms dealing with CTD.

The logic they have developed from these postulates uses a dyadic operator Ob
to represent conditional obligations and two monadic operators Obi and Oba to
represent respectively what is ideally obligatory and what is actually obligatory (i.e.
in the current context). This approach distinguishes ideal and effective obligations
and is interesting because it has a behavior similar to (DD)when it is correct (deriving
ideal obligations) and a behavior similar to (DF) to deduce effective obligations. They
also introduce a simple agency model that manages violations given what the agent
is able to do or not. Cholvy and Garion rely on this approach to develop a formalism
using a logic of conditional preferences in Cholvy and Garion (2001). Recent works
of van Benthem et al. (2014), Calardo et al. (2014) use also a logic of preferences
to deal with CTD. Notice that a sound and complete implementation of Carmo and
Jones logic in HOL has been recently presented in Benzmüller et al. (2018). Finally,
some solutions to the CTD problem has been proposed in Input/Output logics with a
norm-based semantics (instead of a semantics based on preferred world), see Parent
and van der Torre (2018), Parent and van der Torre (2017b).

4 Obligations with Delays

Deontic logics are often associated with temporal logics (Åqvist 2004), in order to
gain in expressivity. Indeed, obligations, prohibitions or permissions generally apply
to states or actions anchored in a given history, and norms themselves often bear
time-related constraints. When reasoning on obligations situated in time, it becomes
paramount to associate them with a deadline, a delay before which the obligation
must be fulfilled to avoid a violation. An obligation without deadline can indeed
be considered as void (Dignum et al. 2004): either it is an immediate obligation, in
which case one can only acknowledge its fulfilment or non-fulfilment without any
means to act on it, or it is a standing obligation on an unspecified future, in which
case one always has the possibility to postpone, without the obligation ever being
formally violated. Only the specification of a deadline or a delay tightly linked to the
obligation allows one to characterize its fulfilment or violation, while constraining
the means of action of the agent subject to it. This notion of delay or deadline fits
the legal notion of term, as the “modality of an obligation related to the occurrence
of a future event of certain realization” (translated from (Cornu 1987)).
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4.1 The Several Models for Obligations with Delays

The design of an operator of obligation with delay depends much on the chosen
deontic and temporal formalisms. For instance, Dignum et al. have proposed an
operator for a branching temporal logic associated to a stit-like operator (Dignum
et al. 2004), Demolombe et al. for an “obligation to do” formalism introduced by
Demolombe (2005), Brunel et al. (2006)work on an extension of the product between
SDLand a linear temporal logic,while (Cuppens et al. 2005) introduce the concept via
a multi-modal logic combining SDL obligations with the modalities of an extension
of dynamic logic embedding action durations.

One may classify the different proposals in three families: those using a notion
of delay (reasoning on the basis of a duration), those using a deadline (reasoning
on the basis of a date) and those using a contextual event (reasoning on the basis
of an abstract temporal constraint). The last kind may model the legal concept of
condition, which is distinct from term in that its realization is not certain. We will
refer to all these concepts by the generic term of obligations with delays.

4.2 Criteria and Choice Points for Designing an Operator

Dignum et al. propose in Dignum et al. (2004) six useful choice points regarding the
design of an obligation with delay operator. These six questions may find different
answers according to the variant of the philosophical context to model and to the
structure of the base language, even though some answers may appear more natural
than others.

1. Deadline definition: it may be practical to consider the deadline as a certain and
non ambiguous event which will occur once and only once in the time flow. It
then fits what Åqvist calls “systematic frame constants” (Åqvist 2004). However,
specific needs may lead to language enrichments allowing repeatable deadlines,
ambiguous deadlines or never-occurring deadlines. One can also, like Dignum et
al., choose to use tautological deadlines to express immediate obligations;

2. Deadline in the future: it may seem obvious, for a human, that a deadline in the
past (or even at the present instant) leaves one with no means of action. The
fulfilment of the obligation is then independent from the actions and capabilities
of the agent. For this reason, one may choose to constrain deadlines to be situated
in a strict future;

3. Obligations on tautologies: should they be tautologies themselves, as in SDL? Or
should they be unsatisfiable, as it is the case when expressing obligations to do
with a stit operator, because of the agent’s absence of control on the obligated
formula?
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4. Obligations on antilogies: it is known that, in SDL, a situation in which Ob ϕ

and Ob ¬ϕ are simultaneously true corresponds to a dilemma, which should be
avoided since it leads to logical inconsistency. Dignum et al. consider in Dignum
et al. (2004) that introducing delays may lead to a modification of the notion
of dilemma. So, if formula Ob(ϕ < δ) expresses the fact that an obligation on
ϕ must be fulfilled before a delay δ, then one may wonder whether a situation
in which Ob (ϕ < δ) and Ob (¬ϕ < δ) are simultaneously true corresponds to
a dilemma. Dignum et al. consider that that situation is coherent provided it is
possible to successively fulfil both obligations while respecting delay δ;

5. Obligations not fulfilled at the deadline: the persistence of an unfulfilled obligation
past its deadline is discussed in Brown (1996), Elrakaiby et al. (2012). An obliga-
tion is said to be persistent if it remains true after its violation. For instance, let us
consider an obligation to submit the review of a publication before the acceptance
notification deadline. One might consider that this obligation is not persistent, i.e.
that, even though unfulfilled, it disappears on the day of the deadline. However,
an obligation to pay one’s taxes is definitely persistent: the obligation will remain
after its violation. In this case, the only way to remove this obligation is to pay. In
both cases, persistent or not, it is useful to associate the violation of an obligation
with sanctions or contrary-to-duty obligations;

6. Nature of violations: as the case may be, one can use either punctual violations,
corresponding to an event situated in time, “violation states” in which the agent
may be after having violated the obligation and until a specific condition is met
(such as a later fulfilment), or a combination of both. The temporal expressivity
of the chosen formalism may constrain this choice: event-like violations are not
directly manipulable without the temporal operators to reason on past.

In addition, Brunel et al. point out two fundamental principles that any operator
for obligations with delays should verify. The monotony principle says that from an
obligation with a given delay, one can logically derive the same obligation with any
longer delay. The propagation principle states that the obligationmust bemaintained
over time, until either it is fulfilled or the delay is expired. This specification of the
essence of obligations with delays leads to the design of several operators around
the mechanics of a temporal Until.

One should also note that the concept of prohibition maintained over a period
of time may be defined jointly with the one of obligation with delay, by adapting
the monotony and propagation principles as well as the six choice points. However,
the notion of maintained prohibition is much easier to design, as the simple holding
of an immediate prohibition. The two operators exhibit some weak form of duality
(between the obligation with delay and the negation of the maintained prohibition).
Indeed, if there is no obligation on ¬ϕ with delay δ, then one should be able to
infer that there is no prohibition on ϕ maintained until δ. Conversely, if there is a
prohibition on ¬ϕ maintained until δ, then one should be able to infer an obligation
on ϕ with delay δ.



268 F. Cuppens et al.

5 Collective Obligation

A collective obligation applies to a group of agents, in such a way that this group as
a whole is obliged to achieve a given state or to realize a given task. When none of
the different members of a group cannot individually fulfil a collective obligation, it
is necessary to assign sub-tasks to the different members of the group and coordinate
the fulfilment of these sub-tasks in order to fulfil this collective obligation.

Several works have investigated this type of obligation (Royakkers and Dignum
2000; Grossi et al. 2004; Garion and Cholvy 2007; Elrakaiby et al. 2009; Cuppens
et al. 2013). These works have specially focused on the following issues:

• Impact of a collective obligation over individual obligations. Grossi et al. (2004)
notice that fulfilling a collective obligation generally requires a planning activity
to decompose the collective obligation into sub-tasks to be fulfilled by different
members of the group. Grossi et al. thus suggest a model based on the concept of
plan and on the distribution of tasks to agents that contribute to the plan. However,
Garion et Cholvy (Garion and Cholvy 2007) consider that deriving several indi-
vidual sub-tasks from the collective obligation may generally depend on several
parameters, including the capability of the members of the group to contribute to
the collective obligations aswell as personalwill of eachmember of this group to be
involved in the collective obligation fulfilment. The concept of commitment (Roy-
akkers and Dignum 2000; Garion and Cholvy 2007) is proposed to model an agent
that is both capable and willing to contribute to the fulfilment of some sub-tasks of
a collective obligation. In case of commitment of an agent, then sub-obligations
can be derived, i.e. there is an obligation to fulfil the derived sub-tasks.

• Group coordination. Grossi et al. (2004) investigate this problem and propose a
model in the form of additional obligations for the agents involved in the collective
obligation fulfillment to be informed of the obligations they have to fulfil. More-
over, these coordination obligations also include the obligation to inform other
members of the groupwhen a given sub-obligation that contributes to the fulfilment
of the collective obligation is actually fulfilled. These coordination obligations are
then integrated in the plan allowing the fulfilment of the collective obligation.

• Responsibility for the group members in case of violation. In Garion and Cholvy
(2007), the authors investigate how to analyze responsibility for group members
in case of violation of a collective obligation. In one hand, a group member cannot
be held responsible for non fulfilling the sub-tasks they are not capable to fulfil. In
the other hand, if several members of a group are capable to fulfil a given sub-task,
then agents that are committed to fulfil the obligation are firstly responsible for
non fulfilling this sub-task.

• Collective obligation with deadlines. Must this deadline be equal for all the group
members? This problem is addressed in Elrakaiby et al. (2009). This paper presents
a model where members of a group may have different deadlines. For example,
one collective obligation may have a deadline corresponding to the end of the
working day, a deadline that may depend on the working hours of the differ-
ent group members. Elrakaiby et al. (2009) also investigate how the state of a
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group may change over time, because some members may join or leave the group.
In this case, the violation of a collective obligation is raised only when the deadline
is achieved for all the active members of the group.

In Carmo and Pacheco (2001), Carmo and Pacheco consider that assignment of
obligations to a group of agents require creating a new agent, called institutional
agent. In particular, these agents can join and leave the group and thus, the group of
agents can change. In contrast, the institutional agent remains the same. It is then
necessary to specify how this agent can interact with the members of the group that
this institutional agent represents as well as agents external to the group.

The approach suggested in Carmo and Pacheco (2001) formalize the difference
from a normative point of view between a group of agents and the institutional
agent that the group. It is clearly possible to consider situations where a group of
agents jointly executes an action, for example moving an heavy table. However, the
concept of institutional agent occurs when a single collective entity is used in the
norm definition, as it is the case for a company for example.

Thus, the objective of Carmo and Pacheco (2001) is to model how an institutional
agent interacts with the external world from a normative point of view. It is especially
important to specify how the actions executed by the individual agents “count as”
actions executed by the institutional agent. We refer the interested reader to the
work by Jones and Sergot (1996) for a logical formalisation of this count as logical
operator. Let us notice that the actions executed by the individual agents on behalf
of the institutional agent depend on the role assigned to this institutional agent when
it executes this action. Indeed, an agent may be permitted to execute an action when
she is assigned to a given role but this same action would be prohibited when she is
assigned to another role. Thus, in Carmo and Pacheco (2001), the authors suggest
an extension of the modal operator stit to explicitly include the role assigned to the
agent when she executes an action. It is then possible to assign norms to role and
interpret the actions executed by individual agents as actions executed on behalf of
the institutional agent. Using the work presented in Demolombe and Louis (2006),
it is also possible to formalise speech acts having the effects to create normative
institutional facts, such as, for example, the creation of an obligation. Formore recent
works on the subject of collective obligation, (Porello 2018) uses non normal modal
logics to relate collective responsibility to individual responsibility by distinguishing
common, aggregative and corporate actions. Finally, (Pigozzi and van der Torre 2017)
presents deontic challenges with a focus on multiagent systems which is clearly
related to collective obligations.

6 Conclusion

We have presented the principal dimensions to be taken into account to formalize
the deontic concepts of obligation, prohibition and permission. Deontic logic is a
very active research domain and plenty of propositions lead to important advances



270 F. Cuppens et al.

in recent years. We should also mention the results on defeasible deontic reasoning
and its application to violation and “Contrary-to-Duties” management.

However, and contrary to other modal logics like temporal logic, there is no sta-
ble model for deontic concepts. Several difficult problems, for which there is no
universally accepted solution, still have to be explored. Consider for instance open
problems concerning conflicting deontic rules, obligations with delays and formal-
ization of responsibility and delegation concepts. Modelling sanction and reparation
processes has been little explored also. Gabbay et al. (2013) is a recent effort to
present a detailed overview of current research on deontic logic and should be taken
as starting reference for someone interested in deontic logic (see also the Deontic
Logic website at http://www.deonticlogic.org).

Nevertheless, the synthesis work realized in Wieringa and Meyer (1993) shows
that there are plenty of applications of deontic logic to information systems, e.g.:

• analysis of laws and regulations. The first works in this area were not based on
deontic logic and used first-order logic to model a set of norms (cf. for instance
(Gray 1985; Sergot et al. 1986)). This approach, so-called “factual”, cannot dis-
tinguish the actual world from the “ideal” world represented by the regulation.
Factual approaches reach their limits when it is necessary to reason on situations
in which norms are violated and Contrary-to-Duty norms are activated. Deontic
logic has the advantage to be able to represent consistently violation situations.

• contractualization process. Languages based on speech acts play an important role
to formalize interactions between agents in lots of applications such as electronic
commerce (Dignum 2002). Kimbrough et al. (1984) have considered in 1984 the
possibility to use deontic logic to represent performative speech acts related to
contract negotiation. More recently, Demolombe and Louis (2006) studied the
formalization of speech acts with normative effects such as creation of an obliga-
tion, assignment of a role to an agent or declaration of bidding opening. Deontic
logic allows therefore to formally specify exchanges between agents in applica-
tions such as online shopping and to verify the compliance of these exchanges
with respect to contractual and legal commitments.

• representation of integrity constraint in databases (cf. chapter “Databases and
Artificial Intelligence”ofVolume3).Works like (Wieringa et al. 1989;Demolombe
and Jones 1996) distinguish twokinds of constraints: those corresponding to alethic
constraints (constraints on the real world) and those corresponding to deontic
constraints. For instance, the constraint “January has 31 days” is a necessity of real
world whereas “the salary of an employee cannot decrease” is a deontic constraint
corresponding to a prohibition. It is important to distinguish these two types of
constraints and to consider the casewhen a deontic constraint is violated. Indeed, if
the second constraint is modelled as a necessity, then some updates of the database
may be blocked or the database may become inconsistent if the update is accepted
when the constraint is violated.

• security policies representation. A security policy can bemodeled as a set of norms
which controls the system functioning. It is generally considered that a secu-
rity policy contains different types of rules, particularly access and usage control

http://www.deonticlogic.org
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rules (Cuppens-Boulahia and Cuppens 2008). An access control policy corre-
sponds to permissions and prohibitions that filter access requests to the resources
of the information system. An usage control policy applies when somebody has
been granted access to a resource and can be represented by a set of obligations that
should be fulfilled conjointly with the resource use (Hilty et al. 2007; Cuppens and
Cuppens-Boulahia 2010). Deontic logic allows then the separation between the
functional specification of a system from the security constraints (corresponding
to deontic conditions) (Khosla and Maibaum 1987).

• security properties expression (Bieber and Cuppens 1992; Glasgow et al. 1992;
Cuppens and Demolombe 1996; Aucher et al. 2010; Balbiani and Seban 2011).
Several works focused on formalizing security properties like confidentiality by
using deontic concepts. Intuitively, the confidentiality property should ensure that
some secret information will not be divulged to agents that are not authorized to
know them. This property can be formalized in a multi-modal logic associating
epistemic modalities to represent the agents knowledge and deontic modalities to
represent permissions and prohibitions of agents. Confidentiality property is then
expressed by the guarantee that the agents can only acquire information they are
permitted to know.

AsWieringa andMeyer explain inWieringa andMeyer (1993), the use of deontic
logic in information systems not only causes formalization problems, some of them
are difficult to solve, but also technical, philosophical, legal and social problems.
These different dimensions open countless possibilities of inter-disciplinary research
works on taking into account deontic concepts in information systems.
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A Glance at Causality Theories
for Artificial Intelligence

Didier Dubois and Henri Prade

Abstract Causality plays a key role in the understanding of the world by humans.
As such, it has been considered by artificial intelligence researchers from different
perspectives ranging from the use of causal links in diagnosis or in reasoning about
action to the ascription of causality relations and the assessment of responsibility.
In the last two decades, some formal models of causality, such as those proposed by
Pearl and Halpern, have been much influential beyond the field of artificial intelli-
gence because they account for the distinction between actual causality and spurious
correlations. Yet other aspects of causality modeling are worth of interest, such as
the role played by the notion of abnormality, since what we need to explain are often
deviations from the normal course of things. The chapter provides a brief but exten-
sive overview of the artificial intelligence literature dealing with causality, albeit
without the ambition of giving a complete account of works by philosophers and
psychologists that have influenced it.

1 Introduction

The notion of causality is important for artificial intelligence as it is essential when
reasoning about events occurring in the outside world, but also to devise artifacts
that efficiently act on it. Causality plays a key role in many human activities from
making predictions about potential diseases due to smoking or pollution of cities, to
deciding who is responsible for a car accident and should be blamed for it. Causality
is also of primary importance in advanced data analysis (Gammerman 1999).

There is a huge philosophical literature on causality, because it seems to be very
hard to grasp the nature of causal relations, let alone to formally model them. There
has been various attitudes about causation that range from philosophical skepticism
to the claim that it rules the world in a deterministic way. Some have even deemed
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causality as being undefinable, as too complex a notion, like Zadeh (2002), or because
it is so basic that only other concepts could be explicated using it as a primitive
notion. There has been a tendency to exclude the concept of causation from scientific
approaches in the early XXth century, but things are less clear to-day. The small book
byMumford andAnjum (2013) surveys the various points of view across the History.
See also (Paul and Hall 2013) for an overview, with discussions, of approaches to
causality, (Cartwright 2007) for a discussion of notions of causality appropriate to the
sciences, and (Chambaz et al. 2014) for a debate between a philosopher, a statistician
and amedical doctor about causality. A thorough and renewed discussion of causality
with many examples can be found in the recent book by Pearl andMackenzie (2018).

There is actually an opposition between those scholars who claim that causality
is just a way to explain how things occur in the world, and those who claim that
causality is really at work in the outside world. David Hume (1748), a philosopher
from the XVIIIth century, considered that one can only observe regularities in the
world, namely that some events are always followed by other events, but that we
cannot observe the causal connection between them, if any. In that case, we can speak
of perceived causation, whereby two events are just perceived to occur conjointly,
one preceding the other. Temporality is essential to distinguish the cause from the
effect, and lays bare the fundamental dissymmetry in the causal connection, not
to be confused with mere correlation. This view of causality may be sufficient for
prediction purposes.

As opposed to the Humean view, some, like Spinoza (1992) in the XVIIth century,
see causality as necessary connection in the outside world. Here, the concern is to
lay bare what could be named the real essence of causality. One claim often found
in the literature is that causation basically consists in a transfer of energy (like when
one moving billboard ball hits another previously still one). Following this trend, one
may speak of the actual cause of an event. It is clear that “necessitarian causality”
can be the basis of actions that will modify the world, and that it opens the way to
the assessment of responsibility for blaming or praising purposes.

These twomajor trends can be distinguished in nowadays uses of causation.Actual
causation appears to be essentially concerned with the influence of some variables
over other variables, a conception that is at work in the perspective of scientific
discovery (Salmon 1984) or modeling, as well as for instance in daily medicine or
even in epidemiology. At the opposite, commonsense (perceived) causation, dealing
more often with events, is ubiquitous in all sorts of matters and activities. Not only
are cause and effect relations essential to understanding, explaining, and generally
making sense of the world, but also they play a pivotal role in a wide range of other
processes, among which prediction and diagnosis, praise and blame, goal-directed
reasoning, and persuasion. Artificial intelligence is concerned by both the actual and
the commonsense views of causality, depending on whether its goal is to build an
automatic system for diagnosis, or to assist people in making sense of a particular
situation.

One interesting issue is whether causality is an all-or-nothing concept or not.
Actual causality can be a matter of degree, as for instance fever caused by a cold.
One may have that the stronger the cold, the higher the fever. Another issue is to
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compute the degree of certainty that an effect seems to follow a cause. It is clear that if
causation is primarily understood as a matter of observing regularities, the frequency
with which an effect follows from a cause can be less than one. Yet another type of
degree of causation is encounteredwhen several causes jointly contribute to an effect.
The problemmay be then to determine the degree of contribution of each component
of the cause to the resulting effect; see (Chockler and Halpern 2004), (Alechina et al.
2017). This is especially of interest in blaming or praising tasks, when it is important
to determine the contribution of each actor to the resulting effect. See the recent paper
by Kleiman-Weiner and Halpern (2018) defining a degree of blameworthiness.

It has been often implicitly assumed that the study of causality should aim at a
grandmodel that would encompass all uses of causation. However, theweaknesses of
many proposed models, and the subtleties of others (for instance, see the variants of
actual causality in (Halpern 2017), plus the fact that eachmodel never truly addresses
all uses of causation, suggest that the various facets of the concept might require
different treatments. As a matter of fact, various scholars in the fields of philosophy,
artificial intelligence, and psychology (e.g., Lewis 1986; Pearl 2000; Keil 2006) have
acknowledged the existence of multiple issues in causal analysis.

This chapter is organized as follows. The next section reviews some basic notions
andquestions often involved in the studyof causation. Then, it provides a reasoned list
of artificial intelligence problems where causality plays an important role. Section3
then presents a number of formal models for causality that, for the main part have
been proposed in the area of Artificial intelligence: relational models, logical models,
probabilistic approaches, graphical models, qualitative nonmonotonic approaches to
perceived causation, action logics, and approaches based on structural equations that
focus on actual causes.

2 Causality in Artificial Intelligence: Issues and Problems

In this section, we consider basic notions involved in causal relations, that are essen-
tial when formalizing them: the difference between causality and correlation or logi-
cal inference, the use of counterfactuals, the role of time, and abnormality, the notion
of intervention, the idea that the simpler the alleged cause the more likely it is, the
question of the interaction between causes, and whether causality is transitive or not.
Then we discuss AI problems where causality and these various aspects play a major
role.

2.1 Basic Issues and Principles Underlying Causal Links

Causality, material implication and conditionals. It is tempting, naively, to model
the statement ‘A causes B’, where A and B are events, by the material implica-
tion A → B = ¬A ∨ B, since from A we can deduce B. However, this model is
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reversible, in the sense that it implies that ¬B would cause ¬A, which is certainly
not the case if we accept the idea that the effect occurs later than the cause as pointed
out by Simon (1952). At best we could claim that observing ¬B suggests that the
cause A is not present. So, formal models of causality refrain from using material
implication most of the time, or from using it in both ways (like in model-based
diagnosis, see the chapter “Diagnosis and Supervision: Model-based Approaches”
in this volume, where causes and observations are represented by specific literals, and
computing causes come down to a problem of abduction in classical logic). Psycho-
logical experiments indicate that material conditionals hardly account for perceived
causality (Over et al. 2007).

As an alternative, one may model a causal link by a three-valued conditional
B|A introduced by De Finetti (1936). It differs from the material conditional by its
truth-valuation when the cause A is absent (the conditional is then not applicable,
which is modeled by a third truth-value). This approach accounts for the asymmetry
of the causal conditional since B|A,¬B|¬A, and A|B have different truth-tables
(see chapter “Representations of Uncertainty in Artificial Intelligence: Probability
and Possibility” in this volume).

Probability, correlation and timeUnfortunately, when applying probability theory
and conditioning to the modeling of causality, the asymmetric nature of 3-valued
conditionals becomes immaterial. The usual rendering of A causes B in probability
theory is P(B|A) > P(B) (after Good 1961, 1962). With this definition, causation
is viewed as a simple probability increase, and is indistinguishable from correlation,
since the above condition equivalently writes P(A ∧ B) > P(A)P(B), which is
clearly equivalent to P(A|B) > P(A), i.e., that B causes A. This inequality just
indicates that something has caused the conjoint appearance of A and B, and only
temporality can distinguish the cause from the effect (e.g., that B occurs later than
A). Namely as done for example by Suppes (1970): A is a prima facie cause of B
if and only if (i) B is somewhat possible, P(B) > 0, (ii) B becomes more probable
in the context of A, P(B|A) > P(B), and (iii) the occurrence of A happens before
the occurrence of B. Precedence thus acts as a filter for acceptable causal relations.
However, the statement that causality is correlation plus a precedence constraint may
be seen as unconvincing, especially in the scope of capturing actual causality. One
way to remedy this situation is to use the notion of intervention (von Wright 1971;
Pearl 1994) discussed later on in this paper.

Counterfactual causalityAlthough not all counterfactual statements count as exam-
ples of causality, it is one of the most important notions in the representation of
causality in the present time. A counterfactual is a statement of the form: had
A not occurred, B would not have occurred either. Uttering such a statement implies
pragmatically that A did actually occur, so counterfactuals can be easily disparaged,
on the ground that no one knows for sure what would have happened if A had not
occurred. Nevertheless, our knowledge of the world gives us strong intuitions about
how things would evolve if the circumstances were different, and we feel this kind
of statements as deeply connected to our conception of cause.
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The relevance of counterfactuals in causal reasoning has been pointed out bymany
authors in artificial intelligence (e.g., Lewis 1973; Stalnaker 1968; Pearl 2000; Pearl
et al. 2016), but also in philosophy (e.g., Mackie 1974; Woodward 2003; Hitchcock
2001) and psychology (e.g., Hilton and Slugoski 1986; Spellman and Mandel 1999;
McEleney and Byrne 2006). The idea these authors have strived to capture is that
all we know has not the same status: some parts of our knowledge enjoy a greater
stability than others; if some things we believe to be true were in fact false, we
could still make use of the more stable parts to derive some conclusions about what
would then happen. This mental operation allows us to give content to counterfactual
statements.

Despite the importance of counterfactuals in the study of causation, one can-
not reduce it to counterfactual knowledge. The counterfactual approach to asserting
causality fails in two situations. First, A may be necessary for B to occur, but it may
not be sufficient. Then it cannot stand as the cause for B. Yet, had A not occurred, B
would not have occurred either. For instance, although it may be true that “If Peter
had not been born, he would not have got an accident”, Peters parents cannot be
considered as being a cause of the accident (in which they were not involved), even
if they certainly contributed to the fact that Peter was born. However A may still be
viewed as the cause, if other circumstances required to make B occur are normal
expected ones while A is something unusual or the result of some voluntary act.

A second case is when two facts A and A′ are each sufficient for making B
occur and it turns out that both facts are true (causal redundancy). For instance, after
(Halpern 2017), a forest fire may be caused by both dropping a lighted match (A)
and by a lightning strike (A′). Then even if A had not occurred, B would still be the
case (overdetermination). Here, counterfactual reasoning does not apply as it is not
sufficient for distinguishing if a potential cause is an actual cause or not. Sometimes,
other aspects of causality are useful to detect the actual cause, like temporality. For
instance, consider the case after (Lewis 2000) (see also Halpern 2017), where a glass
bottle was shattered by Billy and Suzy throwing stones, while Suzy’s shot reached
the bottle before Billy’s, and Billy would have shattered the bottle, had not it been
for Suzy’s stone (preemption of a cause with respect to another one). While the
counterfactual is false, only the real shot that led to the present state (Suzy’s shot) is
indeed the actual cause in this case.

Interaction between causes Sometimes, concurrent causes may produce effects
that could not be obtained by a subset of them. In such a case, they are said to act
interactively. For instance, whereas rain or wind alone cannot knock down a tree, the
combination of rain and wind may. Another well-known example is the interaction
of several medical drugs.

Thus, an event B can be caused by a combination of elementary causes
A = {A1, . . . Ak}. The set of causes A is then called the causal complex of B
(Hobbs 2005). Let E (A ) be the set of effects of A . A cause-effect relation is said
to be monotonic if A ⊆ A ′ implies E (A ) ⊆ E (A ′). In other words, if you know
that B is an effect of the conjunction of causes inA , you can be sure that it is still an
effect ofA plus whatever fact C you happen to know to be true besides ofA . IfA
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is a causal complex of B, this means thatA contains everything that guarantees the
occurrence of B, and except if there are interacting factors with a negative synergy,
adding items to A will not prevent B from occurring.

If the causal relation is a matter of degree, a graded form of interactivity may be
observed (reinforcement), whereby two causes have the same effect, but the con-
current occurrence of the two causes significantly increases the probability or the
magnitude of the effect, over and beyond what would be expected by each elemen-
tary cause. It appears that human experts have some ability to detect interaction
effects (Novick and Cheng 2004).

In contrast with this positive form of interaction, a form of negative synergy (also
called prevention) may be encountered if adding a cause to the causal complex of B
prevents B from occurring. We say that C prevents A from having its usual effect
B when the causal complex A should have had effect B, but the occurrence of C
has canceled effect B. For instance if the wind blows, the shutter will flap unless
it is hooked. Handling negative interaction may require to specify the effects of
all combinations of causes (wind and rain, rain and lightning, wind and rain and
lightning, etc.), or it may require refined causal rules (e.g., the rain soaks the ground,
the wind uproots a tree on a soaked ground). The difficulty here relates to the very
large set of qualifications that can apply to a given cause.

Parsimonious covering of effects An event B can be caused by any among several
combinations of elementary causes. In other words there can be a disjunction of
causal complexes. However one often considers that a small set of elementary causes
(especially a single cause) is more likely, or a more plausible explanation of B than
a larger set of potential elementary causes. A causal relation satisfies minimality if
when a set of events A1, . . . Ak is a cause of B, then no other smaller set of causes
(in the sense of cardinality) can also be considered as a cause of B. This is the
parsimonious covering principle (Reggia et al. 1985a, b).

Minimality is useful to limit the set of candidate causes for an event. Especially,
the unique cause assumption is very often made and is an extreme example of this
principle. A non-minimal conjunction of causes of B is sometimes called “sufficient
cause”.

Abnormality Another important notion invoked in several conceptions of causal
relations has been pointed out by two legal philosophers, Hart and Honoré (1985),
namely, the notion of abnormality. According to these authors, abnormality is one of
the chief criteria for selecting causal conditions in everyday life inference. Indeed, in
the investigation of human affairs, what we want to explain is generally a deviation
from the normal course of events, and abnormal facts are generally privileged when
providing causal explanations.

The expected course of theworld, and in particular the expected behavior of agents
is governed by so-called norms. A behavior that follows a norm can be normal
(unsurprising) or normative (mandatory), see, e.g., (von Wright 1963) for a more
complete analysis. An approach to normative causal analysis is proposed in Kayser
and Nouioua 2009, applied to the analysis of car accident reports. We may consider
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that, generally speaking, the normative understanding of causality is a special case
of the normal one, because we generally expect agents to respect their duties.

Abnormality can trigger the search for a cause, as it commonly makes more
practical sense to look for causes of abnormal situations, as compared to situations
that are perceived as completely normal. Furthermore, abnormality can be a filter
when looking for a cause, because abnormal situations are more easily attributed to
causal factors that are themselves abnormal. Indeed, one may argue that an event is
more likely to be interpreted as a cause if it is abnormal than if it is usual. For instance,
the presence of oxygen is a necessary condition for an arson, but it is not pointed
out as its cause, while the act of the arsonist will be considered as the cause because
the act of setting a forest on fire is considered as abnormal, while the presence of
oxygen is always taken for granted. Namely, in the common use of the cause-effect
relation, a principle of cognitive economy is at play: if, as it is almost always the case,
the causal complex contains a large number n of propositions, we cannot afford to
memorize, to use or to communicate a proposition such as A1 ∧ ∧ An causes B. As
among the n propositions, it turns out that most of them are almost always true (like
oxygen present in the fire example), checking their truth value is a waste of time.

Suppose, all Ai with i ≥ 2 are usually true. It is then by far more convenient to
use the rule “A1 causes B”, even if we know that the joint occurrence of A1 and
the negations of Ai for any i ≥ 2 will no longer cause B. In other words, A causes
B does not mean that “every time A occurs, B must occur too”, but it is used as
a shorthand for “every time A occurs, along with a list of other factors (which can
safely be assumed to be true), B must occur too”. This is clearly not monotonic. Even
worse, a causal rule is allegedly never complete, since we cannot know in advance
the number of usually present factors that play a role in the occurrence of B. The idea
that causal reasoning is intimately bound to nonmonotonic reasoning can already be
found in Shoham (1990, 1991), Simon (1991).

Interventions Interventions are commonlyviewed as external actions that force some
variables to take some specific values. They play an important role in distinguishing
causation from mere correlation, more significantly than mere precedence. As we
already observed, a (global) joint probability alone can help to determine correlated
or independent events but cannot lay bare causal relations. This is also true for other
approaches based on counterfactuals or nonmonotonic reasoning, where background
knowledge is concerned with the representation of normality, rather than objective
actual causality. To overcome this limitation, intervention can be used to arbitrate
between several causal structures that fit the correlation data equally well. This core
notion was introduced in early works (e.g., vonWright 1971), but was given its most
prominent role by Pearl (2000), whose definition of “A causes B" requires that the
forced occurrence of A, by means of an intervention, increases the probability of the
occurrence of B.

Intervention clearly plays a useful role in causal analysis: it provides a natural way
of understanding actual causation by proceeding to a set of interventions and manip-
ulations. Identifying a causal relationship between different elements of a system
is much easier if the agent can directly intervene in the manner of an experimenter
and evaluate the effects of such manipulations. An intervention is determined as
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coming from outside. In learning causal models interventions are handled using a
new operator called “do” that allows to distinguish intervention do(A) from a simple
static observation of A. Although intervention is mostly considered in probabilistic
frameworks, it can also augment counterfactual-based definitions of causality.

Partial transitivity A causal relation is transitive if and only if whenever “A causes
B” and “B causes C” it follows that “A causes C”. Transitivity is often expected
because people often reasonusing causal chains of events. The intuition that causation
should be transitive has been increasingly questioned by philosophers (Björnsson
2007; Hall 2000; Hitchcock 2001).

There are situations where transitivity looks natural. For instance, suppose the
kettle is on the stove. The kettle whistles because the water is boiling. The water is
boiling because it is hot enough. It looks natural to conclude that the cause of the
whistling of the kettle is that its water has been heated enough. One explanation for
such transitivity can be the fact that the only possible cause for the water boiling is
that it has been heated enough.

But there are other situations where transitivity sounds debatable. For instance,
you are asleep under an apple tree. You wake up because an apple falls on your head.
It falls because it was ripe enough. It sounds strange to consider the ripeness of the
apple as the cause of your waking up, as there aremany other possible causes tomake
the apple fall, and the ripeness is not sufficient to conclude that the apple will fall on
your head. More generally, the transitivity of long chains of causal connections can
be challenged. For instance, if you see your life as such a long chain of events, one
causing the other, you may conclude that your birth is a cause of your eventual death,
a statement that few people would endorse. A famous saying questioning transitivity
of causality is due to Montaigne: Eating ham makes you thirsty; drinking quenches
your thirst: therefore eating ham quenches your thirst.1

So, depending on the intended purpose of the causal analysis, transitivity may
look natural, optional, or problematic. See Eells and Sober (1983), Bonnefon et al.
(2012) for discussions of conditions for causal transitivity in the probabilistic and the
qualitative nonmonotonic setting, and (Halpern 2016) for the transitivity of actual
causality.

2.2 The Use of Causality in AI

There are two main classes of problems addressed by Artificial Intelligence: repre-
senting knowledge and reasoning about the world so as to make sense of it or to
predict future observations in a reasoned way, and devising intelligent machines that
can make decisions and act on the world. Both classes of problems need a form of
causality to be embedded. In the first class, perceived causes are important as causal

1In French, “le jambon fait boire; le boire désaltère: par quoi le jambon désaltère”, Michel de
Montaigne, Les Essais, Chap. 15, 1580.
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reasoning is one way of explaining situations or decisions to a user and causal expla-
nations are a source of arguments. In the second class, the notion of actual cause is
very useful to figure out the potential consequences of actions. In the following we
review a number of AI problems, some of which are addressed in other chapters of
this collection, where causality plays an important role.

• Prediction The problem of prediction needs the knowledge of regularities in the
world so as to apply this generic knowledge to particular situations where only par-
tial observations are available. It is clear that for this purpose, perceived causality,
if validated by sufficient evidence, is enough to predict the values of some vari-
ables from the observation of others. Sometimes, even the mere knowledge of
correlations may be enough to make plausible predictions. For instance, Bayesian
networks and their non-additive variants (like possibilistic or credal networks),
reviewed in chapter “Belief Graphical Models for Uncertainty Representation and
Reasoning” of Volume 2, are often used for such prediction tasks.

• Diagnosis Diagnosis problems are an important class of application of Artificial
intelligence. While early expert systems for diagnosis contained uncertain rules
that directly predict faults or diseases based on observed symptoms, this type of
deductive approach was later on given up, with the emergence of more standard
relational, probabilistic or logical approaches that adopt a causal representation.
The relational approach is the most basic one where for each fault, the set of pos-
sible symptoms is described by means of a relation (Reggia et al. 1985a, b). In a
more sophisticated approach the conditional probabilities of observing symptoms
are provided and possibly prior probabilities on faults. The problem is then to find
combinations of faults that cover the observed symptoms in a case.
The idea of abnormality is often used in diagnosis, whose aim is to identify the
source of an anomaly, faults being considered abnormal. Inmodel-based diagnosis,
the idea is to provide a description of how a system normally works when no faults
are present (for instance by means of a set of logical formulas, see Reiter (1987)),
and the diagnosis method proceeds by abduction, looking for fault variables that
must be made active to justify (via deduction, that can be causally interpreted) the
anomalous observations. See chapter “Diagnosis and Supervision: Model-based
Approaches” of this volume for an overview of model-based diagnosis.
Minimality (parsimony) is desirable for the purpose of diagnosis. Diagnostic
reasoning is indeed based on the conjecture that the set of faulty components is
minimal (often with respect to set inclusion criterion, or to cardinality-based cri-
terion). This is the usual assumption made in relational models (see, e.g., Dubois
and Prade 2000). A similar case can be made for the more general situation of
postdiction. In model-based diagnosis, the description of the normal behavior of
the system is supposed to cover possible interactions between faults. When the
system fails, however, and particularly in situations of temporal diagnosis, the
interaction of the components in the system may be too poorly defined to assess
which hypothesis of correct behavior is inconsistent with the observed discrepan-
cies.
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• Action theories: how to achieve a goal for sure In planning problems, the ques-
tion is to find a sequence of actions that change the state of a system from an initial
state to a goal state. Each elementary action can be interpreted in terms of causal
connection between two states, given some preconditions. See chapter “Planning
in Artificial Intelligence” in Volume 2 for a survey on planification methods. More
generally, we deal with dynamic systems where actions are chosen based on par-
tial observations on the current state (see chapter “Reasoning about Action and
Change” of this volume). It is clear that it is the notion of actual causality that is
at work here, in what can be termed goal-directed reasoning, where an agent can
act based on its beliefs, desires and intentions. Namely, an action can be viewed
as an actual cause of some change in the system.
For the purpose of goal-directed reasoning, interaction between actions can be
safely ignored only when the plan to the goal can be construed as purely sequen-
tial. If, however, two actions are required in parallel (perhaps to simultaneously
achieve different parts of the plan), then it would be risky to ignore it, as the two
causes might interact in an untoward way, creating unwanted effects.

• Making Sense and Explanation Given a stream of data, one may use causal
knowledge to understand what is the logic governing these time-stamped obser-
vations, thus making sense of them. Such causal and/or taxonomic information
can be useful to produce explanations for a user. This is called causal ascription.
A general pattern proposed by Besnard et al. (2008a, b) is the following: “If
A causes B, and A is not impossible based on the current knowledge, then A
explains B”. In this approach the causal relations are supposed to be given. Causes
are assumed to always produce their effects (there is no uncertainty). If A is a
conjunction of elementary causes, one may consider a minimal subset of elemen-
tary causes to be a more plausible explanation. For example, Halpern and Pearl
(2005a, b) model of causality (see the next section for more details) distinguishes
between “sufficient causes” and “actual cause”, and only the latter satisfy mini-
mality.
Agents are more likely to engage in explanation tasks when they are confronted to
abnormal situations, and they are likely to focus on abnormal factors as the cause
of these abnormal situations (for behavioral evidence, see Hilton and Slugoski
1986; Gavanski and Wells 1989).

• Causal information helps learning Learning from data, especially using statis-
tical methods rely on studying correlation. There is hardly any way of detecting
causality frommere data.However having causal information about a phenomenon
is instrumental in structuring amodel prior to learning its parameters. For instance,
in learning Bayesian networks, having causal knowledge may help ordering the
variables in a proper way and to guess the conditional independence relations.
In the last ten years, scholars in machine learning have become aware of the
role causality could play in the understanding of data collections such as image
repositories. A broad overview of the issues can be found in Guyon et al. (2010).
Causality may be searched for in time-stamped data (Guyon et al. 2011), or in data
that result from interventions (e.g. medical data obtained by testing the efficacy of
drugs on patients) or that can be interpreted as such (images where, for instance,
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the observation of a car is seen as causing the presence of wheels (Lopez-Paz et al.
2017)).

In this context, the minimality property states that if a directed graph satisfies the
Markov condition with respect to a probability distribution, then no sub-graph of
it also satisfies the Markov condition with respect to this probability distribution.
For instance, if a causal graph contains an arc from a variable A to a variable B
while they are probabilistically independent, then this graph violates the minimal-
ity condition. However the minimality criterion (finding the simplest graph) leads
to best exploit conditional independences that lie in the data, but it is not clear that
the direction of arcs in the obtained Directed Acyclic Graph indicates causality at
all, even if there is experimental evidence from cognitive psychology that people
infer causal relations at least partly from covariation information.
Finally, there is an impact of the interaction between variables on learning. This
impact is in proportion of the strength of the interactions themselves. Weak inter-
actions will appear as noise and be hard to detect, while strong interactions will
jam the data and make it hard to learn from.

• Assigning responsibility Determining actual causes helps in deciding who’s to
blame or rewardwhen analyzing a given abnormal situationwhere somethingwent
wrong. Minimality is clearly required for the purposes of praising or blaming.
Consider the situation where we blame some agent for her role in the set of events
A , which caused an unfortunate outcome B.We certainly want to ensure that there
is no subset of A that caused B, in which the agent played no role. Abnormality
plays a role for praising and blaming, becausewe usually praise or blame agents for
extraordinary, unexpected, abnormal courses of action (with good or bad results).
In order to assign responsibility, we need to be sure that the resulting effect B was
caused by some voluntary intervention, if this intervention made a difference and
was intentional. Intentionality is then an important notion to be taken into account
for determining whom to praise or to blame.
Interaction between causes poses hard problems for the purposes of praising and
blaming. When the concurrent actions of two agents achieve an untoward effect
that would not have been achieved by either action, the issue of who is to blame
can be the object of intricate legal contests, going into detailed considerations
about the particular knowledge that the agents may have had about the potential
interaction. Allowing for interacting causal relations, while advisable, will not by
itself solve these hard problems.
Finally, for the purpose of praise and blame, transitivity is clearly required in some
cases, and it is hard to find examples where it would do any harm. Consider first
the “do not blame the messenger” situations: Imagine that Tom does something
outrageous, which caused Billy to tell Suzy about it, which caused Suzy to be
shocked (she would not have known without Billy telling). Clearly, we do not
want to blame Billy only for the feelings of Suzy. We would at least want Tom
to share the blame, but for this, we need to be able to say that Tom caused the
feelings of Suzy, for which we need causal transitivity.
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3 Formalizing Causality

In this section we review various mathematical formulations of causal relations that
can be found in the literature.

3.1 Relational Models of Causality

The parsimonious covering theory developed by Peng and Reggia (1990) proposes
a relation-based formulation of causality dedicated to diagnosis problems where
disorders and symptoms can be directly connected. They assume the knowledge of
a relation R between potential causes (disorders) A j and effects Bi (symptoms).
A related pair (A j , Bi ) ∈ R, means that A j may directly cause Bi . However this
does not mean that A j necessarily causes Bi . This representation for the “causal”
association between A j and Bi can be understood as a qualitative counterpart to
assigning a non-extreme probability to it.

The detection of causes proceeds as follows: given a set E of effects known to be
present (but possibly incomplete) one determines the set of potential causes of E as

C (E ) = {A j , ∃Bi ∈ E , (A j , Bi ) ∈ R} = ∪Bi∈E RBi ,

where RBi is the set of causes for which Bi is a possible effect. An explanation of E
is a subset C ⊆ C (E ) of potential causes that cover the set of effects, i.e., such that

E ⊆ {Bi , ∃A j ∈ C , (A j , Bi ) ∈ R} = ∪A j∈C A j R

where A j R is the set of possible effects of A j . The set of causes C is then called a
cover of E . Peng and Reggiamore particularly look for so-called “parsimonious cov-
ers”, i.e. covers of E that are relevant, i.e., each element in C potentially causes one
effect in E (i.e., ∀A j ∈ C , A j R ∩ E = ∅), irredundant (none of the proper subsets
of C is also a cover of E ) and minimal (the cardinality is the least among all covers
of E ). In this very elementary model, it is supposed that disorders are independent
so that their effects accumulate and do not interfere (otherwise relation R should
associate a subset of elementary causes to each effect).

In the above approach, there is no idea of sufficient cause, which would need a
wider framework using another relation where causes or groups thereof necessarily
produce some effects. For instance, Dubois and Prade (1995, 2000) use two relations
R+ and R− that to each cause A j respectively associate the set A j R+ of effects that
are certainly produced by A j alone, and the set A j R− of effects that certainly cannot
be caused by A j alone. The causal relation R of the previous paragraph corresponds
to the complement of R−. This bipolar modeling leaves room for expressing that
an effect Bj is either a sure effect or is only a possible effect of A j . Moreover,
the available evidence is now composed of two parts: a set E + of certainly present
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effects, and a set of certainly absent ones E −. A cover of (E +,E −) is a set C of
causes such that their sure effects are not among the absent effects E −, and such that
their impossible effects are not among the observed effects E +.

There exist graded versions of these models. The degree of causal dependence
R(A j , Bi ) between the cause A j and the effect Bi is interpreted as the probability of
the causation event “A j causes Bi” when A j is present by Peng and Reggia (1990),
and it comes close to Bayesian diagnosis methods, although this probability differs
from P(Bi |A j ). In the valued extension of the bipolar relationalmodel, the degrees of
association correspond to the degree of certainty and of possibility that Bi be an effect
caused by A j in the setting of possibility theory. In both cases, the degree of causal
relationship reflects uncertainty. The available observations may be also pervaded
with uncertainty. Fuzzy relational models, as proposed and developed by Sanchez
(1977) and his followers, rather handle the intensity of presence of manifestations
or disorders. See Dubois and Prade (2000) for an overview of relational approaches.
Although such an approach could in principle be extended to the study of a cascade of
causal relations, transitivity is not an issue here, since only direct causal relationships
are exploited.

3.2 Modal Logic Setting for Counterfactual Causality

A modal logic approach to counterfactual causality is due to von Wright (1963); see
Demolombe (2000) for an introductive summary and a discussion. Events considered
by vonWright may involve explicit agents, and thus actions as well. He gives amodal
account of conditions under which it can be said that an action causes property B to
be true, in terms of possible worlds. Two different accessibility functions are used
to account for one single action performed by an agent i : let di (w) be the world
which obtains when agent i performs the action in world w, and ei (w) the one which
obtains when not doing it (ei stands for an empty action, which does not preclude
spontaneous changes). For instance, when agent i opens an (unlocked) window, let
wq be a quiet world and ww a windy one, then in di (wq) as well as in di (ww) the door
is open (by the agent), in world ei (wq) it is not, while it is in ei (ww) (since opened by
the wind). The claim that then action has caused B can hold in two different ways:

• when¬B holds inw and in ei (w), but B holds in di (w) (using modality Bri , where
Bri B stands for “i’s action brings about B”),

• or when B holds in w and di (w) but not in ei (w) (using modality Ssi , where Ssi B
stands for “i’s action sustains B), i.e., the agent’s action keeps B true, while some
other cause would make it false.

Continuing the example, Briopen is true at wq and Ssiopen should be true for the
action “keeping the window open” in the world ww.

Von Wright also considers the case of “omitting to bring about B” when, B is
false in w and ei (w), and remains false in di (w), as well as a modality “omitting to
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sustain”. There are altogether eight possible situations, according to whether B is
true or false in w, di (w) and ei (w).

This description of cause involves a form of counterfactual situation through ei (w)

since Bri B can be read: but for the action of agent i , B would have remained false.
Kanger (1972), Pörn (1977) consider non deterministic actions which can access a
set of worlds (described with the help of accessibility relations), e.g., after pushing
the window, it can be open or broken, and when the window is not pushed, it may
remain closed or be open by the wind. Hilpinen (1997) considers complex actions
made of simultaneous elementary ones, i.e., interaction between actions.

Von Wright analysis also involves intentionality through the distinction made
between action and event. This is particularly clear in the definition of omission:
when ¬B holds in w, ei (w), di (w), it could plainly be said that the action has no
effect at all. Stating that the agent omitted to bring about B rather considers that
he has free will and could have done another action. Through the Ssi modality, the
approach can easily account for prevention.

Demolombe (2012) has recently proposed an extension to several agents acting
together of the “bringing it about” operators. A joint action operator is defined which
possesses the property of nonmonotonicity with respect to sets of agents. It is refined
in a restricted joint operator for caseswhere several sets of agents independently cause
a state of affairs and it is extended to sets of agents who are acting indirectly.

3.3 Probabilistic Modeling of Causality

Probability theory plays an important role in the modeling of uncertain cause and
effect relations (Eells 1991). In practice, causes are not always followed by their
effects, and effects may appear without their specified causes. Causation is not dis-
tinguished from correlation in the standard quantitative, probabilistic definition of
causation originally discussed by Good (1961, 1962) as already seen in the previ-
ous section (“A causes B” when the probability of B increases in the light of the
new information A or equivalently P(B|A) > P(B|¬A)), since this condition is in
fact symmetrical. One solution to distinguish causation from mere correlation is to
augment the definition with temporality. Other augmentations address the issue of
spurious causation, i.e., that two correlated events may actually be the effects of some
common cause (see, e.g., Simon 1954). Spurious correlation is avoided provided that
(i) A is a prima facie cause of B, and (ii) there is no event Z being observed before
A and B such that A and B are independent given Z .

A major problem in using the last definition in practice is related to the fact
that if an event Z has not been reported, it does not mean that Z has not occurred.
Worse, if Z has been reported, with P(B|Z) = P(B|Z , A), then one should not
discard Z . Indeed, it may happen that another event Y has been observed such
that P(B|Z ,Y ) = P(B|Z , A,Y ) prior to observing A and B. In this case, the
conjunction Y ∧ Z inhibits the fact that A causes B. The problem is solved if the
set of variables involved in the problem is fully determined, and the independence
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relations are completely described. This is the case with Bayesian networks, often
used for representing uncertain causal relations, as described in next section. How-
ever, in the Bayesian network formalism, causality is captured by the directions of
arcs in the graph, not by the multidimensional probability distribution encoded by
the conditional probability tables.

Probabilistic causality viewed as correlation (plus a precedence constraint) is not
necessarily transitive (Eells and Sober 1983). The fact that P(B|A) > P(B|¬A),
namely, A probabilistically “causes” B, together with the fact that P(C |B) >

P(C |¬B), namely, B probabilistically “causes” C , does not always imply that
P(C |A) > P(C |¬A), namely, A probabilistically “causes” C ; see Bonnefon et al.
(2012) for counter-examples. It is shown by Eells and Sober (1983) that this prob-
abilistic causation is transitive as soon as the causal chain (on events and not on
variables) is Markovian, namely if the two following conditions hold: P(C |A, B) =
P(C |B) and P(C |A,¬B) = P(C |¬B), namely C and A are independent in both
contexts B and ¬B. These conditions hold in Bayesian networks, except that in
Bayesian networks independence relations are expressed in terms of variables.

However, probabilistic causation is nonmonotonic. Indeed, one may have
P(B|A) > P(B) > 0 but P(B|A ∧ C) ≤ P(B) (and even P(B|A ∧ C) = 0 (a case
of prevention)). In the presence of several potential causes A1, . . . , An of an event
B, one may select an event Ai that optimizes the difference P(B|Ai ) − P(B) as the
best cause.

3.4 Causal Bayesian Networks and Interventions

A causal Bayesian network is a Bayesian network where directed arcs of the graph
are interpreted as elementary causal relations between variables (Pearl 1988). When
there is an influence relation between two variables, intervention allows to determine
the causality relation between these variables. In this case, arcs between variables
should follow the direction of the causal process. Pearl (1994, 2000), following ideas
of manipulation on probability distributions (Spirtes et al. 1993), has proposed an
approach for handling interventions in causal graphs based on a do operator that sets a
group of variables to prescribed values, and checks its effect on the probability of their
direct children.Note that causal relations expressed by graphs only concern variables,
not complex events. Causal Bayesian networks organize causal knowledge in terms
of a few basic mechanisms, each involving a relatively small number of variables.
Each intervention entails local change at the level of only one parents-child relation
(Pearl 1994, 2000). The parents-child relation at the level of each variable Ai is
governed by a local probability distribution P(Ai |Par(Ai )) where Par(Ai ) is the
parents set of Ai . The joint probability distribution is computed using the chain rule:

P(A1, ..., An) =
∏

i=1,...,n

P(Ai |Par(Ai )).
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An intervention forcing a variable Ak to take the value ak is denoted by do(Ak = ak)
or do(ak) for short. The intervention consists of making Ai (say) true independently
from all its other direct causes (i.e., parents). Graphically, this modification is rep-
resented by the deletion of links from the set of variables Par(Ak) pointing to Ak .
The resulting graph is said to be mutilated and its joint probability is defined by:

P(A1, . . . , An)do(ak ) =
{

P(A1,...,An)

P(Ak |Par(Ak ))
if Ak = ak,

0 otherwise.
.

It is clear that the result of an intervention depends on the structure of the causal
graph and not only on the joint probability.

There is a difference between observing Ak = ak and enforcing it. In the first case,
one can predict the probability of other variables by conditioning the joint probability
associated to the original Bayesian network. In the case of an intervention, we must
condition the joint probability associated to the mutilated graph. With respect to
the initial graph, the result of an intervention, is similar to Lewis (1976)’s imaging,
where the mass of an excluded state is transferred to the closest remaining state, for
some closeness relation to be defined according to the application. Here themasses of
states that are ruled out by the intervention are transferred to a special set of states that
share the same values of parent variables Par(Ak), as pointed out by Pearl (2000)
(see also Kyburg 2005). The difference between observations and interventions has
been confirmed by psychological studies (Lagnado and Sloman 2005).

Interestingly enough, the “do” operator has been first proposed byGoldszmidt and
Pearl (1992) (see also Goldszmidt and Pearl 1996) within the framework of Spohn
(2012)’s ranking functions. Besides, Spohn (2006)’s view of causation, which fol-
lows the tradition of the probabilistic paradigm (Glymour et al. 1987) (including
intervention see Spohn (2000)) is also quite in agreement with Lewis’ view in terms
of counterfactuals (Huber 2011). Spohn’s ranking functions have strong relation-
ships with possibility theory (see chapter “Representations of Uncertainty in Artifi-
cial Intelligence: Probability and Possibility” in this volume). So it should not come
as a surprise that the same intervention technique can be applied as well to pos-
sibilistic networks described in Chapter “Belief Graphical Models for Uncertainty
Representation and Reasoning” in volume 2 of this treatise (see Benferhat 2010;
Benferhat and Smaoui 2011; Ayachi et al. 2014 for details). Moreover, the idea of
intervention has been also applied to evidential networks (based on Shafer’s belief
functions) (Boukhris et al. 2014).

3.5 Shafer Trees Approach to Causal Conjectures

Somewhat in the spirit of Lewis (1986)’s idea of “causal explanation”, Shafer (1996,
1998) (see also Shafer et al. 2000) has proposed a “causal logic” that aims at describ-
ing the possible relations of concomitance between events when actions take place.
The approach is based on the notion of “event tree”, where a node corresponds to
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a situation (which is not supposed to be a fully detailed state of the world), and the
tree represents the temporal chain between instantaneous events, and thus encodes
a precedence relation. A situation can be represented by a unique node, or by a set
of nodes, called “clade”, appearing on different paths. This enables a more refined
description of contexts.Moreover, without any reference to a particular tree of events,
an “event space” is introduced, where refinement relations and precedence relations
can be stated between situations. Then five basic relations between two instantaneous
events S, T in a tree are defined:

1. S refines T (if S happens, then T happens as well at the same time);
2. S requires T (S can only happen if T has already happened);
3. S foretells T (if S happens, then T must happen later);
4. S forebears T (if S happens, then T may happen);
5. S diverges T (if S happens, T cannot happen).

More generally S may be a unique node and T a clade, or both S and T are clades.
Many other relations can be defined from these five primitive ones. For instance,
“S entails T ” if and only if when S happens, T already happened, happens at the
same time or is going to happen.

The associated logic has proposition formulas (to represent propositions that are
true, false, or indeterminate in situations), and event formulas (to represent situations
themselves, thought of as instantaneous events that happen or fail, rather than being
true or false). In this approach, the relation “A causes B” is limited to the case where
A is an action and B is an instantaneous event. Shafer causal logic is about reasoning
on what takes place, what took place, what will take place, what may take place,
what cannot take place, depending on instantaneous events. It clearly involves ideas
of temporality (through precedence), necessary connexion, and correlation as core
notions.

This framework, whose intuitions partly come from probability theory, can be
augmented with probabilistic information (Shafer 1996, 1998). However, the use
of upper and lower probabilities rather than exact probabilities (expressed in terms
of a class of cautious gambles) is necessary to provide the general representation of
probability in event spaces. Moreover, Shafer (1999) emphasizes the point that the
phrase “X causes Y ”, where X and Y are variables, is vague, and that very different
causal relations can be defined in the probabilistic setting from regularities in terms
of conditional probability, conditional expectation, or linear regression, in particular.

The causal logic approach, which shares concerns with the logics of action, but
is also motivated by foundational issues for probability, seems to have had a limited
impact in the artificial intelligence literature on causality until now. It should how-
ever be of interest for prediction, and explanation purposes especially. This setting
might be also useful for assessing responsibility; see Shafer (2000) for a preliminary
discussion on this issue.
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3.6 The Preferential Approach to Plausible Causality
and Abnormality

This approach, proposed in Dubois and Prade (2005), and further developed in
Bonnefon et al. (2008), especially addresses the task of making sense of a reported
sequence of facts, in the light of beliefs supposedly entertained by an agent as to
what is normal and what is not. More precisely, consider a sequence of time-stamped
facts such as ¬Bt , At , Bt ′ is reported, where t ′ denotes a time instant strictly after
t (Bt means that B is known to be true at time t). This reads: B was false, A took
place, then later B became true.

Besides, the agent that receives the sequential information ¬Bt , At , Bt ′ is sup-
posed to have some knowledge on what is the normal course of the world in context
C , which is the conjunction of all other facts known by, or reported to, the agent, and
maybe also in context C ∧ A, regarding B. Thus the approach explicitly refers to
what the agent holds as background knowledge. The agent knowledge is supposed
to be made of default rules. Namely, the agent may either believe that C |∼ B (B
is expected to be true in context C), or that C |∼ ¬B (B is expected to be false),
or that C |∼ B and C |∼ ¬B (the truth or the falsity of B is contingent in context
C), where |∼ is a nonmonotonic consequence relation (Kraus et al. 1990) describing
what is normal, and |∼ stands for its negation. C |∼ B means that C |∼ ¬B is not in
the background knowledge of the agent. Similarly, in context C ∧ A, the agent may
have the same form of belief on the normal course of things. It is assumed, thatC ∧ A
is consistent (otherwise, the fact that A becomes true would be incompatible with
contextC). In case the agent knowsC ∧ A |∼ B, B is expected to be true after A took
place, and the sequence ¬Bt , At , Bt ′ is in conformity with the agent’s knowledge;
on the contrary, if the sequence ¬Bt , At ,¬Bt ′ is reported, it would mean that event
A had an abnormal, surprising behavior.

In Bonnefon et al. (2008), the two following definitions of facilitation and causal-
ity ascriptions are proposed. They rely on pieces of default knowledge (so the
approach heavily uses abnormality as a core notion), and a sequence where a change
of the form ¬Bt , At , Bt ′ is reported (thus making also reference to temporality).
Given a context C , and the knowledge base of the agent,

• if the agent believes that C |∼ ¬B, and if for the agent C ∧ A |∼ ¬B, the agent
will perceive A as having facilitated the occurrence of B in context C (denoted
C : A =⇒ f a B);

• if the agent believes that C |∼ ¬B, and that C ∧ A |∼ B, the agent will perceive
A as being the cause of B in context C (denoted C : A =⇒ca B).

Bonnefon et al. (2008) report experiments that indicate the cognitive validity of
these notions of facilitation and causation. These definitions have noticeable prop-
erties. In particular, it has been shown that

• Each of C : A =⇒ca B and C : A =⇒ f a B implies C |∼ A. This means that only
abnormal events in a context may be regarded as a cause, or a facilitation.
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• A restricted transitivity property holds: If C : A =⇒ca B, C : B =⇒ca D and
B ∧ C |∼ A hold, then C : A =⇒ca D.

• The two properties hold for =⇒ca provided that |∼ is a preferential entailment in
the sense of Kraus et al. (1990). The first property holds for facilitation (=⇒ f a)
if |∼ is a rational closure entailment (Lehmann and Magidor 1992).

Note that here transitivity requires the “saliency” condition B ∧ C |∼ A, i.e. it means
that the normal way to have B (in contextC), is to have A. For instance, for A = drink-
ing, B = inebriate, D: staggering, we have drinking =⇒ca inebriate and inebriate
=⇒ca staggering entail drinking =⇒ca staggering, since inebriate |∼ drinking. See
Bonnefon et al. (2012) for a thorough discussion and empirical material supporting
the fact that humans do not always endorse transitivity for causality relations, but
largely acknowledge it in case the saliency condition holds.

Other types of cognitive situations can be captured by this model. For instance, a
companion case to the two previous situations is the interpretation of the sequence
¬Bt , At , Bt ′ for an agent for whom neither C |∼ ¬B nor C |∼ B holds, while C ∧
A |∼ B is part of the agent’s background knowledge; then Amay be perceived by the
agent as a kind of justification for having Bt ′(Bonnefon et al. 2008). The approach
also captures the ideas of necessary (or enabling) condition (as oxygen for a fire), of
prevention to persist, and of prevention to take place, and has also some potential for
the assessment of responsibility (according to agent’s background knowledge (Prade
2008)). Generally speaking, the approach appears to be suitable for making sense
of a sequence of reported events; see Chassy et al. (2012) for a cognitive discussion
and an implementation.

Besides, this approach does not embed the notion of intervention and thus cannot
readily distinguish spurious correlation from causation. Nonetheless, the approach
could be extended in that direction, since both this approach and graphical models
can be encoded in a possibilistic setting, see (Benferhat et al. 2009).

Lastly, it has been noticed, (e.g., in Besnard et al. 2008b) that if “A causes B”,
and B � B ′ (classical logic entailment), it does not follow that “A causes B ′”. For
instance, saying that a disease may give a fever in the range [38 − 39]◦C, does not
mean that the disease may give a fever in the range [38 − 40]◦C. The nonmonotonic
consequence relation |∼ is such that A |∼ B entails A |∼ B ′ if B � B ′. The two
conditions involved in the definition of causality, namely C |∼ ¬B and C ∧ A |∼ B
are precisely encoded in a possibilistic setting by N (¬B|C) > 0 and N (B|A ∧ C) >

0 respectively, where N is a necessity measure. If we want to express that (i) the
counter-models of B are not possible effects of A and that (ii) any model of B is an
effect guaranteed to be possible, we have to add a third condition, namely Δ(B|A ∧
C) > 0 where Δ is a guaranteed possibility measure, as suggested in Dubois and
Prade (2005) (see chapter “Representations of Uncertainty in Artificial Intelligence:
Probability and Possibility” in this volume for set functions Δ that are decreasing
with respect to inclusion).
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3.7 Actual Causality: Action Logic

In the scopeof reasoning about actions, in contrastwith other tasks involving causality
like diagnosis or explanation, the problem is to compute the results of actions. In
order to describe actions, in terms of their preconditions and their consequences,
many formalisms propose to encode the link between an action and its consequences
by “causal implication”. This choice seems natural since the material implication
is not well suited to encode actions, especially due to the “frame problem” (see
chapter “Reasoning about Action and Change” in this volume), which amounts to
finding a way to express the persistence of the values of all the fluents that are
not affected by an action. Indeed this problem is closely related to causal relations,
because it is important to select as potential cause of the change of value of a fluent
only the actions that might affect that fluent. We are not going to describe all the
approaches proposed in order to address the frame problem but we only focus on the
formalisms that explicitly refer to causality and we briefly outline how this notion
has been handled in these formalisms.

• In Stein and Morgenstern (1994) a “motivated action theory” is proposed, which
is based on situation calculus but extended to allow for concurrency of actions
and to integrate causation as primitive. A causal statement has the following
formCAUSES(preconditions, act, postconditions)meaning that if “preconditions”
holds when “act” occurs then “postconditions” will hold in the resulting situation.
Given a description of what holds and what occurs in a scenario, and a back-
ground knowledge consisting of generic knowledge true in every situation (that
may include CAUSES statements) the aim is to deduce the facts that follows from
all this information. In order to to deal with the frame problem Guyon they use
a kind of frame axiom stating that the value of a fluent persists if either it is not
in a CAUSES statement or the preconditions of this statement did not hold or the
action did not occur. In order to ensure that CAUSES statements differ frommate-
rial implication the authors introduce the notion of motivated facts and actions.
Roughly speaking a formula is motivated if it has to happen.

• Lin (1995) has introduced a new predicate Caused( f, v, s) meaning that the flu-
ent f is caused to get the truth-value v in state s. This predicate is used in the
situation calculus framework. The situation calculus language is a many-sorted
first-order one, with three particular sorts: “situation”, “action” and “fluent”. Once
state constraints and direct effects of actions are described, persistence assump-
tions are required in order to achieve prediction. This is done by assuming that
unless caused, the truth value of a fluent will persist, in other words, things that
are not caused do not change.

• Another type of approach is to use a unary modal operator “is caused”. Geffner
(1990) proposes to define a causal theory by a default theory augmented with such
a causal operator. The modal operator allows us to distinguish between a fact that
holds and a fact that has a causal explanation. Defeasibility is handled by using
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abnormality atoms that are expected to be false. On this basis, Giordano (1998) has
defined a dynamic logic for actions and causality in order to address the ramifica-
tion problem and to deal with persistency. Two modalities are used in their work,
the first one is Geffner’s modal operator, and a second one is used for represent-
ing actions. Turner (1999)’s proposal, called Universal Causation Logic (UCL),
can be embedded in Geffner’s theory but it is less complex since it does not aim
(like Geffner’s) at working on a unifying framework for nonmonotonic inference
but, more specifically, at providing a mathematically simple modal nonmonotonic
logic designed for representing commonsense knowledge about actions. This is
done on the basis of a “principle of universal causation” expressing that what one
obtains in the world is exactly what is caused in it.

• In the proposal presented by Giunchiglia et al. (2004) a modal logic formalism
is also used. The semantics of their causal theory is based on the principle of
universal causation: “every fact that is obtained is caused and vice versa” as in
Turner’s semantics. In their proposal, the default persistence assumption used to
handle the frame problem (“normally, the values of fluents do not change”) is
replaced by: “the value of a fluent does not change unless a different value is
caused by performing an action”.

• The proposal of Thielscher (1997) is based on propositional logic. This approach
starts from a different input: instead of having a set of causal laws, the causal
laws are derived from a given relation I called “Influence Information” and from
a set of propositional constraints. The domain knowledge is encoded as a set of
constraints, and causal laws are applied iteratively until the result obtained violates
some constraint.

• Combining ordinary actions encounters the difficult problem of indirect effects:
breaking the glass of wine also means that the wine inside spills out. Giving a
systematic account of these effects is difficult, and it matters for ascription: Billy’s
clumsiness, which caused the glass of wine to break, also caused the tablecloth to
be spoiled. In order to overcome the difficulty, numerous researchers such as Pearl
(1988), Geffner (1990), Lin (1995) have introduced a distinction between caused
and uncaused changes. In the modal framework, McCain and Turner (1995) use
a modal structure to semantically account for indirect effects by reasoning at the
individual world level. The difference is made by the notion of “causally explained
world”, i.e. not only the accessed world differs from the source world as predicted
by causal rules, but they must not have unpredicted differences. In the same vein,
Giordano et al. (2000) use a modal operator to mean that a new proposition is
caused.Thismodal operator follows the lawsof themodal logicK. InWhite (2002),
caused transformations are taken as an accessibility relation between worlds and
sequent calculus proof rules are proposed. In Bochman (2003), the author uses
yet another modal approach equipped with a quasi-reflexive accessibility relation,
where accessibility is limited to causally explained worlds.
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3.8 The Halpern and Pearl Approach

Halpern and Pearl (2001, 2005a) propose a model devoted to the identification of
“actual causes.” The model borrows from an approach due to Galles and Pearl (1997,
1998), who distinguish between “exogenous” and “endogenous” variables forming
respective setsU and V . Exogenous variables have their values determined by out-
side factors. The values of endogenous variables are determined by the values of
exogenous variables. The values assigned to endogenous variables are governed by
a so-called (non-linear) functional model described in terms of structural equations
(Pearl 2000) of the form X =: f (V1, . . . Vi ,U1, . . .Uj ) where {V1, . . . Vi } ⊆ V and
{U1, . . .Uj } ⊆ U . Structural equations are directed in the sense that we cannot com-
pute the value of any Y ∈ {V1, . . . Vi } from the value of X and other variables.

A causal model, after (Galles and Pearl 1997, 1998), is denoted by M =
(U ,V ,F )whereU andV are sets of endogenous and exogenous variables, respec-
tively, and F is a set of structural equations determining all endogenous variables.
There is one structural equation per endogenous variable, and no equation deter-
mining the exogenous variables. Given the values U = u of all exogenous variables
U ∈ U , which is called a context, the values of endogenous variables are completely
determined by the structural equations. Only endogenous variables can be causes or
be caused.

The relationship between a functional model and a Bayesian network whose arcs
are causally interpreted is that if we consider all variables in the Bayesian net as
endogenous, we can replace each node X and its parents by a structural equation of
the form X = f (PX,UX ), where PX represents the parents of X and UX is a new
exogenous variable, and define a joint probability P on exogenous variablesU such
that for each node X , the conditional probability table P(X |PX) is determined by P
(Druzdzel and Simon 1993).2 In this way, probabilities (e.g., randomness) only bear
on exogenous variables and the Bayesian network is replaced by deterministic struc-
tural equations. Structural equations leave room for interventions, where the values
of some endogenous variables are fixed independently of the values of exogenous
variables.3

The causal model described above can be thus represented using a graph, in which
nodes correspond to variables in V , and an edge from X to Y exists if the value of Y
depends on the value of X . This graph is a directed acyclic graph (DAG) representing
the relationships between variables that are fully specified by structural equations.

When an endogenous variable X depends on another endogenous variable Y , it
means that if we fix the values of all variables other than X and Y , varying the value

2This work has its roots in works on causal ordering, emphasizing the directed nature of causation,
in econometrics, with the pioneering works of Wright (1921), Haavelmo (1943) (see Pearl 2015),
continued in early works by Simon (1952, 1953, 1954), Simon and Rescher (1966). Later on, a
debate took place about causal ordering and its use for qualitative reasoning in diagnosis (Iwasaki
and Simon 1986a, b; de Kleer and Brown 1986).
3The interest of linear structural equation models for analyzing non-trivial causal phenomena has
been emphasized in the recent years by Pearl and his co-authors, see, e.g., Pearl (2013), Chen et al.
(2014).
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of Y results in a variation in the value of X through the structural equations. This kind
of dependence is not transitive. It captures the counterfactual view of dependence.

Acausal setting is a causalmodelM with a contextu.An elementary event consists
in observing the value X = x of an endogenous variable. An event φ is a Boolean
combination of elementary events. A cause will take the form of a conjunction of
elementary events, namely, X = x for a tuple X of endogenous variables. Halpern
(2017) writes (M,u) |= φ when φ is true (actually happens) in the causal setting
(M,u). The intervention consisting in setting Y to y in a causal setting is denoted
by Y ← y. Halpern denotes the fact that φ is true in the causal setting (M,u) under
intervention Y ← y by (M,u) |= [Y ← y]φ.

Halpern (2015, 2017) (originally with Pearl (Halpern and Pearl 2005a)) has pro-
posed several variants of the definition of what an actual cause is, based on the
structural equation approach. Indeed, the pure counterfactual definition becomes
insufficient in cases when several facts can each stand as a cause for a given state of
affairs. One of these definitions goes as follows: The event X = x is said to be an
actual cause of an event φ if and only if:

(1) (M,u) |= φ and (M,u) |= X = x (φ and X = x hold in the causal setting
(M,u)).

(2a) There is a set W of endogenous variables not appearing in X, and a setting
x′ of X such that if (M,u) |= W = w then (M,u) |= [X ← x′,W ← w]¬φ,
namely, if X is set to x′ and W is set to w then φ becomes false.

(2b) There is a setW of endogenous variables not appearing inX such that (M,u) |=
Z = z for all endogenous variables Z /∈ W , and for all subsets W ′ of W
and Z ′ ⊆ V \ (W ∪ X ), we have (M,u) |= [X ← x,W′ ← w,Z′ ← z]φ.
Namely, φ remains true if all variables in Z ′ and in X take their values in the
causal setting (M,u), even if those inW′ are chosen otherwise.

(3) The subset X is minimal.

In the condition 2(a), the setW stands for variables that may influence the value
of φ and this condition expresses a counterfactual effect. However, as pointed out
in Halpern and Hitchcock (2015), it leaves room to the fact that it may be necessary
to intervene on the value of some variable(s) in W to allow the effect of the value
of X on the value of φ to manifest itself. Condition 2(b) is supposed to deal with
overdetermination (each of two elementary variables influences the value of φ) and
preemption (like in the bottle shattering case where Suzy hits before Billy does).
To quote reference (Halpern and Hitchcock 2015): “The role of condition 2(b) is
to limit the “permissiveness” of condition 2(a) by ensuring that the change in the
value of X alone suffices to bring about the change from φ to ¬φ; setting W to w
merely eliminates possibly spurious effects that may mask the effect of changing
the value of X”. As mentioned earlier, in this model, causality is not transitive, see
Halpern and Pearl (2005a) for a counter-example. The computational complexity of
structural equations-based causality is studied by Aleksandrowicz et al. (2017).

Halpern (2017) shows that each variant of the above definition has its own sub-
tleties and merits in dealing with tricky examples, but he does not make a definite
choice between the variants. The difficulty of the approach stems from the rather
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complicated statements of each variant of the definition of an actual cause in a
considered setting, where causes are viewed as conjunctions of facts, and effects as
general propositions. See the recent paper by Batusov and Soutchanski (2018) for a
renewed definition of actual cause in the context of situation calculus basic action
theories.

Further discussions on the limitations of structural equations, especially for captur-
ing causality in preemption problems can be found in Hall (2007), Hitchcock (2009).
In particular, the distinction between default and deviant situations (Hall 2007) may
help applying the counterfactual criterion of causality, when in the absence of the
main cause, the presence other potential causes is perceived as exceptional. In the
case when an effect can only be produced by a conjunction of causes, this distinction
is useful as well as it is the deviant event that will be regarded as the cause. The
framework based on structural equations can be thus augmented with a theory of
“normality” or “typicality” accounting for the fact that people privilege abnormal
facts in their causal ascriptions (Hart and Honoré 1985; Knobe and Fraser 2008),
leaving “normal” things aside (as, e.g., the presence of oxygen, in a fire case) (Halpern
and Hitchcock 2015).

In companion papers, (Halpern and Pearl 2001a, 2005b) (see also Halpern 2017)
provided a definition of explanation based on their definition of causality. An expla-
nation is a fact which is not known as certain, but such that if it were, would constitute
a sufficient cause (Halpern 2017) of the fact to explain. As an explanation depends on
the epistemic state of an agent, the inference of an explanation supposes to consider
every context judged possible by the agent.

3.9 Psychological Models

Although this chapter focuses on AI models of causation, it is worth noting that
cognitive psychology also offers several such models. We mention two well-known
ones, which rely on very different settings: classical logic and neural nets.

Thagard (1989)’s theory of explanatory coherence (see also Thagard and Ver-
beurgt 1998; Thagard 2000) views causal ascriptions as attempts to maximize
explanatory coherence between propositions. Maximizing coherence would lead to
accept the most plausible hypotheses that explain an event that took place (and reject
the alternative hypotheses). In this model, if one proposition explains another, then
there is a positive constraint between them. Negative constraints result from events
that prevent or are inconsistent with other events. See Benferhat et al. (2008) for
a short presentation of this approach, including its connectionist implementation,
where nodes in the neural network represent propositions, that can be more or less
accepted or rejected, as a result of the computation.

A mainstream psychological model of causality is the mental model theory of
naive causality (Goldvarg and Johnson-Laird 2001). This theory offers a psycholog-
ical model of how people mentally represent causal relations and reason from them.
Its definition of causality is primarily based on the ideas of temporality and necessary
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connection. According to the principle of temporal constraint, the causal claim “A
causes B” implies that B does not precede A in time. Such a claim is represented as
a triple of possibilities (i.e., Boolean valuations over the pair of formulas A and B)
that would make it true, namely: {AB,¬AB,¬A¬B}. This representation, based
on material implication, thus assumes a necessary connection between A and B.
It defines “A causes B ′ as A logically implies B and B does not precede A. As a
consequence, causation is unrestrictedly transitive.

In this approach, the statement “A allows B is represented by the triple {AB, A¬B,

¬A¬B}. Thus, “A allows B” is taken to mean that B cannot happen without A, but
that A is insufficient to produce B on its own. Note that the definition of “A allows B”
is formally equivalent to the definition of “not-A causes not-B”. Similarly, prevention
is represented by a different triple of possibilities, in fact, by the triple of possibilities
{A¬B,¬AB,¬A¬B} corresponding to “A causes not-B”.

3.10 Towards Comparing Models

As can be seen, there are quite a number of proposals for modeling causality ranging
from simplistic to sophisticated ones, using different representation settings (classical
logic, modal logic, probability theory, possibility theory, relation calculus, neural
nets, ...), and aiming at the treatment of specific or more general artificial intelligence
tasks. The idea of actual causality has been also used in databases, where it has
been proposed to take advantage of the lineage of answers to a query for finding
their causes and computing a degree of responsibility of a tuple with respect to an
answer, as a basis for explaining unexpected answers to a query. The idea there
is that “tuples with high responsibility tend to be interesting explanations to query
answers” (Meliou et al. 2010, 2014). See also (Bertossi 2018) for ongoing research
on database causality.

A rare example of an attempt at comparing different approaches on the same
task can be found in Benferhat et al. (2008). The chosen task is causality ascription
in a car accident report. It amounts to determining what elements in a sequence of
reported facts can be related in a causalway, on the basis of some knowledge about the
course of affairs. The study compares six approaches, corresponding to a large span of
formalmodels, respectively based on structural equations (Halpern and Pearl 2005a),
nonmonotonic consequence relations (Bonnefon et al. 2008), preference relations
between trajectories (Dupin de Saint-Cyr 2008),4 identification of violated norms
(Kayser and Nouioua 2009), possibilistic graphical representations and interventions

4This proposal is based on the idea that counterfactuality involves the computation of two kinds of
evolutions of the world, namely extrapolation and update. If we want to know whether an action
is a counterfactual cause of an event, given a reported sequence of events, we need to (i) compute
the most normal evolutions of the world (called trajectories) that correspond to the sequence. This
computation is called extrapolation, it is a process of completing initial beliefs sets stemming from
observations by assumingminimal abnormalities in the evolution of theworldwith respect to generic
knowledge; (ii) compute what would have happened if some event had not been true. This is done
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(Benferhat 2010), and connectionism (Thagard and Verbeurgt 1998). Interestingly
enough, the compared approaches focus on different aspects of the problem by either
identifying all the potential causes, or selecting a smaller subset thereof by taking
advantages of contextually abnormal facts, or by modeling interventions to get rid
of simple correlations. The paper also proposes a battery of criteria for judging the
approaches.

4 Conclusion

Causality is not a notion which is easy to grasp in spite of its intuitive appeal. This
fact explains the existence of a huge literature on the topic. The main ambition of
this chapter is to introduce the different facets and issues associated with this notion
and to provide a broad overview of the different proposals that have appeared in the
artificial intelligence literature. It is also worth pointing out that the different ideas
surveyed here can be handled in various qualitative or quantitative settings.
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Case-Based Reasoning, Analogy,
and Interpolation

Béatrice Fuchs, Jean Lieber, Laurent Miclet, Alain Mille, Amedeo Napoli,
Henri Prade and Gilles Richard

Abstract This chapter presents several types of reasoning based on analogy and
similarity. Case-based reasoning, presented in Sect. 2, consists in searching a case
(where a case represents a problem-solving episode) similar to the problem to be
solved and to adapt it to solve this problem. Section3 is devoted to analogical rea-
soning and to recent developments based on analogical proportion. Interpolative
reasoning, presented in Sect. 4 in the formal setting of fuzzy set representations, is
another form of similarity-based reasoning.

1 Introduction

Charles S. Peirce (1839–1914) distinguished three main forms of logical infer-
ence, namely deduction, abduction and induction, in relation with scientific inquiry
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(see Peirce 1955). Each of these three inference forms involves generic knowledge
in their patterns, in a way or another. There exist other modes of reasoning that only
deal with factual information and that are still useful for producing plausible conclu-
sions, although they may turn to be false. These latter modes are based on the idea
of comparing cases and the notion of similarity. This chapter covers two important
forms of such inference: case-based reasoning and analogical reasoning. The chapter
also includes another form of similarity-based reasoning that provides interpolation
capabilities. It is based on fuzzy rules, where a fuzzy setmay be viewed as a particular
value associated with the values that are more or less close to this value.

The paper is organized into three main sections that are respectively devoted to
case-based reasoning, analogical reasoning, and interpolative reasoning.

2 Case-Based Reasoning

Case-based reasoning (CBR) relies on experience in the form of problem-solving
episodes (or cases) in order to solve newproblems (Riesbeck andSchank 1989). It can
be differentiated from other approaches of problem-solving in artificial intelligence
(AI) which mainly exploit general domain knowledge to generate solutions. By
contrast, a CBR system is mainly based on concrete chunks of experience, with
specific contexts. Such chunks are represented by source cases stored in a case base.
When a new problem—the target problem—is given as input to a CBR system, this
latter searches in the case base a source case (or, sometimes, several source cases)
similar to the target problem that is reused in order to solve it thanks to an adaptation
process. The new chunk of experience (the target problem together with its solution),
once validated, can be stored in the case base and the system knowledge can gain
problem-solving competence this way.

CBR is based on the idea that for solving a problem, the problem-solving expe-
rience is often useful, when a “direct” solution is not easily found. For example, if
someone wants a pear pie recipe, has not the experience of such a recipe, but has the
similar experience of an apple pie recipe, he/she can adapt this latter to cook a pear
pie. The underlying principle relates to the analogical proportion “A is to B as C
is to D”. In the framework of CBR, A and C are problems and B and D are solu-
tions. Figure1 illustrates this idea. An overview of works on analogical reasoning
which is concomitant with the emergence of CBR is given in (Hall 1989). Analogical
reasoning in itself, independently from CBR, is presented in Sect. 3.

The origins of CBR can be found in works of M. Minsky and R. Schank. In
the work about perception of M. Minsky, a knowledge representation formalism
able to explain to some extent the efficiency of human mental activities has been
defined (Minsky 1975). This formalism is based on structures called frames that
can be dynamically reused and that represent models of situations. The matching
of frames can be used to recognize situations. The studies of R. Schank on natural
language understanding (Schank 1982) argued that cognitive processes of under-
standing and learning are linked with the way the human experience is organized.
In his theory, meaning is captured thanks to semantic constructs that are indepen-
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Fig. 1 The analogical
proportion applied to CBR

dent from syntax and are represented by sequences that are used to predict how
future sequences can be extended. Then, he designed the model of scripts for an
improved description of episodes by a set of actions structured by relations. This
model has then evolved towards the model of dynamic memory, able to reorganize
itself dynamically as new episodes are learned, generating generalized episodes that
factorize the common features of actual specific episodes (actual in the sense that they
are representation of actual facts). In (Riesbeck and Schank 1989), the episodes are
described with the help of memory organization packets (MOPs) and the understand-
ing of a situation depends on the way MOPs are related in the memory. Later, Janet
Kolodner has implemented one of the first CBR systems based on the model of
dynamic memory (Kolodner 1993).

2.1 Basic Notions Related to CBR

In a given application domain, the notions of problem and of solution are given.
Problems denotes the problem space andSolutions, the solution space: a prob-
lem is by definition an element of Problems, a solution is by definition an element
of Solutions. The existence of a binary relation on Problems × Solutions
that is read “has for solution” is assumed though the complete knowledge of this
relation is usually not known. Solving a problem pb amounts to find (or build)
sol ∈ Solutions such that pb has for solution sol. Since the problem-solution
relation is usually not completely known, sol is, for most CBR systems, only a
solution hypothesis.

CBR systems can be categorized according to the type of problems they aim at
solving. For example, if a problem is given by an initial stageinit and a goal to reach
goal, and if a solution is a path in the search space from init to a state satisfying
goal, this is a planning problem (see chapter “Planning in Artificial Intelligence” of
Volume 2) and the use of CBR to tackle such a problem is called case-based planning
(see Sect. 2.4). A decision problem is described by a situation for which a decision is
required. Other types of problems can be distinguished like configuration diagnosis,
or scheduling problems (Riesbeck and Schank 1989; Stefik 1995).
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A case is the representation of a problem-solving episode. Let pb ∈ Problems.
In general, a case is givenbyanorderedpair (pb,sol(pb))wherepb ∈ Problems,
sol(pb) ∈ Solutions and pb has for solution sol(pb). Often, pieces of infor-
mation useful to its reuse are associated with a case. In particular, the available
information on the links between pb and sol(pb) is called dependency.

A case base, denotedCaseBase in the following, is a finite set of cases. A source
case (srce,sol(srce)) is an element of CaseBase and srce is called a source
problem. The target problem, denoted by tgt, is the problem to be solved.

2.1.1 The Process Model of CBR

CBR is usually modeled by a “cycle” that specifies the sequence of its steps. This
cycle contains four general steps having profit of a knowledge base including a case
base (Aamodt and Plaza 1994). This cycle has been enriched by an elaboration step,
which gives the cycle presented in Fig. 2.

During the elaboration step, the query expressed by the user is transformed into
a problem understandable by the system, and the target problem tgt is generated.
During the retrieval step, a case (srce,sol(srce)) similar to the target problem
tgt is searched in the case base. Then this case is modified during the adaptation
step (also known as reuse step). The solution sol(tgt) can be validated (e.g., by
experts) and, if validated or corrected, the newly formed case (tgt,sol(tgt)) can
be stored in the case base (validation and case storage steps).

This process model has variants. One of them is the possibility to retrieve and
adapt (or combine) several source cases similar to the target problem.

Fig. 2 The CBR cycle
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2.1.2 The Knowledge Model of CBR

ACBR system is based on several knowledge containers (see (Richter 1998; Richter
and Weber 2013)). One of them is the case base. Another one constitutes the domain
knowledge (or domain ontology), that contains the vocabulary used to express the
cases and also expresses sufficient conditions for a problem, a solution or a case
to be licit (for the notion of ontology, see chapters “Reasoning with Ontologies”
and “Knowledge Engineering” of this volume). The third one is the retrieval knowl-
edge or similarity, that enables to prefer a source case to another, given the target
problem. Similarity is often implemented thanks to a similarity measure. Finally, the
adaptation knowledge is used by adaptation. It is often represented by adaptation
rules.

An important feature of CBR is that these knowledge containers are comple-
mentary, in the sense that the “weakness” of one of them can be compensated by
“strength” of the other ones. For example, if the case base is large, then little adapta-
tion knowledge is necessary. Conversely, with a lot of adaptation knowledge, fewer
cases are needed.

The next section describes with more details the different steps of CBR with their
use of the knowledge containers.

2.2 The CBR Steps

2.2.1 Elaboration

A CBR system is triggered by a query given by the user, that is treated by the elabo-
ration step. Elaboration prepares case retrieval by enriching the problem description
in order to obtain a target problem. This preliminary step points out in particular
the problem features that may have an impact on the solution. These features can be
inferred from domain knowledge in order to ease the problem-solving, in particular
the retrieval and adaptation steps.

2.2.2 Retrieval

Retrieval consists in searching in the case base a case (srce,sol(srce)) whose
reuse is useful to solve the target problem:

retrieval:(CaseBase,tgt) �→ (srce,sol(srce)) ∈ CaseBase

It is based on the knowledge of the similarity between problems, according to the
following principle: similar problems have (or may have) similar solutions.
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Similarity Measure

A frequent way to represent similarity is to use a similarity measureS : Problems
× Problems → [0; 1] in which the features are weighted according to their esti-
mated importance in the problem solving. This way, it can be expressed

• That two problems srce and tgt are similar: S (srce,tgt) � Smin, where
Smin is a predefined similarity threshold;

• That, given the target problemtgt, retrieval prefers a case (srce1,sol(srce1))

to a case (srce2,sol(srce2)): S (srce1,tgt) > S (srce2,tgt).

Sometimes, ameasure of dissimilarity (e.g., a distance function)d : Problems ×
Problems −→ [0;+∞[ is used instead of a similarity measure, knowing that S
must be maximized when d must be minimized. A classical way to associate a dis-
similarity measure d to a similarity measureS (and conversely) consists in writing
S (srce,tgt) = 1/(1 + d(srce,tgt)).

A frequent class of similarity measures is defined as follows. First, the features
of srce and tgt are matched (e.g., if the case representation is a simple attribute-
value representation, two features with the same attribute are matched). Then, a local
similarity measure is computed between each of the matched descriptors. Then,
the global similarity measure S (srce,tgt) is computed by an aggregation of
the values of the local similarity measures, using weights according to the feature
importance. One way to choose these weights is to use a machine learning technique:
the best set of weights is the one that best fits a training set of preference relations.

In the approach developed by Hüllermeier (2007), gradual similarity relations
are used. They are inspired from approximate reasoning based on fuzzy rules
(cf. Sect. 4.1).

Classification and Indexing

In many CBR system, retrieval has profit of a structure on the case base. The idea
is to organize the case base in classes along several features. In particular, the use
of an index hierarchy is frequent, an index of a source case being considered as
a kind of summary of this case (sometimes expressed in a less expressive formal-
ism (Koehler 1996)). This hierarchy gathers cases having common features in a class.
Let idx(tgt) be the index associated to the target problem and idx(srce) be
the index associated to each (srce,sol(srce)) ∈ CaseBase. Then, the source
cases whose indexes are the closest ones to idx(tgt) in the hierarchy (accord-
ing to some distance function between nodes of a graph) are the first candidates
(e.g., if idx(srce) shares with idx(tgt) a direct superclass, srce and tgt are
considered to be close).

In Resyn/CBR, an application of CBR to synthesis in organic chemistry, the
index idx(srce) of (srce,sol(srce)) is a generalization of srce and retrieval
is performed by a classification process (Lieber and Napoli 1996). Retrieval returns
a source case (srce,sol(srce)) associated with a similarity path S(srce,tgt)

that ensures the adaptability of the source case to solve the target problem. A sim-
ilarity path is a sequence of relations from srce to C0 = tgt, with the index
I0 = idx(srce) as intermediate of the hierarchy that generalizes the source case:
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srce � I0
�1−→ I1

�2−→ . . .
�p−→ Ip � Cq

rq←− · · · r2←− C1
r1←− C0 = tgt

Building a similarity path from srce to tgt is a matching process. A cost is
associated to any similarity path. It is used to choose the source case for which a
similarity path with the lowest cost can be built. Each relation r of a similarity path

(r ∈ {�,
�1−→,

�2−→, . . . ,
�p−→,�,

rq←−, . . .
r2←−,

r1←−} where the �i ’s and the r j ’s are
transformation rules) is associated to an adaptation function Ar: the pair (r,Ar)

constitutes an adaptation rule (also called reformulation in (Melis et al. 1998)). For
example, the relation � (“is more specific than”) is associated to a solution gener-
alization function A� and the relation � (“is more general than”) is associated to
a solution specialization function A�. Each of these relations are exploited in the
adaptation step and retrieval ensures the adaptability of the retrieved source case. For
this reason, this approach belongs to the family of adaptation-guided approaches to
retrieval (Smyth and Keane 1996).

In (Koehler 1996), a case-based planner is described in which the plans are
described in a complex temporal logic but retrieval is done in a tractable description
logic: cases are indexed in this more abstract and more tractable formalism and the
source cases whose index are the closest ones to the index of the target problem are
retrieved.

2.2.3 Adaptation

After retrieval, the solution of the source case is proposed as a solution to the target
problem. Usually, this solution needs to be adapted in order to take into account
differences between source and target problems. The objective of adaptation is to
solve tgt on the basis of the retrieved case (srce,sol(srce)):

adaptation:((srce,sol(srce)),tgt) �→ sol(tgt)

Note that only the adaptation of a single case is considered in this section.
Adaptation is essential when the solution of the source problem cannot be reused

as such for solving the target problem. It consists in modifying the source case
using domain knowledge and adaptation knowledge, taking into account differences
between the source and target problems (which are frequently highlighted during
retrieval).

Adaptation can be considered as an analogical problem solving that can be read
in two different ways: “sol(tgt) is to sol(srce) as tgt is to srce” and
“sol(tgt) is to tgt as sol(srce) is to srce”. These two ways correspond
to two general approaches to adaptation1:

1It is noteworthy that this differs from analogical proportions (presented in Sect. 3) for which these
two ways to read the four terms of an analogy are equivalent, according to the “exchange of the
means” property.
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• Transformational adaptation (Carbonell 1983) consists in modifying directly the
source solution. It aims at modifying either the values of some solution features
(this is called adaptation by substitution) or complex parts of the solution (this is
called structural adaptation);

• Derivational adaptation (Carbonell 1986) consists in building entirely the solution
of the target problem by applying the method that was used to generate the source
solution (which often requires a modification of this method to take into account
specificities of the target problem).

This can be read on the schema of Fig. 1. Indeed, when the horizontal relations
are considered (i.e., between problems and between solutions), this corresponds to
transformational adaptation. The principle of adaptation is then to find the variations
between solution features from variations between problem features. When vertical
relations are considered (i.e., from a problem to a solution), this corresponds to
derivational adaptation.

Transformational Adaptation

First, the solution of the source case is copied in order to constitute a first solution
of the target problem. This “first draft” is then modified according to the differences
between the source and target problems pointed out by the matching process.

The approaches to adaptation vary according to the types of operations. The
adaptation by substitution simply replaces elements of the solution by other elements,
while structural adaptation modifies with more depth the structure of the solution by
deleting and adding elements.

In the case-based planner chef (Hammond 1986) dedicated to cooking recipes,
the adaptation by substitutionmodifies some ingredients in order to satisfy constraints
of the target problem. Chef also makes structural modifications on the steps of the
recipe. The system Déjà Vu (Smyth and Keane 1995) uses adaptation strategies and
adaptation specialists. An adaptation specialist uses transformation operations to
perform local adaptations, whereas adaptation strategies solve the conflicts between
adaptation specialists. Model-based adaptation (such as the Casey system (Koton
1988)) exploits transformations that are controlled by a causal reasoning.

Derivational Adaptation

Derivational adaptation wholly regenerates the solution of the target problem by
replaying the reasoning having led to the solution of the source case (when an operator
cannot be applied, some local search is generated). Its application usually requires
that a strong domain knowledge is available (ideally, a complete domain knowledge
in the sense that the relation “has for solution” between problems and solutions is
completely known to the system).

Some Unifying Approaches to Adaptation

From the development of ad hoc approaches of adaptation, some general principles
and approaches have been pointed out, proposing general models of adaptation.
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In (Fuchs and Mille 1999), a general model of tasks has been introduced to
characterize the operations realized in the framework of formal models of adap-
tations. Adaptation consists in choosing a difference, in applying the corresponding
modification and then in checking the consistency of the result. A modification can
be a substitution, a deletion or an addition of elements. A substitution or an addition
requires the search of an adequate element and this is done thanks to the domain
knowledge.

In (Fuchs et al. 2000), the authors propose an approach to adaptation based on
the notion of influence of the problem descriptors to the solution descriptors which,
combinedwith thematchings performed during retrieval, makes possible to highlight
differences of solution descriptors that can be applied to the source solution in order to
obtain a target solution. This approach makes a strong connection between retrieval
knowledge (based on problem differences) and adaptation knowledge (based on
solution differences). It has been applied to numerical problems in the so-called
differential adaptation approach (see (Fuchs et al. 2014)).

Adaptation and Belief Revision

The issue of adaptation and the issue of belief revision (see chapter “Belief Revi-
sion, Belief Merging and Information Fusion” of this volume) are both based on the
notion of modification and change, hence the idea to exploit a revision operator for
performing adaptation.

An agent having beliefs ψ on a static world can be confronted to new beliefs μ in
conflict with ψ : ψ ∧ μ is inconsistent (∧ being the operator of conjunction of belief
bases in the considered formalism). Ifμ are assumed to have priority overψ , then the
problemof incorporatingμ toψ is the one of the revision ofψ byμ. The resultψ � μ

depends on the revision operator�. In (Alchourrón et al. 1985) are defined postulates
that � must (or should) satisfy, in particular, predicates expressing that ψ � μ has
to be computed with a minimal change of ψ into ψ ′ such that ψ ′ ∧ μ is consistent.
In (Katsuno and Mendelzon 1991), revision has been studied in a propositional
framework and it has been studied more recently is other formalisms, such as the
qualitative algebras (for these algebras, see chapter “Qualitative Reasoning about
Time and Space” of this volume).

Revision-based adaptation can be defined as follows. Let L be a formalism in
which can be expressed the domain knowledge DK, the source case to be adapted
Source (i.e., the problem srce and its solution sol(srce)) and the target case
Target (i.e., Target is given by the target problem tgt, the solution being
initially unknown). Let � be a revision operator � on L . �-adaptation consists in
modifying minimally the source case (this minimality being the one of the chosen
revision operator �) in order to make it consistent with the target case, keeping in
mind the fact that these cases have to be considered with the integrity constraints
given by the domain knowledge:

(DK ∧ Source) � (DK ∧ Target)
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This general approach to adaptation constitutes a general framework including
different approaches to adaptation including the adaptation by similarity paths. The
idea is that the adaptation knowledge AK associated with this type of adaptation
enables to define an operator �AK. Therefore, the �AK-adaptation adapts cases using
both adaptation knowledge and domain knowledge.

Revision-based adaptation has been studied in propositional logic (Lieber 2007)
then in a larger framework (Cojan and Lieber 2008). A similar adaptation has also
been studied in the framework of the expressive description logicALC (Cojan and
Lieber 2011) and in the tractable description logic EL ⊥ (Chang et al. 2014) (for
description logics, see chapter “Reasoning with Ontologies” of this volume).

2.2.4 Validation and Case Storage

Once the target problem solved, the new case (tgt,sol(tgt)) has to be tested
and evaluated. This evaluation is generally done by a human, in particular when the
CBR system has incomplete problem-solving knowledge, and aims at answering the
question “Is sol(tgt) a correct solution of tgt?” If the result of this evaluation
is positive, then the new case can be stored in the case base. Else, the solution
sol(tgt) has to be repaired and an explanation of this failure may be pointed out
to avoid such a failure in the future. This is the role of the validation step (sometimes
called revision) to question the system knowledge that has led to this failure, hence
its relation with knowledge acquisition issues, presented in the next section.

2.3 Knowledge Acquisition for a CBR System

In order to implement a CBR system (or any knowledge-based system, denoted by
KBS in the following (Stefik 1995)), its knowledge base has to be acquired and to
evolve over time. In this section, “knowledge acquisition” (KA) is used as a gen-
eral term for getting knowledge: from experts, from a machine learning process, or
from both, and constitutes a field of knowledge engineering (see chapter “Knowl-
edge Engineering” of this volume). A CBR system knowledge base consists of four
containers, the issue of KA for such a system can be described by four interrelated
issues.

Case Base KA

The case acquisition, or case authoring, consists mainly in the representation of
informal problem-solving episodes. A classical way to do it consists in interviewing
an expert about the way he/she solved a problem in the past and then in formalizing
it. Sometimes, there are many available data that are stored informally on machines,
but requires to be automatically transformed into actual cases, handable by a CBR
process. For example, if problem-solving episodes are available in a textual form,
natural language processing techniques can be used to interpret them into a formal
representation (Dufour-Lussier et al. 2014).
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Acquisition of the Domain Knowledge (or Domain Ontology)

The issue of KA of ontologies has been studied a lot in the KA community (see
chapter “Knowledge Engineering” of this volume) and CBR systems benefit from
it. The specificity of the acquisition of domain ontology is its close links with the
other containers, as detailed hereafter (actually, this can be argued for each pairs of
knowledge containers).

The case acquisition involves the need to define a vocabulary for representing
cases. This vocabulary constitutes an important part of the domain knowledge, or
domain ontology.

As mentioned above, the adaptation process uses both adaptation knowledge and
domain knowledge (see, e.g., revision-based adaptation). In particular, it is frequent
to substitute a class with another one that is close (e.g., an apple by a pear in a
recipe), this closeness being often related to the ontology (e.g., apples and pears are
both fruits).

In a similar way, the retrieval process often uses an ontology (e.g., to compare
two values of the same attribute).

Acquisition of Similarity (Retrieval Knowledge)

Retrieval knowledge is often represented thanks to a similarity measure, acquisi-
tion of this case container frequently amounts to the acquisition of such a measure,
based on known preferences between cases, given target problems. In (Stahl 2005),
a learning of similarity measure procedure is defined for this purpose.

Adaptation Knowledge Acquisition

A knowledge-light approach uses mainly the case base for generating adaptation
knowledge (Wilke et al. 1996).

In (Hanney 1996), the case base is exploited to generate inductively adaptation
rules in the condition-action form. The training set is given by pairs of cases from the
case base: such a case pair ((srce1,sol(srce1)), (srce2,sol(srce2))) is read
as an adaptation adaptation((srce1,sol(srce1)),srce2) = sol(srce2).
The conditions express differences between problems that are related to differences
between solutions. In (Craw et al. 2006), the same principle has been applied using
decision tree induction algorithms. In (McSherry 1999), adaptation is performed by
searching in the case base case pairs whose differences are similar to the differ-
ences between the retrieved case and the target problem. The adaptation consists
in applying this difference between solutions in order to obtain a solution to tgt.
In (d’Aquin et al. 2007), a knowledge discovery process using an algorithm of closed
frequent itemset extraction (see chapter “Formal Concept Analysis: From Knowl-
edge Discovery to Knowledge Processing” of Volume 2) is used in order to acquire
adaptation knowledge on all the pairs of source cases. The adaptation rules are based
on the differences between cases, represented by descriptors labelled with the type
of variations (constant, added or removed) from the source to the target.

The approaches presented above are off-line, but, as can be seen in the following,
some on-line approaches have been developed that exploit the steps of the CBR cycle
to extract new pieces of knowledge.
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Opportunistic Knowledge Acquisition for CBR

This form of knowledge acquisition consists in having profit of failures during the
building of a solution. The approach relies on interactions between the domain expert
and the system in order to acquire missing information that would have prevented
the failure. It is an online approach that takes place during the validation step and is
only triggered in case of failure, when the output of the adaptation process is not a
valid solution of the target problem, hence the adjective “opportunistic”.

The system Chef was probably the first system to apply an opportunistic knowl-
edge acquisition process from failures (Hammond 1990). DIAL was another early
system using this principle (Leake et al. 1996). In (Hall 1986), a previous work on
learning by failure, outside CBR, was presented.

The FIKA (Failure-driven Interactive Knowledge Acquisition) approach defines
general principles for interactive and opportunistic knowledge acquisition in CBR
that has been applied to the systems FRAKAS and IAKA. The FRAKAS sys-
tem (Cordier et al. 2007) is a decision support system that exploits failures of revision-
based adaptations in order to highlight gaps in the domain knowledge of the system
(with respect to the expert knowledge). The knowledge acquisition process is trig-
gered during which the interactive analysis of the failure leads to new units of knowl-
edge that are in accordancewith the expert knowledge. In IAKA, these principes have
been applied to adaptation knowledge acquisition (Cordier et al. 2008). The goal is to
exploit the corrections performed by the expert on the solution during the validation
phase in order to trigger an interactive knowledge acquisition process. This process
consists in identifying and correcting the adaptation knowledge at the origin of the
failure.

2.4 Some CBR Systems

This section describes some CBR systems for the purpose of illustration. First, some
generic tools useful for CBR are presented. Then, several application-dependent
CBR systems are presented according to the categories they belong to.

Some Generic Tools for CBR

The system jColibri is a logical framework for developing CBR systems (Recio-
Garcia 2008). In order to build a CBR application in jColibri, a task model have to
be configurated and the methods associated to each task have to be implemented.
This system uses an ontology of tasks and methods that defines an extendable base
of the framework design. For a particular application, it is sufficient to instanciate
this base and to determine the necessary extensions.

MyCBR (Stahl and Roth-Berghofer 2008) is another tool for building CBR sys-
tems that is focused on various way of modeling similarity.

Tuuurbine (Gaillard et al. 2014) is a tool for case retrieval when cases and domain
knowledge are represented within the semantic web standard RDFS: the target prob-
lem is translated into one or several SPARQL queries (a SPARQL query can be used
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to query an RDFS base) whose execution returns an exact match (for semantic web,
see chapter “SemanticWeb” of Volume 3). If no exact match is found, then the query
is modified minimally in new queries for which an exact match is found.

Revisor (revisor.loria.fr) is a tool for revision-based adaptation in vari-
ous formalisms (propositional logic, linear constraints and qualitative algebras).

Case-Based Planning

A CBR system solving planning problems (usually given by an initial state, a goal
statement and a set of operators on states) and thus, building plans, is a case-based
planning system. A case-based planner relying only on the search in the state space
doeswhat is sometimes called planning fromfirst principles or planning from scratch.
By contrast, some authors qualify the action of a case-based planner as planning from
second principles (Koehler 1996).

The system Chef, already mentioned above, is such a system: for Chef, a recipe
is represented by a preparation plan (Hammond 1986).

Prodigy/Analogy is a case-based planner working on a classical representation of
operators (condition, del-list, add-list) working with the assumption of completeness
of the problem-solving relation (the system can checkwhether a plansol is a correct
solution of a planning problem pb, without help from a human) (Veloso 1994). This
planner is based on derivational adaptation (Carbonell 1986), on retrieval/adaptation
of multiple cases, on the use of a planner from first principles for replaying the
retrieved plans, and on the notion of footprint. The footprint of the initial state e0
of a plan P is an abstraction of e0 obtained by removing pieces of information that
are not necessary for the execution of P . This notion of footprint has been reused,
in particular, for the indexing process of the Resyn/CBR system mentioned above.

Many case-based planning approaches have been developed in the CBR com-
munity using different principles. Let us mention the use of plan abstraction for
case-based planning (Bergmann and Wilke 1995): plans are described at several
levels of abstraction, and this approach uses abstraction and refinement processes
to travel from one level to another one. Finally, let us mention (Cox et al. 2005)
and (Spalazzi 2001) that are syntheses on case-based planning.

Process-Oriented CBR (PO-CBR)

A PO-CBR system is a CBR system in which cases represent processes. PO-CBR
has some similarities with case-based planning but differs in the same way as pro-
cesses differ from plans: the latters are usually strongly related with formal operators
(defined by conditions and actions), whereas a process is a structured set of tasks
which are in general atomic objects (names). The most classical representation of
cases in PO-CBR is the one of workflows. A selection of papers on PO-CBR has
been published in (Minor et al. 2014).

Conversational CBR (CCBR)

Classically, in a CBR system, the target problem is given entirely to the system
and then solved by the CBR process. By contrast, in conversational CBR, the target
problem is interactively built through a human-machine dialog (Aha et al. 2001),
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using the case base: based on the initial query, the case base is searched and specific
questions are posed to the user. Then, the process repeats itself until a sufficiently
detailed target problem is given. This approach to CBR is used in particular for
help-desk applications.

Textual CBR (TCBR)

In many applications, cases are, at the start of the development, available in an
informalway, for instance in the form of texts in natural language. The issue of TCBR
is to apply CBR to cases encoded as texts (Weber et al. 2005). One way to do this
consists in translating (semi-)automatically these texts into formal cases using natural
language processing techniques (see, e.g., (Dufour-Lussier et al. 2014)), such as
information extraction (as in (Brüninghaus and Ashley 2001)). Another way consists
in manipulating directly textual cases. For this purpose, similarity measures between
texts are used, for example, compression-based similarity measures (Cunningham
2009).

Trace-Based Reasoning (TBR)

TBR is a reasoning type similar to CBR, with some differences. If CBR considers
so-called problem-solving episodes, CBR systems exploiting the temporal facets of
an episode are rare, just as the descriptors involved are not necessarily temporally
located in relation to one another. Moreover, in CBR, a problem-solving episode
is considered independently of the different “contexts” in which the episodes were
held.

Human experience, when it is considered as temporal by essence, can be repre-
sented by a temporal trace revealing elements of an underlying implicit process. For
instance, the trace of use of a computer device or program captures some of the user
knowledge needed by his/her task. The trace theory gives a definition of this notion of
trace, how it can be represented together with the way the retrieval of episodes of use
are computed. When the traces are exploited on the basis of retrieval and adaptation,
TBR can be seen as a variation on CBR (Georgeon et al. 2011; Mille 2006; Zarka
et al. 2011) and is based on a cycle similar to the one of Fig. 2.

CBR Applied to Particular Fields

There has been many applications of CBR to medical domains as well as to other
fields of health science, for various tasks such as assisting diagnosis or treatment, for
tasks in medical engineering, etc. This can be explained in part by the fact that the
knowledge of physicians combine theoretical knowledge (comparable to the domain
knowledge in CBR) and experience (that is represented by cases in CBR). The
papers (Bichindaritz and Marling 2006) and (Begum et al. 2011) present syntheses
of work on CBR to health science.

In a similar way, CBR has been applied to the legal domain (see, e.g.,
(Brüninghaus and Ashley 2001)), in which laws correspond to domain knowledge
and legal precedents to cases.

In fact, CBR has been widely applied to many domains in which an impor-
tant part of the knowledge consists in specific experience, such as architecture
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(Dave et al. 1995), cooking (Cordier et al. 2014), design (Goel 1989), forest
fires (Rougegrez 1994), games (Woolford and Watson 2017), music (de Mántaras
1998), running (Smyth and Cunningham 2017), theorem prooving (Melis 1995) (to
cite only a few of such domains with particular examples).

3 Reasoning by Analogy and Analogical Proportions

The role of analogy in human reasoning has been acknowledged for a long time.
Analogical reasoning exploits parallels between situations. It refers to the reasoning
with which the humanmind infers from an observed similarity another similarity that
is not known. While induction goes from several specific situations to a general rule,
analogygoes fromone similarity between specific situations to another one. It enables
us to state analogies for explanation purposes, for drawing plausible conclusions, or
for creating new devices by transposing old ones in new contexts. For this reason,
analogical reasoning has been studied for a long time, in philosophy, e.g., (Hesse
1966), in cognitive psychology, e.g., (Gentner et al. 2001; Hofstadter and Sander
2013; Holyoak 2005), and in artificial intelligence, e.g., (Helman 1988; Hofstadter
and Mitchell 1995; Melis and Veloso 1998a), under various approaches (French
2002; Prade and Richard 2014a; McGreggor et al. 2014). Thus, since the beginnings
of artificial intelligence, researchers have been interested in analogical reasoning as
a basis for efficient heuristics for solving puzzles where a series has to be completed
(Evans 1964), or for speeding up automatic deduction processes (Becker 1969; Kling
1972). This latter idea has then been resumed and systematically explored in studies
such as the ones of (Melis and Veloso 1998b) or (Sowa and Majumdar 2003). At the
modeling level, analogy can be envisaged at least in two different manners, either
(i) as a matter of mapping two situations, one considered as a source of information,
the other as a target about which one would like to draw some inference, or (ii) in
terms of analogical proportions, i.e., statements of the form “A is to B as C is to D”.
In the two following subsections, we consider these two views in sequence.

It should be also pointed out that case-based reasoning, as presented above, can
be viewed as a form of analogical reasoning. As explained in the first part of this
chapter, CBR uses a base of known cases often stored as (problem, solution) pairs.
When confronted to a new problem B, the problems A similar to B such that A
appears in a problem-solution pair (A,C) are retrieved from the case base. Using a
so-called adaptation technique, the solution C of the problem A is transformed into
a candidate solution D of B (see, e.g., (Aamodt and Plaza 1994)). Thus, one can
say that the target pair (B, D) parallels pairs (A,C) retrieved from the information
source, but we may also state that “solution D is to solution C as problem B is to
problem A”, which corresponds to the two above-mentioned views of analogy.
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3.1 Analogy in Terms of Mappings

The classical view of analogy relies on the establishment of a parallel between two
situations (or universes), which are described in terms of objects, properties of the
objects, and relations linking the objects. It amounts to identifying one-to-one cor-
respondences between objects in situation 1 and objects in situation 2, on the basis
of similar properties and relations that hold both for the objects in situation 1 and for
the objects in situation 2. This is the basis of approaches proposed in cognitive psy-
chology. Usual illustrations of this view are Rutherford’s analogy between the atom
structure and the solar system, or the similarity between electricity and hydraulics
equations.

At the forefront of the proposals coming from cognitive science in the last three
decades, three leading approaches should be especially mentioned: the structure
mapping theory (SMT) proposed by (Gentner 1983, Gentner 1989), the analogical
constraint mapping approach proposed by (Holyoak and Thagard 1989), (Thagard
et al. 1990), and themodel of analogymaking based on the idea of the parallel terraced
scan developed by (Hofstadter and Mitchell 1995), (Mitchell 1993, Mitchell 2001).

Structure mapping theory views an analogy as a mapping between a source and a
target domain. The associated structure-mapping engine (SME) (Falkenhainer et al.
1989) returns the correspondences between the constituents of the base and target
descriptions (expressed in terms of relations, properties, and functions), a set of
candidate inferences about the target according to the mapping, and a structural
evaluation score. Such a view is closely related to the idea of structural similarity
(Syrovatka 2000), andhas been also advocated early in artificial intelligence (Winston
1980); see also (Gust et al. 2006) for a presentation of the HDTP model based on a
second order logicalmodeling of SMT, and (Weitzenfeld 1984) for a discussion about
the interest of isomorphic structures when comparing situations. Besides, the view
of analogy as a constraint satisfaction process, also defended in (Indurkhya 1987;
Van Dormael 1990), is at work in the analogical constraint mapping engine (ACME)
(Holyoak and Thagard 1989; Holyoak et al. 1994), which represents constraints by
means of a network of supporting and competing hypotheses regardingwhat elements
to map, and where an algorithm identifies mapping hypotheses that collectively
represent the overall mapping that best fits the interacting constraints.

Roughly speaking, following (French 2002), one may distinguish between three
broad groups: (i) the symbolic models that establish a structural similarity between
the source and target descriptions generally expressed in formal logic terms, as SME;
(ii) the connectionist models well suited for representing relational structures with
nodes and links between nodes, as in ACME from using a kind of neuron network-
like structure, or in LISA (Hummel and Holyoak 1997) the strong constraint of pair-
wise connection between objects is relaxed to partial and dynamic connections (see
(French 2002) for other references); (iii) the hybrid models relying on a combination
of the previous approaches. These latter models generally use constraint satisfaction
networks, explore competing hypotheses and are stochastic in nature. They rather
focus on the optimization process at work to extract the most plausible solution.
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Moreover, this type of approach naturally embeds a graded view of similarity, while
symbolic approaches have generally difficulties to handle similarity beyond mere
identity. The COPYCAT project (Hofstadter and Mitchell 1995; Mitchell 1993) is
probably one of the most well-known attempt of analogy-making program falling
in the hybrid category. Based on a similar paradigm, let us also mention Tabletop
(French and Hofstadter 1991; French 1995), and NARS (Wang 2009).

In the recent years, SMT (structure-mapping theory) has proved to be effective for
handling several AI problems (Forbus et al. 2017), for instance for solving IQ tests.
They have dealt with the Raven Progressive Matrices test (Raven 2000), which are
non-verbal tests supposedly measuring general intelligence: A 3 × 3 Raven matrix
exhibits 8 geometric pictures displayed as its 8 first cells: the remaining 9th cell is
empty. In these tests, a set of 8 candidate pictures is also given among which the
subject is asked to identify the solution. The approach uses a sketch understanding
system named CogSketch (Forbus et al. 2011). It takes a sketch drawn by the user as
input, which has to be segmented into objects, and generates a qualitative representa-
tion of those objects (or their edges and groups of objects), and their relations (relative
position, topology, etc.). For instance, CogSketch can tell which objects are placed
side by side, whether two objects intersect, or whether one is located inside another.
At the end of the process, each picture is represented as an entity with attributes and
relations with other entities. At this stage, we have obtained a representation of the
relative position of the objects.

CogSketch uses this edge level representation (which identifies the corresponding
edges in two distinct objects) to compare two objects in a sketch, with the aim
of determining if there is a transformation (rotation, size modification) or even a
deformation (total shape change) between these two objects. With this information,
the objects with equivalent or strict shapes in common, are grouped together. At this
stage, we have a representation of the modification between objects.

In order to select the correct answer for the target test, the system described
in (Lovett et al. 2010) proceeds as follows:

1. The first two rows of the current matrix are evaluated via SME in order to generate
some rules for both of them, which are called pattern of variance and are a
representation of how the objects change across the row of images. There are
four different strategies available to build up these patterns of variances.

2. SME is then used again, but now for comparing the two patterns of variance
previously found for the top two rows, and obtaining a similarity score. This
comparison is called second-order comparison as it operates on patterns instead
of object representations.

3. This similarity score is compared to a threshold to determine its validity.
4. If the patterns of variance are considered similar enough, an analogical gener-

alization (which is a new pattern) is built describing what is common to both
rows.

5. Each one of the 8 candidate answers is scored by inserting that answer into the
bottom row, computing a pattern of variance, and then using SME to compare
this pattern to the generalization pattern for the top two rows. The final answer is
the one with the highest score.
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6. In the case where the two patterns of variance corresponding to the top rows are
not similar enough, another strategy is applied.

3.2 Analogy in Terms of Proportions

The word analogy is also associated with the notion of analogical proportions, i.e.,
statements of the form “A is to B as C is to D”. The idea of this type of statement
goes back (at least) to Aristotle, and was inspired by geometric proportions ( AB = C

D )
and arithmetic proportions (A − B = C − D) between numbers. As can be seen,
such proportion involve four elements, considered by pairs. Here are examples of
such proportions: “calf is to bull as foal is to stallion”, “colibri is to birds as mouse
is to mammals”, “beer is to Germany as wine is to France”. In the first example,
the four items involved are animals, which are thus pairwise comparable using the
same features. In the second example, we have still animals, but species and orders.
In the last example, the four items clearly belong to two different categories: here
A and C are drinks while B and D are countries. In that latter case, the ‘is to’
refers to some relationship(s) existing between two items belonging to two distinct
categories respectively, A and B on the one hand,C and D on the other hand, and the
‘as’ expresses the identity of this/these relationship(s). In the first example, ‘is to’
may be understood as referring to a mere comparison, moreover B and C commute
leading to a new acceptable proportion, which is much more debatable in the last two
examples, and especially the last one. In the following, we mainly address the first
kind of proportion where the four items belong to the same category. Regarding the
second kind of proportion, one may mention a preliminary work that bridges formal
concept analysis with analogical proportions and looks for metaphors in a formal
context (an example of metaphor is “Dugléré is the Mozart of (French) cooking” (in
the XIXth century!), which is clearly related to the proportion “Dugléré is to (French)
cooking as Mozart is to music”) (Miclet et al. 2014).

Some of the artificial intelligence studies on analogical reasoning have focused
on analogical proportions. This is the case for two already mentioned works. The
ANALOGYprogram (Evans 1964) whichwas able – in an empirical way not directly
applicable to other domains – to properly select a figure composed of geometrical
elements, among different proposed choices, in order to give an “analogical” solution
to three figures of the same nature. Some 30 years later, the COPYCAT system
(Hofstadter and Mitchell 1995) was able to make a similar solving for triples of
character strings to be completed by a fourth string, using a different approach based
on artificial neural nets (see (French 2002) for a detailed discussion).

An attempt to formalize analogical reasoning started from the idea that Q(t) can
be inferred from (P(s), Q(s)) and P(t) (where P and Q are predicates). This can be
read as the proportion “P(s) is to Q(s) as P(t) is to Q(t)”, and indeed the analogical
jump from (P(s), Q(s)) and P(t) to Q(t) can be seen as a form of analogical
proportion-based inference (Bounhas et al. 2017a). However, the idea developed
in (Davies and Russell 1987; Russell 1989) was to add additional information in
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order to make the inference pattern valid by requiring the implicit hypothesis that P
determines Q inasmuch as �x P(x) ∧ ¬Q(x). This may be ensured if there exists an
underlying functional dependency, or more generally, if it is known for instance that
when something is true for an object of a certain type, then it is true for all objects of
that type. Besides, the statement “P determines Q” which can be possibly translated
into ∀x(P(x) ⇒ Q(x)). If this functional dependency is considered too strong, it
may be weakened, for instance into “The more similar P(s) and P(t) are, the more
it is guaranteed as possible that Q(s) and Q(t) are similar” (where P and Q are now
gradual predicates) (Dubois et al. 2002). This leads to a potential formalization of
case-based reasoning. More recently, it has been presented in (Weller and Schmid
2007) an approach based on anti-resolution w.r.t. an equational theory for solving
analogical proportions of the form “A is to B as C is to D” where D is unknown, by
applying the same transformation to B as the one that enables us to go from A to C .

For about two decades, a series of European studies (Federici et al. 1996; Lepage
2001; Yvon et al. 2004; Stroppa and Yvon 2005b), summarized below, has aimed at
developing formal models of analogical proportions and at showing their interest, in
particular in computational linguistics (see (Stroppa and Yvon 2005a; Lepage et al.
2009 and Langlais and Patry 2007)). These studies start from the fact that analogical
proportions obey postulates. Indeed, it has been observed for a long time that an
analogical proportion “A is to B as C is to D”, denoted by A : B ::C : D in the
following, should satisfy the following remarkable properties:

Symmetry of the relation “as” : A : B ::C : D ⇔ C : D :: A : B
Exchange of the means : A : B ::C : D ⇔ A : C :: B : D

Furthermore, every expression of the form A : A :: B : B or A : B :: A : B is assumed
to be a (trivial) analogical proportion. Besides, the two properties of symmetry and
exchange, also satisfied by mathematical proportions, are at the origin of the term
“analogical proportion”. In particular, it has been noticed on the basis of the two
properties introduced above, that the proportion A : B ::C : D can be rewritten on
the form of 8 equivalent proportions (including itself). It can be shown that the 24
possibilities of permutation of 4 objects can be partitioned in 3 equivalence classes
of 8 proportions each, with an example of each class below:

A : B ::C : D A : B :: D : C A : C :: D : B

In addition, (Lepage 2001) has contributed to a model based on set theory of pro-
portional analogies, where A, B, C and D are considered as situations characterized
by sets of binary features. This model has been somewhat simplified in (Miclet and
Prade 2009) and has led to the following definition:

A : B ::C : D ⇔ A \ B = C \ D and B \ A = D \ C

where \ denotes the set difference. This means that A differs from B as C differs
from D and that B differs from A as D differs from C . This has a direct counterpart
in a propositional logic modeling.
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3.3 Proportional Analogy in Boolean Logic

When the terms of an analogical proportion take their values in {0, 1} (i.e., the focus
is on whether a description feature is true or false), the proportion becomes a relation
between 4 truth values, and can be expressed by the Boolean logic formula.

a : b :: c : d if and only if ((a ∧ ¬b ≡ c ∧ ¬d) ∧ (b ∧ ¬a ≡ d ∧ ¬c))

which obviously fits with the above reading in terms of difference (x ∧ ¬y is the
logical difference between x and y). The 6 truth assignments of (a, b, c, d) making
the proportional analogy a : b :: c : d true appear in bold font in the table below. The
truth values obey the logical expression given above (Miclet and Prade 2009; Prade
and Richard 2013).

a 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
b 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
c 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
d 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a : b :: c : d 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1

The Boolean analogical proportion is a particular case of so-called logical propor-
tions that are built from similarity and dissimilarity indicators (Prade and Richard
2013). When comparing two Boolean variables a and b there are two similarity
indicators, namely a positive one a ∧ b and a negative one ¬a ∧ ¬b, and two dis-
similarity indicators¬a ∧ b and a ∧ ¬b.2 Logical proportions connect four Boolean
variables through a conjunction of two equivalences between similarity or dissimi-
larity indicators pertaining respectively to two pairs (a, b) and (c, d). More precisely
a logical proportion is the conjunction of two equivalences between indicators for
(a, b) on one side and indicators for (c, d) on the other side. In the case of analogi-
cal proportion only dissimilarity operators are used. There are 120 syntactically and
semantically distinct logical proportions. All these proportions share a remarkable
property: they are true for exactly 6 patterns of values of abcd among 24 possible
values. This is only a small subset of the

(16
6

) = 8008 quaternary Boolean operators
true for only 6 patterns. For instance, ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((a ∧ b) ≡ (c ∧ d))

is a logical proportion, expressing that “a differs from b as c differs from d” and that
“a is similar to b as c is similar to d”, which is true for the 6 patterns 0000, 1111,
1010, 0101, 0001, and 0100. The reader is referred to (Prade and Richard 2013) for
a thorough study of the different types of logical proportions.

Among logical proportions LP(a, b, c, d) those satisfying the code independence
property are of particular interest. This property expresses that there should be no dis-
tinctionwhenencoding informationpositively or negatively. In otherwords, encoding
truth (resp. falsity) with 1 or with 0 (resp. with 0 and 1) is just a matter of conven-
tion, and should not impact the final result. Thus we should have the following

2These indicators are also the building blocks of the view of similarity proposed by (Tversky 1977).
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entailment between the two logical expressions: LP(a, b, c, d) ⇒ LP(¬a,¬b,
¬c,¬d). There only exist eight logical proportions that satisfy the above property
(Prade and Richard 2013). The code independent proportions split into 4 homoge-
neous proportions that are symmetrical (one can exchange (a, b) with (c, d)) and 4
heterogeneous ones that are not symmetrical. Homogeneity here refers to the fact that
in the expression of the proportions, both equivalences link indicators of the same
kind (similarity or dissimilarity), while in the case of heterogeneous proportions
they link indicators of opposite kinds. Homogeneous logical proportions include
analogical proportion and two other closely related proportions:

• reverse analogy:Rev(a, b, c, d) � ((¬a ∧ b) ≡ (c ∧ ¬d)) ∧ ((a ∧ ¬b) ≡ (¬c ∧
d))

It reverses analogy into “b is to a as c is to d”. Indeed Rev(a, b, c, d) = b : a::c : d.
• paralogy: Par(a, b, c, d) � ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)). It
expresses thatwhat a and b have in common (positively or negatively), c and d have
it also, and conversely. It can be shown that Par(a, b, c, d) = c : b::a : d, which
provides an expression of analogical proportion in terms of similarity indicators.

Switching the positive and the negative similarity indicators pertaining to the pair
(c, d) in Par(a, b, c, d), we obtain the fourth homogeneous logical proportion
called inverse paralogy: Inv(a, b, c, d) � ((a ∧ b) ≡ (¬c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡
(c ∧ d)). Inv(a, b, c, d) states that “what a and b have in common, c and d do not
have it and conversely”. It expresses a kind of “orthogonality” between the pairs
(a, b) and (c, d). Inv is the unique logical proportion (among the 120’s!) which
remains unchanged under any permutation of two terms among the four (Prade and
Richard 2013).

The four heterogeneous logical proportions have a quite different semantics. They
express that there is an intruder among {a, b, c, d}, which is not a, which is not b,
which is not c, and which is not d respectively (Prade and Richard 2014b). They are
at the basis of an “oddness” measure, which may be used in classification, following
the straightforward idea of classifying a new item in the class where it appears to be
the least at odds (Bounhas et al. 2017b).

Besides, the equation a : b :: c : x where x is the unknown may have no solution
(this is the case, e.g., for 1 : 0 :: 0 : x). In the Boolean case the solution exists only if
a = b or a = c. When this solution exists, it is unique and given by x = c ≡ (a ≡ b)
(that is also the solution,when it exists, of Rev(a, b, c, x) and of Par(a, b, c, x). This
result was first noticed in (Klein 1982) in an empirical approach based on semiotic
observations, which made no distinction between a : b :: c : d, Rev(a, b, c, d), and
Par(a, b, c, d) (Prade and Richard 2013).

Let us now consider objects described by means of a set of Boolean features
(binary attributes). In this setting, logical reasoning by analogy consists in identifying
the analogical proportions that hold on a subset of attributes between four objects and
to infer the value of the remaining attributes, or of the class attribute for the fourth
object, knowing the value for the three others. This idea has been successfully used
for building the solution of Raven Progressive Matrices IQ tests, without the help of
any candidate solutions (Correa Beltran et al. 2016).
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In terms of machine learning (see chapter “Statistical Computational Learning”
in this volume and chapter “Designing Algorithms for Machine Learning and Data
Mining” in Volume 2), the objective is to learn the value u(x) of a function u for an
object x . Let us consider classification: in this framework, u(x) is the label of a class
chosen in a finite set of classes. A training set S composed of examples of objects
ai , for which the supervision u(ai ) is known, is available:

S = {(a1, u(a1)), . . . , (am, u(am))}

The idea is to find 3 objects a, b and c of S such that a : b :: c : x .3 It must be
noticed that the object x to be classified is compared to a triple of objects (a, b, c),
which differs from the classification based on the k nearest neighbors for which x
is compared to its neighbors taken individually. Then, the value of u on x can be
computed by solving the equation u(a) : u(b) :: u(c) : u(x).

This technique is based on the hypothesis that to the analogical relation between
the object descriptors corresponds an analogical relation between the values of the
supervision function u. This hypothesis has been verified with success for classifi-
cation rule learning with objects described by binary and nominal attributes (noting
that a nominal attribute can be replaced by a set of binary attributes) on classical
databases (Bayoudh et al. 2007a).

An interesting feature of such analogical classifiers is that the size of the learning
set can be drastically reduced without decreasing the success rate on a test set. This
property can be explained in the following way. Call the analogical extension AE(S)

of a set S of m vectors (binary, nominal or numerical) the multiset composed of the
m3 solutions to the equations a : b :: c : x , where a, b and c are elements of S. When
the vectors are numerical and the arithmetic proportion is used, AE(S) has same
mean and covariance matrix as S. Analogical classification with S as a learning set
is indeed very similar in that case to a k-nearest neighbours method using AE(S),
but requires m instead of m3 learning patterns. The price to pay is in classification
time of a new pattern, but it can be managed with preprocessing methods of S.

Classification based on analogical proportions has also been generalized to numer-
ical features thanks to a multiple-valued extension of the logical definition of ana-
logical proportion (Bounhas et al. 2017a).

Recent formal studies have shown that analogical classifiers always give exact
predictions in the special cases where the classification process is governed by an
affine Boolean function (which includes x-or functions) and only in this case, which
does not prevent to get good results in other cases (as observed in practice), but which
is still to be better understood (Couceiro et al. 2017). This suggests that analogical
proportions enforce a form of linearity, just as numerical proportions fit with linear
interpolation.

3Or to find all the triples (a, b, c) realizing that and then to make a vote, as in the k-nearest neighbor
method. Empirical studies suggest that if we restrict ourselves to triples where c is a k-nearest
neighbor (a, b being generally quite far) this does not really harm the results (Bounhas et al.
2017a).
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3.4 Analogical Proportions Between Sequences

In order to obtain a general notion of analogical proportion and to apply it to various
spaces, Yvon and Stroppa have proposed a definition that satisfies the symmetry and
exchange postulates and that is helpful to solve analogical equations (Stroppa and
Yvon 2005c). They take lessons from geometric proportions in R, where the rule of
three applies: u

v = w
x ⇔ u × x = v × w. In order to analyse the second relation, it is

natural to decompose the four numbers in prime factors. For example 6
10 = 21

35 can
be written 2×3

2×5 = 7×3
7×5 . In other words, we can say that the numbers u = 6, v = 10,

w = 21 and x = 35 are in analogical proportion because there exist four factors
f1 = 2, f2 = 7, f3 = 3 and f4 = 5 such that u = f1 × f3, v = f1 × f4, w = f2 ×
f3, x = f2 × f4.
Is it possible to transfer this cross factorization in another universe? Let Σ� be

the set of sequences on an alphabet Σ with the non commutative concatenation
operation (explicitely denoted by “.”). For instance, let us consider the numerical
analogy 18 : 63 :: 30 : 105 and an analogy on sequences, here made of French words:
déridés : ridons :: démarchés : marchons. They can be factorized in the following
way:

18 = 2 × 3 × 2 × 1 × 3
63 = 1 × 3 × 1 × 7 × 3
30 = 2 × 5 × 2 × 1 × 3
105 = 1 × 5 × 1 × 7 × 3

déridés = dé . rid . é . ε . s
ridons = ε . rid . ε . on . s

démarchés = dé . march . é . ε . s
marchons = ε . march . ε . on . s

It can be noted that, in both cases, each quadruple of factors of rank i read in a column
is either ( fi , fi , gi , gi ) or ( fi , gi , fi , gi ). A factor may be the neutral element of the
considered universe (1 for multiplication in R and ε for concatenation in Σ�).

This idea of factorizing in elementary analogical proportions has been used by
Yvon and Stroppa for defining algorithms for checking proportions and for solving
analogical equation between sequences, using systems with finite states. This idea
was addressed in a different way in (Miclet et al. 2008) where an extension of the
edit distance is used that defines an analogical dissimilarity between four sequences
and leads to an approximate solving of analogical equations.

Another application of analogical equation solving on sequences is the generation
of plausible patterns. In this framework, the study of (Stroppa and Yvon 2006)
was about applications to phonetics and morphology. In (Bayoudh et al. 2007b), it
has been shown how to generate plausible training examples for the recognition of
handwritten characters.
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4 Interpolative Reasoning

Case-based reasoning relates two similar problems and transfers the solution of one
of them to the other one. An analogical proportion states particular similarity and
dissimilarity relations between four terms. Thus, case-based reasoning and analog-
ical reasoning are two forms of similarity-based reasoning. But they are not the only
ones. In this last section of the chapter we present a brief overview of studies based on
another similarity-based reasoning: the interpolative (and extrapolative) reasoning.
Interpolation allows us, when the current situation is intermediate between known
situations, to conclude in an intermediate way with respect to the conclusions of
these situations. When the conclusion of only one situation, close to the current sit-
uation, is known, a solution can be extrapolated for the current situation, provided
that some available information about the variations around this close situation can
be exploited. Therefore, interpolation and extrapolation need variables with ordered
referentials and some notions of similarity. These forms of reasoning, though they
are important in commonsense reasoning, have got very little attention in AI out-
side the community working on fuzzy sets and approximate reasoning. First, some
recalls about fuzzy sets and approximate reasoning are given. Then, interpolation and
extrapolation in this framework are discussed. Finally, some studies on this subject
that are not based on fuzzy sets are briefly presented.

4.1 Fuzzy Sets and Approximate Reasoning

In addition to the representation of uncertainty (see chapters “Representations of
Uncertainty in Artificial Intelligence: Probability and Possibility” and “Representa-
tions of Uncertainty in Artificial Intelligence: Beyond Probability and Possibility” in
this volume) and preferences (see chapter “Compact Representation of Preferences”
in this volume), the semantics of fuzzy sets can be based on similarity. In fact, this
corresponds to the first interpretation pointed out for fuzzy sets (Bellman et al. 1966):
the higher themembership degree of an element is, the closest to the core of the fuzzy
set it is (the core of a fuzzy set being the set of elements with a membership degree
equal to 1). For instance, a fuzzy set A with a triangular membership degree μA such
that a is the only value verifying μA(a) = 1 represents the set of values more or less
close to a (the closeness linearly decreases when the element goes away from a if
μA is triangular). More generally, a fuzzy rule of the form “if x is A then y is B”
can be intuitively understood as “if x is close to a then y is close to b” when A and
B are two fuzzy sets of respective cores {a} and {b}. This idea can be extended to
rules with several conditions. Deduction based on these rules can be done thanks to
the approximate reasoning method that is presented now.

Theprinciple of approximate reasoning introduced in (Zadeh1979) (see (Bouchon-
Meunier et al. 1999) for a detailed overview) is based on a mechanism of combi-
nation/projection of the representation of the available pieces of information. These
pieces of information are represented by possibility distributions from which a new



Case-Based Reasoning, Analogy, and Interpolation 331

possibility distribution, representing the conclusion, can be deduced. So, let X and
Y be two variables having their values respectively in referentials U and V . If it is
known that “X is A′” and that “if X is A then Y is B”, represented respectively by
πX = μA′ and π(X,Y ) = μA → μB , it can be concluded that

μB ′(v) = πY (v) = supmin(πX (u), π(X,Y )(u, v))

where A, A′ (resp., B, B ′) are the fuzzy subsets of U (resp., V ) that restrict the
more or less possible values of X and Y , and → is a logical connector that defines
here a fuzzy relation on U × V modeling the relation between X and Y expressed
by the “if …then …” rule linking them. The above expression is nothing but the
computation of the marginal possibility distribution of Y from the joint distribution
of (X,Y ) obtained by the conjunctive combination of available pieces of information.
The pattern of reasoning corresponding to the schema, from “if X is A′” and “if X
is A then Y is B” it entails that “Y is B ′”, corresponds to the idea of “generalized
modus ponens”4 (Zadeh 1979). According to themeaning given to the rule “if…then
…”, different operators can be chosen for →: they are multivalued conjunctions or
implications (Dubois and Prade 1996) depending on the interpretation of the rule as
specifying that all the elements of the (fuzzy) Cartesian product A × B are values
that are all possible for (X,Y ) or, on the contrary, that the elements of A × B are
impossible (where B denotes the complement of B).

This type of approximate reasoning has been applied to case-based reasoning by
using fuzzy rules expressing that “the more two situations are similar from some
viewpoint, the more it is guaranteed possible that they are according to other view-
points” (Hüllermeier et al. 2002) (see Sect. 4.1.3 in chapter “Representations of
Uncertainty in Artificial Intelligence: Probability and Possibility” of this volume
for a brief presentation of this kind of rules “with guaranteed possibility”) and they
can then be related to methods of the k-nearest neighbors type.

4.2 Graduality and Interpolation

The choice of a particular implication connective, the so-called Gödel implication
(s → t = t if s ≤ t and s → t = 0 if s > t) or, simply its binary restriction called
Rescher-Gaines implication (s → t = 1 if s ≤ t and s → t = 0 if s > t) allows us
to give a gradual semantics (Dubois and Prade 1992) to the rule under the form “the
more X is A, the more Y is B”, which can be also read as “the closer X is to a
the closer Y is to b”. This is equivalent to a set of non fuzzy rules “if X ∈ Aα then

4Rather then seeing a fuzzy set as a set of elements close to its core value, similarity measures
between fuzzy sets themselves can be defined, and then it is possible to give some meaning to
the analogical proportion of the form A : A′ :: B : B ′, but B ′ obtained this way does not have, in
general, a reason to be compatible with the result of the generalized modus ponens as defined above.
However, some choice of resemblance relations and of operators allows us to reconcile these two
viewpoints; see for example (Bouchon-Meunier and Valverde 1999).
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Y ∈ Bα for α ∈ (0, 1] that express well the fact that the closer X is to a, i.e., in a
cut Aα = {u ∈ U |μA(u) ≥ α} of high degree α, the more Y is in a cut of B of high
degree (the more the cut is of high degree α, the closer to a the values in the cut).
It can be shown that the approximate reasoning applied to a base of gradual rules5

offering an appropriate and sufficient coverage of U allows us to model linear or
non linear interpolations (Dubois and Prade 1992). The situation where the fuzzy
subsets Ai correspond to the fuzzy rule base “if X is Ai then Y is Bi” for i = 1, n
does not constitute a coverage, even in an approximate way, of U has been also
studied by several authors; see (Perfilieva et al. 2012) for an overview of generalized
interpolation methods between “scattered” rules.

The semantics in termsof similarity of a fuzzy set is also a startingpoint of (Ruspini
1991) for defining a gradual consequence relation. The initial intuition is simple: the
consequence relation p � q between twopropositional statements p andq in classical
logic corresponds to an inclusion relation [p] ⊆ [q] between their respective sets of
models. The inclusion can be weakened into an approximate inclusion in two very
different ways (when [p] � [q]): either it is required only that all the preferred
models of p are included in [q], and this is the starting point (from a semantic
viewpoint) of nonmonotonic reasoning (see chapters “Knowledge Representation:
Modalities, Conditionals and Nonmonotonic Reasoning” and “Representations of
Uncertainty in Artificial Intelligence: Probability and Possibility” of this volume), or
it is required only that [p] is included in the set ofmodels of q extended to the counter-
models of q that are close enough to its models. This leads to two different types
of weakened consequence relations, of which the properties partly differ (Dubois
and Prade 1998). According to this last view, a logical approach to interpolation has
been proposed (Dubois et al. 1997b). Let us finally mention the formal framework
of “extensional” fuzzy sets (Klawonn 2000) (i.e., fuzzy sets that are unions of fuzzy
“clusters” of elements with respect to a fuzzy relation of similarity) that allows to
formally define a partionning process of data that can afterwards be used to build
fuzzy rules adapted to existing data.

4.3 Similarity-Based Qualitative Reasoning

A more qualitative approach to similarity-based reasoning, that does not require the
definition of membership functions, has been more recently proposed. It consists in
interpreting terms that are not a priori vague, in a flexible way. For instance, having
the possibility to interpret “married” as “married or living as husband and wife”
allows us to solve inconsistencies in information merging problems (Schockaert and
Prade 2011). In the same spirit, it is possible to enrich sets of categorization rules
using geometrical-like properties in conceptual spaces in the sense of (Gärdenfors
2000). The properties appearing in the conditions or conclusions of these rules are

5Gradual rules have been independently considered under the name of “topoi” in (Raccah 1996),
from a cognitive perspective.
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treated like abstract entities. By using as primitive the relation “to be between”
for these entities, it is possible to obtain schemas of interpolative reasoning that
can be characterized at the same time semantically and syntactically, as well as an
extrapolative reasoning scheme, based on a “parallelism” relation between pairs of
concepts, staying in both cases at a symbolic level that requires only the knowledge
of relations between entities (Schockaert and Prade 2013).

There exist other forms of qualitative reasoning (see chapter “Qualitative Reason-
ing about Time and Space” in this volume). Let us also mention, in this perspective,
an approach for reasoning on relative order of magnitude, based on the principles of
combination and projection of approximate reasoning (recalled in Sect. 4.1 above),
and using a representation of proximity and of negligibility in terms of fuzzy rela-
tions (Hadj Ali et al. 2003).

5 Conclusion

Human judgement and reasoning often use comparisons and rely on similarities,
but also on the perception of differences. It is also at work in decision making; see
(Gilboa and Schmeidler 1995; Dubois et al. 1997a) for similarity-based approaches,
not reviewed here. As surveyed in this chapter, different AI approaches have tried to
give substance to this idea, in particular in case-based reasoning and in analogical
reasoning. In these two types of reasoning two operations of primary importance
emerge: similarity-based search (e.g., for case retrieval) and adaptation. Assessing
the similarity is always a delicate issue and can be considered in different ways. Even
if the starting intuitions seem to be similar, the different approaches detailed here can
be distinguished according to the way situations are related. The study of adaptation
is not less rich and shows the importance that must be given to domain knowledge
in the reasoning process. This is also an opportunity to establish a link with some
aspects of knowledge discovery and, more generally with learning, which are also
related to reasoning issues.
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Statistical Computational Learning

Antoine Cornuejols, Frédéric Koriche and Richard Nock

Abstract Statistical computational learning is the branch of Machine Learning that
defines and analyzes the performance of learning algorithms using two metrics:
sample complexity and runtime complexity. This chapter is a short introduction to
this important area of research, geared toward the reader interested in developing
learning algorithms for AI models. We first provide the formal background about
statistical learning problems, captured by three basic ingredients: tasks, models and
loss functions.We next examine the PAC learning framework and its generalizations,
used to capture the concepts of statistical learnability and computational (or efficient)
learnability. Based on this framework, the conditions of statistical learnability are
investigated through the properties of uniform convergence and algorithmic stability.
We also survey several theoretical results and algorithms in the topics of concept
learning and convex learning, which take a central place in statistical computational
learning. We then conclude this survey with some trends and open questions in
learning AI models, by mainly focusing on sparse models, probabilistic models,
preference models and deep neural models.

1 Introduction

The cognitive ability of learning has long fascinated philosophers, psychologists,
statisticians, computer scientists and, of course, the parents of young children. In
Computer Science, Turing already speculated in Turing (1950) that learning would
be used to build machines that think. Since then, the field of Machine Learn-
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ing has flourished with the development of various learning frameworks, theories,
algorithms, and practical applications. In fact, we are nowadays surrounded by
learning-based computer technologies: our smartphones learn to recognize voice
commands, our digital cameras learn to identify faces, antispam softwares learn to
filter our email messages, and recommender systems learn our preferences about
daily consumer objects. Learning algorithms are also widely used in scientific appli-
cations such as astronomy, bioinformatics, medicine, economy and robotics.

Broadly speaking, the main concern of Machine Learning is to study how
computer algorithms can improve automatically through experience. Virtually all
machine learning activities involve a task we wish to solve, a set of candidate pre-
diction models for solving this task, and an objective function for measuring the
performance of a model at solving the task. In this setting, the term “experience”
refers to the information provided to the learning algorithm for assessing the quality
of candidate models, and ultimately, choosing the right one.

To illustrate these aspects with a concrete example, consider the common task
of classifying incoming email messages as either Spam or non-Spam. As electronic
messages usually contain a text in natural language, possibly coupled with graphical
elements and URL links, the problem of recognizing whether an incoming email is
a spam, or not, is far from easy. So, in order to facilitate the learning process, each
electronic message is associated with a set (or vector) of features, which capture
informative properties of the message, such as its size, its text-to-image ratio, the
presence of some domain names in the header, or the occurrence of certain regular
expressions in the content. Based on this feature representation, the task of spam
filtering is essentially to map email messages, described by their features, to the set
of labels {Spam, non−Spam}. Any such mapping is called hypothesis or model, and
the set of candidate models available to the learner is called the hypothesis class.
Since spam filtering is a binary classification task, various models can be used, such
as decision trees, separating hyperplanes, or Bayesian classifiers. Finally, we need
to assess the performance of the chosen model at filtering incoming messages. Here,
a natural objective function is the “zero-one” loss function, which simply counts the
number of mistakes made by the model in labeling messages.

Based on the three ingredients, tasks, models and objective functions, the goal of a
learning algorithm is essentially to find, in its hypothesis class, amodel that optimizes
some given objective function for the task at hand. To achieve this goal, the learner
has usually access to a training set, that is, a sequence of data instances upon which
the quality of candidate models can be measured. In spam filtering, the training set is
a pool of email messages, each described by its features, and labeled by Spam or by
non-Spam. Importantly, this training set captures only a small fragment of emails we
are expected to receive. So, the learning problem is not to find amodel that makes few
mistakes on the training set, but to extrapolate from observed instances a model that
accurately classifies new, incoming messages. In a nutshell, the key characteristic of
learning algorithms lies in their ability to generalize, that is, to predict from observed
data, the outcome of future data.

This chapter focuses on statistical computational learning, the branch ofMachine
Learning that lies at the intersection of statistical modeling and computational
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learning theory. In this setting, the generalization ability of learning algorithms is
defined and analyzed through two key metrics: sample complexity and runtime com-
plexity. Because statistical computational learning has long been recognized as the
mainstream theoretical framework for analyzing the performance of learning algo-
rithms, a detailed survey of this research field and its applications would require
a whole book! In fact, there are already excellent printed works on statistical and
computational learning, targeted to various audiences (Natarajan 1991; Kearns and
Vazirani 1994; Anthony and Biggs 1997; Vapnik 1998; Engel and Broeck 2001;
Hastie et al. 2009; DasGupta 2011; Kulkarni and Harman 2011; Webb and Copsey
2011; Devroye et al. 2013; James et al. 2013; Vapnik 2013; Sugiyama 2015). Fur-
thermore, many introductory books in Machine Learning are devoting a significant
part to statistical and/or computational learning theory (Mitchell 1997; Bishop 2006;
Alpaydin 2009; Flach 2012; Mohri et al. 2012; Murphy 2012; Shalev-Shwartz and
Ben-David 2014; Theodoridis 2015). So, this chapter is an elementary introduction
to statistical computational learning, geared toward readers who have familiar with
AI models, such as logical representations, geometric descriptions, and graphical
models.

We introduce in Sect. 2 the formal background about statistical learning problems.
The central notions of statistical learnability and computational learnability are
defined in Sect. 3. The related optimization principles and conditions of learnability
are examined in Sect. 4. With these theoretical notions in hand, the important topics
of concept learning and convex learning are surveyed in Sects. 5 and 6, respectively.
Finally, we conclude this chapter by discussing about some trends and open questions
in statistical learning with sparse models, probabilistic models, preference models,
and neural networks.

Notation. For the sake of clarity we shall use as much as possible the standard
notation in Machine Learning. Scalars and vectors are denoted by lowercase letters.
Sets, matrices, sequences, and distributions are denoted by uppercase letters. We
use boldface letters for vectors and matrices. For an integer n, we use [n] as an
abbreviation of {1, . . . , n}. Given a sequence S of m vectors (x1, . . . , xm), we use
xi, j to denote the j th element of xi . The inner product of two vectors x, y ∈ R

n is
denoted 〈x, y〉, and for any p ∈ [1,∞], the �p norm of x is denoted ‖x‖p. In other
words,

‖x‖p =
(

n∑
i=1

|xi |p
) 1

p

and in particular ‖x‖1 =
n∑

i=1

|xi | and ‖x‖∞ = max
i∈[n] |xi |

We omit the subscript from the standard �2 (Euclidean) norm when it is clear from
the context. The number of nonzero coordinates in x, often called �0 pseudo-norm
of x, is denoted ‖x‖0. For a set of scalars X ⊆ R, the greatest lower bound of X
and the least upper bound of X are denoted inf X and sup X , respectively. Finally,
we shall assume throughout this chapter that the sample space of any probability
distribution is equipped with an implicit σ -algebra upon which the distribution is



344 A. Cornuejols et al.

defined. Given a probability distribution D over a sample space X ⊆ R
n , we use

x ∼ X to indicate that x is sampled according toD . Probabilities and expectations
over D are denoted P and E, respectively.

2 Statistical Learning Problems

In order to provide a clear definition of “statistical computational learning”, we need
to capture in a formal way the three aforementioned ingredients: tasks, models, and
objective functions. We start this section by discussing about these notions, and then
describe the statistical learning framework upon which the rest of chapter is built.

2.1 Tasks

As Machine Learning can be considered as a data-driven approach to problem solv-
ing, the notion of “task” is described through its data instances. Specifically, an
instance space is a (possibly infinite) subset Z of Rd . Each coordinate i ∈ [d] rep-
resents a distinct feature, and each instance z ∈ Z is a vector of d feature values.

Learning algorithms can solve a wide variety of tasks and, for this reason, it may
be useful to separate them into categories. A first separation, commonly advocated
in the Machine Learning literature, is to distinguish supervised learning tasks from
unsupervised ones.

Basically, supervised learning tasks capture applications for which we need to
predict the dependence of an outcome y ∈ Y on an observed information x ∈ X .
Here, Z is the Cartesian product X × Y of a domain set X and a target set Y .
Pairs of the form z = (x, y) are often referred to as labeled instances or examples.
The dimensions ofX andY are denoted n and p, respectively.A supervised learning
task is uni-dimensional if p = 1, and multi-dimensional if p > 1. Some of the most
common supervised learning tasks include the following:

• Classification: Y is a finite subset of Z, encoding a collection of labels. The
spam filtering task mentioned in the introduction of this chapter is an example of
binary classification problem, where Y is usually defined by {0, 1} or {−1,+1}.
Classification problems with more than two labels are often referred to as multi-
class or multi-nominal classification tasks.

• Regression:Y is a (typically bounded) subset ofR, capturing the domain of some
real-valued variable. A common example of regression task is to estimate the
revenue of a company, using historical accounting data.

• Multi-label classification: Y is a subset of {0, 1}p or {−1,+1}p for p > 1. Here,
the learner as access to p distinct labels, and the goal is to map each input vector
to a subset of these labels. A common example of multi-label classification in
document analysis is to “tag” incoming news according to their most relevant
topics (e.g. sports, entertainment, politics, science).
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• Multi-variate regression:By analogy with multi-label classification,Y is a subset
of Rp for p > 1. A well-studied example in ecological modeling is to simultane-
ously predict multiple target variables describing the condition or quality or plant
species.

• Structured prediction: This setting covers multi-dimensional prediction tasks in
which target variables are organized into some structure, such as a permutation,
a tree, or a bipartite graph. One example is parsing, the task of mapping a natu-
ral language sentence into a tree that predicts its grammatical structure. Another
example is label ranking, the task of mapping a feature vector (e.g. a user profile)
into a permutation of items (e.g. movies).

In contrast with supervised tasks, there is no target set Y in unsupervised tasks.
Here,Z is a setX of unlabeled instances. The overall goal of unsupervised learning
is to extract from observed data some regularities or patterns which are likely to be
found in future data. Two of the most popular unsupervised learning tasks are:

• k-Means clustering: The goal is to partition the instance spaceX into k clusters,
each identified by a centroid c in Z . Any incoming instance x is mapped to the
centroid c that minimizes the squared distance ‖x − c‖2.

• Density estimation: Here, the task is to find a probability distribution overX that
estimates the likeliness of incoming instances. This distribution can be viewed as
a maximum likelihood estimator of the data instances supplied to the learner.

2.2 Models

In order to solve a given task, the learner has access to a set of candidate hypotheses,
called the hypothesis class, and denotedH . From a general viewpoint, any hypoth-
esis in H can be viewed as a mapping h : X → Y †, where X is the set of input
observations, and Y † is a set of decisions. By analogy with learning tasks, hypothe-
ses can be separated into discriminative models and descriptive models. Basically,
discriminative models are dedicated to supervised learning tasks. Here, the decision
set Y † coincides with the target set Y, and hence, any class H of discriminative
models is a subset of the function space Y X. By contrast, descriptive models are
used to explain observations by extracting regularities or patterns. For those models,
the choice ofY † depends on how observations are explained. An important subclass
of descriptive models is the family of generative models, where Y † = [0, 1], and
H is a set of probability distributions overX . While generative models are mainly
devoted to unsupervised learning tasks, they may be applied to supervised learning
problems by first extracting from examples a probabilistic model that estimates the
underlying distribution, and then using this model for solving various tasks.

Some of the most common families of hypothesis classes which have been exam-
ined in Machine Learning include:

• Logical models:H is typically a set of functions of the form h : {0, 1}n → {0, 1}.
In other words, the domain of a logical model is a set of Boolean features, and
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its range is a Boolean variable. Simple logical models are constructed using a
single logical operator; they include monomials (conjunctions of literals), clauses
(disjunctions of literals), andXOR clauses (exclusive-or of literals).More complex
functions are built using at least two logical operators. They include, among others,
DNF formulas (disjunctions of monomials), decision trees (disjunctions of mono-
mials organized into a tree), and decision lists (sets of monomials organized into
a preference list). The main learning task considered for logical models is binary
classification; this problem had long been considered as a central topic in com-
putational learning theory (Natarajan 1991; Anthony 2010; Kearns et al. 1994a;
Kearns andVazirani 1994). BesidesBoolean functions, logicalmodels investigated
in Machine Learning include relational models, defined over structured domain
spaces (Getoor and Taskar 2007; De Raedt 2008).

• Geometric models: H is a set of geometric objects or functions over X ⊆ R
n .

Arguably, the simplest hypothesis class in the family of geometric models is the
class of separating hyperplanes, also known as linear threshold functions, which
has been studied since the very start ofMachine Learning (Rosenblatt 1958). Here,
each hypothesis h : Rn → {−1,+1} is represented by a pair (w, b), wherew ∈ R

n

is a weight vector, and b ∈ R is a threshold value. The label assigned to any input
object x ∈ R

n is given by

h(x) =
{

+1 if 〈w, x〉 > b

−1 otherwise.
(1)

For zero-threshold or homogeneous linear functions, h is simply described by its
weight vector w, and defined by h(x) = sign 〈w, x〉. More complex geometric
objects may be defined using a weight vector w ∈ R

p, together with a feature
expansion mapping: φ : X → X †, where X † is an Euclidean or Hilbert space.
In this general setting,

h(x) =
{

+1 if 〈w, φ(x)〉 > b

−1 otherwise.
(2)

Linear functions and their feature expansions can be extended, in a natural way, to
regression tasks, multi-nominal classification tasks, and even multi-dimensional
prediction tasks. Besides hyperplanes,manifolds and distances take also an impor-
tant place in geometric learning. Namely, manifolds are used for extracting a low-
dimensional structure from a high-dimensional domain (Ma and Fu 2011), and
distance functions are commonly used in classification, regression, and clustering
(Aggarwal and Reddy 2013).

• Probabilistic models:H is a set of probability distributions over an instance space
Z ⊆ R

d . Of particular importance are probabilistic graphical models, which
encode high-dimensional probability distributions in a compact and intuitive way
(Koller and Friedman 2009; Murphy 2012). Here, each hypothesis is represented
by a pair (G, θ), whereG is a graph over [d] nodes, and θ is a vector of parameters
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which together determine a probability distribution overZ . In directed graphical
models, also known as Bayesian networks (Pearl 1988; Darwiche 2009), G is a
directed acyclic graph, and θ is a set of conditional probability tables associated
with the nodes of G. In undirected graphical models (Wainwright and Jordan
2008), such as factor graphs andMarkov networks, G is an undirected graph and
θ is a vector of energy functions defined on the edges (for factor graphs) or the
cliques (for Markov networks) of the graph. Probabilistic graphical models can
be applied to a wide variety of learning tasks, including density estimation and
structured prediction.

• Preference models: H is a set of functions from X to Y , where X is a set of
objects, possibly coupledwith user profiles, andY is a partial or total ordering over
some reference set I . In preference learning (Fürnkranz and Hüllermeier 2010),
the family of models may be organized into different subclasses, depending on the
type of reference set I , and the type of preference relation Y . In object ranking
(Cohen et al. 1999),I is a set of objects inX , while in label ranking (Vembu and
Gärtner 2010), I is a set of labels associated with objects in X . Orthogonally,
total rankings are permutations over I , while partial rankings are pre-orderings
on I . For example, in the task of top-k object ranking commonly used in infor-
mation retrieval, the goal is to find a total ordering over the k best objects in X ,
while others objects are considered indifferent. Similarly, the task of bipartite
ranking is to separate objects inX in two categories: the most preferred objects,
and the less preferred ones (Clémençon and Vayatis 2007). Common preference
models advocated in the Machine Learning literature include the Placket-Luce
model (Plackett 1975), the Mallows model (Mallows 1957), and their extensions
(Fligner and Verducci 1986; Lebanon and Lafferty 2002; Meila and Chen 2010;
Lu and Boutilier 2014; Zhao et al. 2016).

• Neural models:H is a class of artificial neural networks, inspired from the struc-
ture of neural networks in the brain. A feedforward neural netwok is defined by
a labeled and weighted directed acyclic graph. Each node in the graph a simple
model of neuron, labeled by an activation function σ : R → R. Common scalar
functions include the sign function σ(a) = sign(a), the threshold function given
by (1), and the sigmoid function σ(a) = 1/1+exp(−a). Each edge in the graph, link-
ing the output of some neuron to the input of another neuron, is associated with
a weight that reflects the strength of the signal joining both neurons. The input
of a neuron is obtained by taking the weighted sum of the outputs of its incident
neurons. It is often assumed that neurons are organized in layers. Namely, the set
of nodes in the graph is partitioned into d + 1 subsets {V0, V1, . . . , Vd}, where V0

is the input layer, Vd is the output layer, and {V1, . . . , Vd−1} are the hidden layers.
The depth and width of the network are given by d and maxi |Vi |, respectively.
Based on this layer structure, the output of the layer Vt is given by:

xt = σ
(
W


t xt−1 + bt
)

where xt−1 is the input of the t th layer, σ is the (possibly rectified) activation
function for this layer,W t is the weight matrix capturing weighted edges between
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the layers Vt−1 and Vt , and bt is a bias vector. The family of hypothesis classes of
artificial neural networks is very expressive: notably, Boolean functions of polyno-
mial circuit complexity can be represented by neural networks of polynomial size
(Parberry 1994). For this reason, neural networks have been a subject of extensive
research in statistical computational learning (Anthony and Barlett 1999; Anthony
2001; Du and Swamy 2013). Deep networks, characterized by more than two lay-
ers, have recently shown very impressive practical performance on a wide variety
of learning tasks (Goodfellow et al. 2016).

2.3 Objective Functions

InMachine Learning, the connexion between tasks andmodels is established through
objective or loss functions. Formally, a loss function is a map � from H × Z to R

that penalizes a model h ∈ H picked by the learner when it observes the instance
z ∈ Z . In other words, �(h, z) is the cost incurred by h on z. Some of the most
common loss functions include the following:

• Zero-one loss: Applied to binary classification, this function measures whether a
binary hypothesis is misclassifying a labeled instance. Formally, �(h, (x, y)) = 1
if h(x) �= y, and �(h, (x, y)) = 0 otherwise.

• Quadratic loss: This function, commonly used in regression tasks, measures
the squared distance between a predicted value and the target value. Namely,
�(h, (x, y)) = (h(x) − y)2.

• Hinge loss: This function is a convex surrogate of the zero-one loss in linear
classification. For a zero-threshold separating hyperplane h, represented by its
weight vector w, the hinge loss of h on some example (x, y) is given by

�(h, (x, y)) = max{0, 1 − y 〈w, x〉}

• Log-loss: Used in density estimation, this function measures the negative log-
likelihood of a probabilistic model h : X → [0, 1] given an incoming instance x.
Formally, �(h, x) = − ln[h(x)].

• Conditional log-loss: As a direct extension of the log-loss, this function is often
used in structured prediction. Given a conditional probabilistic model h that maps
each input object x to a probability distribution h(· | x) over Y , the conditional
log-loss of h with respect to an example (x, y) is �(h, (x, y)) = − ln[h( y | x)].

2.4 The Framework

The three components - tasks, models, and objective functions - are common to
many machine learning frameworks. The specificity of statistical learning lies in a
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fourth component that captures how data instances are generated. Here, it is assumed
that instances are independently and identically distributed (i.i.d.) according to some
probability distribution D over Z . Importantly, D is an arbitrary but hidden dis-
tribution: the incoming data can be generated according to any possible distribution
over the sample spaceZ , and the learning algorithm has no prior information about
this distribution. Instead, the learner has access to D through a procedure ex(D),
that runs in unit time, and on each call returns an instance z ∈ Z drawn randomly
and independently according to D . This procedure, referred to as example oracle,
is used to generate a training set, that is, a sequence S = (z1, . . . , zm) of instances
which are i.i.d. according to D .

Recall that in supervised learning, the instance space Z is the Cartesian product
of a domain setX and a target setY . So, in this setting,D is a joint distribution over
X × Y . Equivalently, this distribution can be viewed as the conditional probability
of observing the labeled object (x, y) given an unlabeled object x. For instance, in
the spam filtering task,D specifies the probability of encountering a spam message,
given a feature description of this message. In unsupervised learning, the learner
has only access to unlabeled observations, and its goal is essentially to predict the
data-generation model D using a limited number of calls to ex(D).

With these components in hand, we are now in position to describe the learn-
ing framework upon which the remaining sections are built. Formally, a statistical
learning problem is defined as follows:

Given:

• A task described by its instance space Z
• A hypothesis class H for Z
• A loss function � : H × Z → R

• A distribution D accessible through the example oracle ex(D)

Find a hypothesis h ∈ H that minimizes

LD (h) = Ez∼D [�(h, z)] (3)

The objective function LD : H → R in (3) is called the true risk, or risk for short.
It measures the expected loss of a hypothesis h ∈ H with respect to the probability
distributionD overZ . Since the learner has only access to a sample of data instances
picked randomly according toD , we define the empirical risk of a hypothesis h with
respect to a training set S = (z1, . . . , zm) as:

LS(h) = 1

m

m∑
i=1

�(h, zi ) (4)

The main difficulty of statistical learning is to estimate the unknown true risk
according to the known empirical risk. The intimate relation between LD and LS

will be discussed in Sect. 4.
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In practice, how do we analyze the performance of learning algorithms? There
is no simple answer to this question, since the instance space Z of most learning
problems is immense, or infinite. In practice, we typically have a limited “dataset”
for the task we wish to solve. If the dataset is already separated into a training
sample S and a test sample S′, then we just have to train our algorithm on S, and
to measure the empirical risk of its output model on S′. Yet, if the dataset does
not include a predefined test sample, we need to resort on a statistical validation
technique for assessing the performance of the learner. The following k-fold cross-
validation procedure is often applied: randomly partition the dataset S in k parts or
“folds” S1, . . . , Sk , pick one fold Sj for testing, train the algorithm on the comple-
mentary set S\Sj , and evaluate the resulting hypothesis h j on the test fold Sj . This
process is repeated k times, until each fold has been picked for testing once. The
cross-validation risk of the k hypotheses (h1, . . . , hk) returned by the algorithm is
given by

Lcv(h1, . . . , hk) = 1

k

k∑
j=1

LSj (h j )

3 Complexity Measures

As mentioned above, a statistical learning problem involves a task, described by its
instance space Z , a hypothesis class H for Z , a loss function �, and a hidden
distribution D over Z which is only accessible through an example oracle ex(D).
The goal is to to find a model with good generalization performance, that is, a
hypothesis h ∈ H for which the true risk LD (h) is as small as possible. Based on this
formulation, there are twomain sources of complexity in the computational approach
to statistical learning. The first, sample complexity, measures the inherent difficulty
of generalizing from examples: it is the number of calls to ex(D)which are required
to find a good hypothesis. The second, runtime complexity, measures the amount of
computational steps required to find such a model. This section explores in more
detail both sources of complexity which are related to the concept of learnability.

3.1 Sample Complexity

As indicated above, sample complexity is the amount of information learning
requires. to find a “good” hypothesis. In order to capture this metric in a more
rigorous way, we need a formal model of learnability, that explains the ability of
algorithms to predict with respect to a hypothesis class, given access to training
samples.
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We begin with a conceptually simple notion of learnability, introduced by (Valiant
1984) and thoughtfully detailed in various textbooks about computational learning
theory (Natarajan 1991; Kearns and Vazirani 1994; Anthony and Biggs 1997). In
Probably Approximately Correct (PAC) learning, we are concerned with supervised
learning tasks, where the instance space Z is the product of a domain set X and a
target set Y . Originally, the PAC learning framework was defined for binary classi-
fication tasks, but we can easily extend the framework to other discriminative tasks,
using an appropriate loss function. The key assumption in PAC learning, often called
realizability condition, is to consider that the hypothesis class H includes at least
one model, say h∗, which correctly solves the task at hand. In other words, the out-
come y of any input object x is given by y = h∗(x). The realizability assumption
can be captured using a restricted example oracle ex(h∗,D) which returns, on each
call, a labeled example (x, h∗(x)), where x is drawn at random according to a hidden
distribution D over X .

A PAC learning algorithm takes as input a confidence parameter and a accuracy
parameter, denoted δ and ε, respectively. These parameters are use to control two
types failures which are inherent to learn from samples drawn at random according
to an unknown distribution D . The confidence parameter is necessary since there is
always a chance that the training set picked by the learner is not representative of
D . For example, the learner might be very unlucky by picking a sample consisting
of repeated draws of the same object in X , despite the fact that the distribution is
spread evenly over all the domain set X . The accuracy parameter is also necessary
since, even with a training set that is representative of D , some objects in X may
have a very low probability under D , and hence, the learning algorithm will not see
the target function’s behavior on those objects. So, the best we can hope is that the
likeliness of both types of failure can bemade arbitrary small, at the cost of increasing
the size of the training set.

Definition 1 (PAC Learning) Let Z = X × Y be an instance space, H be a
hypothesis class overZ , and � : H × Z → R be a loss function. Then,H is PAC
learnable with respect to � if there exist an algorithm learn with the following
property: for any hypothesis h∗ ∈ H , any distribution D over X , and any pair
(δ, ε) ∈ (0, 1)2, if learn is given inputs δ and ε, and access to ex(h∗,D), then
learn returns a hypothesis h ∈ H that satisfies LD (h) ≤ ε with probability 1 − δ.

In essence, PAC learning is a distribution-free model of statistical learning: for
any possible distribution D over the domain set X , the algorithm learn must be
“approximately correct” with high probability. The sample complexity of learn is
the number of calls to the example oracle ex(h∗,D), that is, the numberm of training
examples required to output with confidence 1 − δ, an ε-accurate hypothesis. Ifm is
polynomial in 1/δ and 1/ε, then the hypothesis classH is called PAC learnable with
polynomial sample complexity.

Though conceptually elegant, the PAC learning framework relies on some real-
izability condition which is unrealistic in practice. Indeed in many, if not most, sta-
tistical learning problems, there is no well-defined target model that perfectly labels
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incoming instances. For example, if we choose the class H of decision trees for
learning to filter spam messages, we are not guaranteed thatH will always include
a decision tree that accurately filters any possible electronic message. This realizabil-
ity assumption is relaxed in the agnostic PAC learning framework, which is general
enough to cover both supervised and unsupervised learning tasks involving arbitrary
distributions over their instance space (Haussler 1992). In essence, the agnostic PAC
learning framework follows the general setting of statistical learning, investigated
by (Vapnik, 1998, 2013).

Definition 2 (Agnostic PAC Learning) LetZ be an instance space,H be a hypoth-
esis class over Z , and � : H × Z → R be a loss function. Then, H is agnostic
PAC learnablewith respect to � if there exist an algorithm learnwith the following
property: for any distribution D over Z , and any (δ, ε) ∈ (0, 1)2, if learn is given
inputs δ and ε, and access to ex(D), then learn returns a hypothesis h ∈ H that
satisfies, with probability 1 − δ,

LD (h) − inf
h′∈H

LD (h′) ≤ ε (5)

Again, agnostic PAC learning is a distribution-free model: for every distribution
over the instance space, the learner is ask to find with high probability, a model
whose performance is near to that of the best model in its hypothesis class. It is
important to emphasize that, in the agnostic case, D is a arbitrary distribution over
the whole instance space Z , and ex(D) is a procedure that returns on each call an
instance z ∈ Z drawn independently at random according to D . In particular, if Z
is the instance space X × Y of a supervised learning task, then D is an arbitrary
joint distribution over X × Y , and ex(D) generates a sample (x, y) where y is
not determined by some hypothetical target function, but drawn at random with
probability D( y | x), whenever x is drawn at random with probability D(x).

3.2 Runtime Complexity

Based on the definition of agnostic PAC learnability, we might be tempted to char-
acterize the runtime complexity of a PAC algorithm learn as the amount of com-
putation it performs for returning with probability 1 − δ a hypothesis whose risk is
ε-close to the best possible risk. Yet, this measure is not really satisfactory, because
we have swept under the rug two key issues.

The first issue is related to the input of the learning algorithm A. Typically, the
runtime complexity of A does not only depend on the accuracy (ε) and confidence (δ)
parameters, but also on the dimension d of the learning task. A natural approach for
incorporating this parameter in the input of a statistical learning problem is consider
stratified classes parameterized by d. Formally, a stratified instance space is a set
Z =⋃d∈N Zd , where each Zd is a subset of Rd . A stratified hypothesis class is
defined in a similar way using H =⋃d∈N Hd . For example, if H is the class of
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hyperplanes of arbitrary dimension, thenH1 is the set of points in the line R,H2 is
the set of lines in the plane R2, H3 is the set of planes in the space R3, and so on.
By extension, a stratified class of loss functions is a set L = {�d}d∈N, where each
�d is a mappingHd × Zd → R. Based on these stratified classes, the generalization
ability of the algorithm learn is analyzed for every dimension d, every confidence
δ and accuracy ε, and every distribution D over Zd .

The second issue is related to the output of the learner. Specifically, the model
returned by a computer algorithm is not an abstract function h ∈ H , but a symbolic
representation of this mathematical object. From a computational viewpoint, this
representation would be of little use if an exponential amount of computational
resources was needed for inferring h(x) given some incoming instance x. So, to
alleviate this issue, each candidate hypothesis h ∈ H should be associated with a
representation for which the inference task is tractable. To this end, letR be a set of
finite strings defined over some alphabet �. Then,R is called a representation class
forH if there exist a surjective function fromR toH : each representation r ∈ R is
associatedwith exactly one hypothesis inH denoted h r , and each hypothesis h ∈ H
is associated with at least one representation r ∈ R such that h r = h. By extension,
R =⋃d∈N Rd is called a stratified representation class for H =⋃d∈N Hd if for
each dimension d, Rd is a representation class of Hd .

With these notions in hand, we are now in position to provide a formal model
of computationally efficient learnability. The next definition is essentially a variant
of the computational learning models presented in Kearns et al. (1994b), Shalev-
Shwartz and Ben-David (2014).

Definition 3 (Efficient Agnostic PACLearning) LetZ be a stratified instance space,
H be a stratified hypothesis class, andL be a stratified class of loss functions over
H and Z . In addition, let R be a stratified representation class for H . Then, H
is efficiently agnostic PAC learnable with respect to � and R if both the following
conditions hold:

• Polynomial inference: There exist an algorithm eval such that for every positive
integer d, every representation r ∈ Rd , and every instance x ∈ Zd , if eval is
given inputs r and x, then eval returns h r(x) in time polynomial in d.

• Polynomial convergence: There exist an algorithm learn such that for every
positive integer d, every distribution D over Zd , and every (δ, ε) ∈ (0, 1)2, if
learn is given inputs d, δ and ε, and access to ex(D), then learn returns in time
polynomial in d, 1/δ and 1/ε a representation r ∈ Rd that satisfies, with probability
1 − δ,

LD (h r) − inf
h′∈H d

LD (h′) ≤ ε

Conceptually, there is a fundamental difference between “statistical learnability”
specified in Definition 2, and “computational learnability” characterized by Defini-
tion 3. On the one hand, a hypothesis class H is statistically learnable if we can
find an algorithm that converges with high probability to the best hypothesis in H ,
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using a finite number of calls to the example oracle. On the other hand, computa-
tional learnability imposes much stronger conditions. In order to establish thatH is
efficiently learnable, we must not only prove that H is tractable for inference, but
also find an algorithm that converges in probability to the best model, using a poly-
nomial amount of operations. Since each call to the example oracle takes unit time,
this directly implies thatH must be learnable with polynomial sample complexity.

This crucial difference will be illustrated in the forthcoming sections. Many
hypothesis classes of interest in the AI literature are learnable, even in the agnostic
case, if computational considerations are not taken into account. By contrast, very
few of them are efficiently learnable. An important class of statistical learning prob-
lems satisfying the property of efficient learnability is the family of convex learning
problems, examined in Sect. 6.

4 Learning as Optimization

Arguably, statistical learning shares strong similarities with optimization problems.
Based on the framework presented in Sect. 2.4, any statistical learning problem can be
viewed as a stochastic optimization problem, involving a decision variable h defined
over H , a random variable z specified by a probability distribution D over Z , and
a loss function � : H × Z → R. The problem is to

minimize Ez∼D [�(h, z)] (6)

subject to h ∈ H

Recall that the expression Ez∼D [�(h, z)] is the true risk of h, denoted LD (h).
The key specificity - and difficulty - of statistical learning lies in the fact that this
objective function cannot be directly evaluated, since the underlying distribution D
is unknown. In other words, statistical learning is a black-box stochastic optimization
problem, for which the objective function can only be approximated using a limited
number of calls to an example oracle Ex(D). In the statistical learning literature,
various optimization principles have been proposed for replacing the unknown risk
function (6) with a known, evaluable objective function. In this section, we begin to
reviewseveral optimizationprinciples, andnext,we examine somegeneral conditions
for learnability which justify the use of these principles, and open the door to new
optimization strategies.

4.1 Optimization Principles

In statistical learning, the data generation processD is unknown, but we still do have
access to a training sample S, given explicitly by a dataset, or implicitly through
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an example oracle ex(D). Let S denote the set of all finite training sets over Z ,
that is, S =⋃m∈N Z m . The main idea behind most optimization principles in sta-
tistical learning is to replace the unknown objective function (6) defined over D ,
with an evaluable objective function fS defined for every training set S ∈ S . The
corresponding optimization problem is to

minimize fS(h) (7)

subject to h ∈ H

A learning rule is a map A : S → H that takes as input a training set S ∈ S ,
and returns as output a hypothesis A(S) ∈ H . We note in passing that any agnostic
PAC learning algorithm learn can be unambiguously specified by a learning rule
A and an integer-valued function m : (0, 1)2 → N. Namely, given as input a desired
confidence δ and a desired accuracy ε, the algorithm learn starts by picking a
training set S ∈ S by calling m(δ, ε) times the example oracle ex(D), and then
uses the learning rule A with S in order to produce a model A(S) ∈ H . Here,
m(δ, ε) captures the sample complexity of learn.

Based on these considerations, we say that a learning rule A : S → H solves
the optimization task (7) if for every input S ∈ S , the algorithm A returns as output
a hypothesis A(S) ∈ H satisfying fS(A(S)) = infh∈H fS(h). If in addition A runs
in time polynomial in the dimension d of the training instances, and the size m of
the training set S, then we say that A efficiently solves the optimization task (7).

4.1.1 Empirical Risk Minimization

Perhaps the most common approach for handling statistical learning problems is to
replace the true risk function LD by the empirical risk function LS that measures
the average loss of a model on the observed instances (Vapnik 1998; Zhang 2010).
Based on this principle, called Empirical Risk Minimization (ERM), the objective
function fS , defined for a training set S = (z1, . . . , zm), is given by

fS(h) = 1

m

m∑
i=1

�(h, zi )] = LS(h) (8)

Correspondingly, any learning rule A : S → H that solves the optimization task
(7), using (8) as objective function, is called an empirical risk minimizer.

Borrowing the terminologyof stochastic optimization, theERMprinciple is equiv-
alent to the paradigmof sample average approximation, which aims at approximating
the expected value function by a sample average function (Birge andLouveaux 2011).
Though this idea is conceptually simple, and statistically justified by the law of large
numbers, we must keep in mind that LS is only an estimator of LD , In practice, the
divergence between these objective functions depend on the choice of the hypoth-
esis class H and the available training set S. More precisely, the true risk of the
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hypothesis A(S) returned by an empirical risk minimizer A can be decomposed as
the sum of two terms:

LD (A(S)) = inf
h∈H

LD (h)︸ ︷︷ ︸
approximation

+
[
LD (A(S)) − inf

h∈H
LD (h)

]
︸ ︷︷ ︸

estimation

The approximation term measures the minimum risk achievable by any possible
model in the hypothesis classH . The estimation term evaluates the performance of
the hypothesis A(S) chosen by the learning rule A, relatively to the best model in
H . By minimizing the sum of both terms, we are faced with a dilemma between
approximation and estimation, called bias-complexity trade-off (Shalev-Shwartz and
Ben-David 2014). On the one hand, if we choose a very rich hypothesis classH , then
we decrease the approximation error by covering good models for the task at hand
but, at the same time, we increase the sample complexity required to guarantee that,
with high probability, training sets are representative of the underlying distribution
D . Thus, if the available training set S is too small for achieving this guarantee, the
objective function fS is likely to be a poor estimator of LD , and hence, the hypothesis
A(S) is prone to overfitting, by having an optimal performance on training data, but a
poor performance on test data.On the other hand, ifwe choose a very small hypothesis
class H , then we increase the odds that the available training set is representative,
but we also increase the approximation error bymissing goodmodels for the learning
task. So here, A(S) is prone to underfitting, by exhibiting a relatively stable, but low
performance, on both training data and test data.

4.1.2 Structural Risk Minimization

A natural idea to prevent overfitting situations is to penalize complex hypotheses,
in favor of simpler ones, whenever they share the same empirical risk. This idea
follows the well-known law of parsimony, according to which plurality should not
be posited without necessity. This law, called Occam’s razor after the philosopher
William of Ockham, gives precedence to simplicity: of two competing theories, the
simpler explanation of an entity is to be preferred.

In the paradigm of Structural Risk Minimization (SRM), due to Vapnik and
Chervonenkis (Vapnik and Chervonenkis 1974), it is assumed that the hypothesis
class H is associated with a stratified representation class R =⋃k∈N Rk , where
k is a structural parameter. For instance, if H is the class of all (zero-threshold)
separating hyperplanes over the domain set X ⊆ R

n , then its representation class
R ⊆ R

n can be stratified by the number k of nonzero weights. Namely, each stra-
tum Rk is the set of all weight vectors w ∈ R

n such that ‖w‖0 ≤ k. Given a model
h ∈ H , we use kh to denote the smallest integer k such that h = h r for at least one
representation r ∈ Rk . Based on these notions, the objective function is a mapping
of the form
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fS(h) = LS(h) + penm,δ(kh) (9)

where penm,δ is a penalty function that depends on the size m of the training set,
and a confidence parameter δ ∈ (0, 1). Ideally, the penalty function should satisfy
the condition that for every confidence δ ∈ (0, 1) and every distribution D over the
instance space, with probability 1 − δ over the choice of S ∼ Dm , the following
bound holds for any hypothesis h ∈ H :

|LD (h) − LS(h)| ≤ penm,δ(kh) (10)

If this condition is indeed satisfied, then the estimation error of h is bounded by
LS(h) + penm,δ(kh). In other words, the SRM principle handles the bias-complexity
trade-off by giving preference to simple hypotheses (with small penalty value) which
behave well on the training set.

A closely related paradigm is theMinimum Description Length (MDL) principle,
due to Rissanen (1983, 1985), and surveyed in detail by Grünwald (2007). Here,
it is assumed that the hypothesis class H is associated with a prefix-free represen-
tation class R. Namely, R is a prefix-free language if no representation r ∈ R is
the prefix of a distinct representation r ′ ∈ R. Notice that R can be viewed as a
stratified representation class

⋃
k∈N Rk , where Rk is the set of all representations,

or “codewords”, of length k. Based on this observation, hk measures the length of
the smallest codeword r such that h = h r , and it is simply denoted |h|. In the MDL
principle, the objective function is given by

fS(h) = LS(h) + penm,δ(|h|) where penm,δ(|h|) =
√

|h| + ln 2
δ

2m
(11)

Notably, using the well-known Kraft’s inequality property of prefix-free languages,
it can be shown that the penalty function penm,δ(|h|) satisfies the condition (10). A
detailed proof is given in Shalev-Shwartz and Ben-David (2014).

To sum up, the MDL paradigm provides an elegant way to circumvent the pitfall
of overfitting in rich hypothesis classes, by penalizing models with their code length.
However, the MDL principle does not come without practical issues: a key difficulty
in the design of MDL-based learning algorithms is to find an appropriate prefix free
representation language for the hypothesis class at hand. Another important issue
is the runtime complexity of the optimization task. Notably, if the loss function �

is convex, then ERM objective (8) remains convex, but the MDL objective (11)
is generally not convex due to the additional, non-convex, penalty term. Similar
computational issues arise for the more general SRM principle, for which penalty
functions in (9) are typically not convex.
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4.1.3 Regularized Risk Minimization

For hypothesis classesH represented by linear functions, the predominant approach
to penalize complex models is through “regularizing” their representation. In this
setting, called Regularized Risk Minimization (RRM), the representation class of
H is a set of weight vectors, denoted here W . The objective function fS takes the
following form:

fS(h) = LS(h) + reg(w) (12)

where w is the vector representation of h, and reg : W → R is a regularization term
that penalizes hypotheses according to the “complexity” of their vector representa-
tion. The complexity of vectors is typically measured using some norm overW . For
example, the regularizer reg(w) = λ ‖w‖22 due to Tikhonov (1943), penalizes weights
with large magnitudes. Alternatively, the regularizer reg(w) = λ ‖w‖1 gives prefer-
ence to parsimoniousmodels involving few nonzeroweights. In both expressions, the
parameter λ is a positive scalar that controls the regularization effect. We emphasize
that regularization functions are not always defined through norms. For instance, the
entropic regularizer reg(w) = λ

∑
i wi ln 1/wi is often used when the representation

class W is a probability simplex.
Obviously, the RRM paradigm shares strong similarities with the SRM principle:

both approaches aim at preventing overfitting issues by penalizing models which are
excessively complex for the task at hand. From a pragmatic viewpoint, there are, yet,
important differences related to the formulation of the statistical learning problem as
an optimization task, and the resolution of this optimization task. The regularization
term in RRM is often specified by a simple analytic form, while the penalty term in
SRM is typically much more difficult to characterize. For example, the penalty term
in (11) is defined using the code length |h| of amodel h ∈ H , which requires a prefix-
free representation language for H . Furthermore, most regularization terms in the
Machine Learning literature are convex functions. If, in addition, the representation
classW is convex, and the loss function is convex forW , then the optimization task
(7) using (12) as objective function is a convex optimization problem, which can be
efficiently solved by a wide variety of algorithms. As mentioned above, objective
functions for SRM and MDL principles typically lead to intractable optimization
tasks, due to the non-convex nature of penalty terms.

4.2 Conditions for Learnability

The overall goal of optimization principles in statistical learning is to reformulate the
black-box stochastic optimization task (6) as a standard, well-formed, optimization
task (7). If we put aside computational considerations, there is still an important
question that emerges from those principles: under which conditions an optimization
algorithm for (7) is guaranteed, with high probability, to solve (6)?
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In the statistical learning literature, various conditions for learnability have been
proposed, in order to characterize the key relationships between learning and opti-
mization (Vapnik 1998; Bousquet and Elisseeff 2002; Poffio et al. 2004;Mohammadi
and van de Geer 2005; Mukherjee et al. 2006; Watanabe 2009; Wibisono et al. 2009;
Shalev-Shwartz et al. 2010; Liu et al. 2017). We shall concentrate on two of them,
namely, uniform convergence and stability, which play a central role in statistical
learning theory.

To this end, we need some additional definitions. A rate function is a monotone
decreasing mapping ε: N → R that converges to 0 as m tends to infinite. With these
notions in hand, a learning rule A is called (universally) consistent with rate εcons if
for any m ∈ N and any distribution D over Z ,

ES∼D m [LD (A(S))] − inf
h∈H

LD (h) ≤εcons (m)

The next result, derived from Shalev-Shwartz et al. (2010), Sridharan (2012),
states that consistency is a necessary and sufficient condition for achieving learn-
ability in the setting of bounded loss functions, that is, cost functions of the form
� : H × Z → [0, b], where b is a positive scalar.

Theorem 1 (Learnability as Consistency) Let Z be an instance space, H be a
hypothesis class over Z , and � : H × Z → [0, b] be a bounded loss function.
Then, H is (agnostic PAC) learnable with respect to � if and only if there is a
learning rule A for H and a rate function εcons such that A is consistent with rate
εcons.

4.2.1 Uniform Convergence

For bounded loss functions, the statistical learning problem is to find a learning
rule that achieves a uniform rate for all distributions. To this point, it is well-known
that the empirical risk minimizer is consistent, provided that its hypothesis class
satisfies the uniform convergence property (Vapnik 1998, 2013). This key condition
for learnability can be formalized in the following way.

Definition 4 (Uniform Convergence) LetZ be an instance space,H be a hypothe-
sis class overZ , and � : H × Z → R be a loss function. Then,H has the uniform
convergence property with respect to � if for every distribution D over Z ,

lim
m→∞ES∼D m

[
sup
h∈H

|LD (h) − LS(h)|
]

= 0

Intuitively, the quantity suph∈H |LD (h) − LS(h)| measures the ability of a train-
ing set S to adequately represent the underlying distribution D for the task at hand.
Given an accuracy parameter ε, the training set S is called ε -representative if for all
hypotheses h ∈ H , we have |LD (h) − LS(h)| ≤ ε. Based on this notion, a hypoth-
esis class H has the uniform convergence property if there exist an integer-valued



360 A. Cornuejols et al.

function mH : (0, 1)2 → N such that, for every pair (δ, ε) ∈ (0, 1)2, and every dis-
tribution D over Z , if the example oracle ex(D) is called m ≥ mH (δ, ε) times,
then the resulting sample S ∈ Z m is ε-representative with probability 1 − δ. Based
on this reformulation of uniform convergence, the metric mH shares similarities
with the sample complexity of learning. Specifically, mH (δ, ε) is the amount of
information needed to ensure that, with probability 1 − δ, the training set S supplied
to the learner is ε-representative. Thus, if S is sufficiently large, then the empirical
risk of hypotheses is a faithful approximation of their true risk. The ERM principle
(8) can therefore be used without the need of penalty or regularization terms.

Theorem 2 (Learnability via Uniform Convergence) Let Z be an instance space,
H be a hypothesis class overZ , and � : H × Z → [0, b] be a bounded loss func-
tion. IfH has the uniform convergence property with sample complexity mH (δ, ε),
then H is (agnostic PAC) learnable with sample complexity mH (δ, ε/2), and the
empirical risk minimizer is consistent.

Interestingly, for supervised classification and regression tasks, a converse result
also holds; namely,H is learnable if and only if it enjoys the uniform convergence
property (Blumer et al. 1989; Alon et al. 1997).

For rich hypothesis classes H , the sample complexity mH (δ, ε) required to
ensure uniform convergence can bemuch larger than the size of training sets available
in practice, and hence, the ERM rule is prone to overfitting. So, we need here aweaker
form of uniform convergence that justifies the use of alternative principles, such as
SRM. To this end, assume that H is associated with a stratified representation
class R =⋃k∈N Rk , and let Hk be the set of models represented by Rk . Then,
H is said to have the locally uniform convergence property if each Hk enjoys
the uniform convergence condition with sample complexity mH k . Intuitively, the
quantity mH k (δ, ε) is small for simple hypothesis classes Hk , and increases with
the structural parameter k. Given a sample size m, let εk(m, δ) be the minimum
value of ε ∈ (0, 1) for whichmH k (δ, ε) ≤ k. SinceHk has the uniform convergence
property, it follows that any training sample S ∼ Dm is εk(m, δ)-representative with
probability 1 − δ. Thus, the penalty rule

penm,δ(kh) = ε

(
m,

δ

2kh

)

satisfies the condition (10), which in turn implies that any structural risk minimizer
defined on this penalty rule is consistent. In a nutshell, the locally uniform conver-
gence property is a sufficient condition for learnability using the SRM paradigm.

4.2.2 Stability

In contrast with uniform convergence, a condition defined for hypothesis classes,
stability is a property related to learning rules. Intuitively, a learning algorithm is
characterized by an overfitting behavior when it overreacts to small fluctuations in
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the training data. Put another way, a learning rule A : S → H is stable if a small
change of the input S ∈ S will only induce a small change of the output h ∈ H .

The next definition of stability, often referred to as average replace-one stability,
is based on replacing one instance in the training set, with a new instance drawn at
random according to the underlying distribution. Given a sample S = (z1, . . . , zm)

and an instance z′ ∈ Z , let Szi←z′ = (z1, . . . , zi−1, z′, zi+1, . . . , zm) be the sequence
obtained by replacing the i th observation of S with the instance z′.

Definition 5 (Stability) Let Z be an instance space, H be a hypothesis class over
Z , and � : H × Z → R be a loss function. Then, a learning rule A for H is (on
average replace-one) stable with rate εstable if for any distribution D over Z ,

1

m

∣∣∣∣∣
m∑
i=1

ES∼D m ,(z′
1,...,z

′
m )∼D m

[
�
(
A(Szi←z′

i
); z′

i

)− �
(
A(S); z′

i

)]∣∣∣∣∣ ≤εstable (m)

For stable learning rules, the erm principle is not a necessary condition for ensur-
ing learnability. Instead, the learner is only required to converge toward the erm
minimizer when the number m of training instances tends to infinite. Formally, a
learning rule A is an Asymptotic Empirical Risk Minimizer (aerm) with rate εerm if
for any distribution D over Z ,

ES∼D m

[
LS(A(S)) − inf

h∈H
LS(h)

]
≤εerm (m)

The next result, demonstrated in Shalev-Shwartz et al. (2010), establishes an
equivalence between statistical learnability and stable aerm rules.

Theorem 3 (Learnability via Stability) LetZ be an instance space,H be a hypoth-
esis class over Z , and � : H × Z → [0, b] be a bounded loss function. Then H
is (agnostic PAC) learnable if and only if there exists a stable aerm for H . In par-
ticular, if a learning rule A is stable with rate εstable and aerm with rate εerm, then
A is consistent with rate

εcons (m) ≤εstable (m)+ εerm (m)

In a nutshell, uniform convergence and stability provide different mathematical
tools for building learning algorithms. If the hypothesis class H is endowed with
uniform convergence, then Empirical Risk Minimization is the paradigm of choice
for designing a learning rule with a good generalization ability. Yet, H may be
learnable even if it does not satisfy the uniform convergence property: in this case,
stable asymptotic empirical risk minimizers are guaranteed to work. For convex
learning problems described in Sect. 6, such learning rules can be constructed in a
simple and intuitive manner using the Regularized Risk Minimization principle.



362 A. Cornuejols et al.

5 Concept Learning

Basically, the problem of concept learning is to extrapolate, from a series of positive
and negative examples, a model that accurately separate future, unseen instances.
In other words, concept learning problems are binary classification tasks whose
objective function is the zero-one loss. The instance space Z is a set X × {0, 1}
of instances labeled as negative (0) or positive (1). A concept is a subset of X , or
equivalently, an indicator function h mapping X to {0, 1}. By extension, a concept
class is a subsetH ⊆ {0, 1}X . Recall that the zero-one loss function � overH and
Z is given by:

�(h; (x, y)) =
{
0 if h(x) = y

1 otherwise

Based on this objective function, the true risk and the empirical risk of a concept can
be viewed as errormeasures. Namely, LD (h) captures the probability that the concept
h is making a mistake on a labeled instance (x, y) drawn at random according toD .
LS(h) is the proportions of mistakes made by h on the training set S.

In this section, we begin to examine the Vapnik-Chervonenkis dimension of con-
cept classes, an important notion related to their sample complexity. We next survey
some theoretical results related to learning concepts in the realizable case and the
agnostic case.We close this section by briefly discussing about bagging and boosting,
two efficient techniques for learning combinations of models.

5.1 VC-Dimension

As explained in Sect. 4.2, the uniform convergence property is a sufficient condition
for establishing the learnability of hypothesis classes. In concept learning, this prop-
erty is intrinsically related to the classification power of the concept class, called
Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis 1974). Intuitively,
the VC-dimension ofH is the maximum size of any set of input objects which can
be labeled in any possible way using concepts taken from H . More formally, let
S = {x1, . . . , xm} ⊆ X be a set of m input objects, and let

HS = {(h(x1), . . . , h(xm) : h ∈ H }

be the restriction of H to S, that is, the set of functions from S to {0, 1} which can
be derived fromH . Then, S is called shattered byH ifHS is the set of all possible
Boolean functions from S to {0, 1}, that is, |HS| = 2|S|.

Definition 6 (VC-dimension) LetX be a set, andH be a set of functions fromX
to {0, 1}. Then, the VC-dimension ofH , denoted VCdim(H ), is the maximal size



Statistical Computational Learning 363

Table 1 VC-dimension of some concept classes. A k-term DNF formula is a disjunction of at most
k monomials, and a k-DNF formula is a disjunction of monomials, with at most k literals per term

Concept class VCdim

Monotone monomials on {0, 1}n n

Homogeneous Linear functions on R
n n

Linear threshold functions on R
n n + 1

Feedforward linear threshold neural networks with E edges on R
n 6E log2 E

k-term DNF formulas on {0, 1}n 	(kn)

k-DNF formulas on {0, 1}n 	(nk)

Polynomial threshold functions of degree k on R
n

(n+k
k

)
Arbitrary DNF formulas on {0, 1}n 2n

Arbitrary functions from R
n to {0, 1} ∞

of any set S ⊆ X that is shattered by H . If H can shatter sets of arbitrary large
size, then VCdim(H ) = ∞.

We mention in passing that for a finite class H , a set S of instances cannot by
shattered byH if |H | < 2|S|. It follows that

VCdim(H ) ≤ log2 |H |

Actually, the VC-dimension of finite concept classes H can be much smaller than
the logarithm of their size. Consider for example the class H = {h1, . . . , hn} of
Boolean functions from {0, 1}n → {0, 1}, defined as follows: hi (x) = 1 if and only
if all features in x ranging from i ton are set to 1.Clearly,H can shatter a singleton set
S = {x} using x1 = 0 and x2 = 1. Yet, H cannot shatter any pair of input objects
S = {x, x′}, because there is no pair of hypotheses H for which the first gives
the labeling (0, 1) and the second gives the opposite labeling (1, 0). So, the VC-
dimension ofH is 1, and since n can be arbitrary large, the gap betweenVCdim(H )

and log2 |H | may be arbitrary large.
The VC-dimension of several concept classes is reported on Table 1; the proofs

may be found in Anthony (2001, 2010). It is important to keep in mind that some
infinite classes, such as linear threshold functions and feedforward neural networks,
have a finite (and sometimes low) VC-dimension. The next theorem is a standard
result in statistical learning theory, and its proof can be found in various textbooks
(Anthony and Barlett 1999; Vapnik 2013; Shalev-Shwartz and Ben-David 2014).

Theorem 4 (Learnability of Concept Classes) Let H be a hypothesis class from
a domain X to {0, 1}, and let � be the zero-one loss function. Then, then following
are equivalent:

• H has a finite VC-dimension.
• H has the uniform convergence property.
• H is agnostic PAC learnable.
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In particular, ifVCdim(H ) ≤ d, then the sample complexity ofH is inO(
d+ln(1/δ)

ε2
).

An important notion related to the VC-dimension is the growth function of a
hypothesis class, which measures the number of different functions from a set S
of size m to {0, 1} that can be obtained by restricting H to S. Formally, the growth
function of H , is the mapping 
H : N → N given by


H (m) = max
S⊆X :|S|=m

|HS|

Clearly, if the VC-dimension of H is d, then 
H (m) = 2d for all m ≤ d. More
precisely, by Sauer’s Lemma (1972), the growth function of a concept class H for
which the VC-dimension is upper-bounded by d satisfies 
H (m) ≤∑d

i=0

(m
i

)
for

all m ∈ N. In particular, when m is becoming larger than d, the growth function
is bounded by (em/d)d , that is, 
H increases polynomially with m. As a direct
corollary of Theorem 4, if H has a finite VC-dimension, then H is agnostic PAC
learnable with a sample complexity that is logarithmic in 
H .

5.2 Realizable Concept Learning

We first explore the PAC learnability of concept classes in the realizable setting,
where a target function in the concept class is labeling the instances supplied to the
learner. A useful algebraic tool in realizable PAC learning is the notion of version
space, due to Mitchell (1982). Given a concept class H and a training sample
S ⊆ X × {0, 1}, the version space of H with respect to S is given by

VS(H , S) = {h ∈ H | h(x) = y for all (x, y) ∈ S}

Let D denote the hidden distribution over X , and h∗ ∈ H denote the hidden
target concept. Given a desired accuracy ε ∈ (0, 1), the version space of H with
respect to S is called ε-exhausted if LD (h) ≤ ε for any hypothesis in VS(H , S).
In other words, all candidate concepts in an ε-exhausted version space have error at
most ε with respect to h∗. The following result, established in Blumer et al. (1989),
Haussler (1988), provides a relation between ε-exhausted version spaces and the
growth function of the concept class.

Theorem 5 Let H be a hypothesis class from a domain X to {0, 1}, and let � be
the zero-one loss function. In addition, let D be a arbitrary distribution over X ,
and h∗ ∈ H be a target concept. Then for any ε ∈ (0, 1) and any training sample
S of size m drawn from D and labeled by h∗, the probability that VS(H , S) is not
ε-exhausted is at most

2
H (2m)2−εm/2
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As a corollary, if the size m of the training sample S is at least

4

ε

[
VCdim(H ) log2

(
12

ε

)
+ log2

(
2

δ

)]
(13)

the version space is ε-exhausted with probability 1 − δ. Consequently, the con-
cept class H is PAC learnable with a sample complexity which is linear in the
VC-dimension of H . So, in order to show that logical concept classes of polyno-
mial VC-dimension are efficiently PAC learnable in the realizable case, we simply
need to devise an algorithm that returns in polynomial time an element in the version
space VS(H , S), given as input a training sample S of size at least (13). In other
words, realizable PAC learning is essentially a consistency (or feasibility) problem:
given a set of labeled instances, find a concept that correctly labels all instances.

For simple concept classes, the consistency problem is relatively straightforward.
For example, monomials and clauses may be learned using a standard variable elim-
ination algorithm (Mitchell 1982; Kearns et al. 1987). Parity functions represented
by XOR clauses can be learned using a closure algorithm (Helmbold et al. 1992).
For linear threshold functions, the feasibility problem can be cast as a standard
Linear Programming (LP) task, and hence, may be solved in polynomial time using
an LPmethod. Here, the incremental Perceptron algorithm (Rosenblatt 1958) is more
attractive in practice, but it is not generally efficient, because the number of its itera-
tions depends on the margin of the training set, which can be exponential in the input
dimension n (Anthony and Shawe-Taylor 1993).

Much less obvious is the consistency issue of expressive concept classes. On
the one hand, k-DNF are efficiently PAC learnable using a simple extension of the
variable elimination algorithm, and decision lists with clauses of size at most k can
be efficiently learned using Rivest’s algorithm (1987). On the other hand, for k-term
DNF formulas, the consistency problem is NP-hard (even for k = 3) (Pitt and Valiant
1988). Similar hardness results have been found for expressive classes of geometric
models: the consistency problem is NP-hard for k intersections of halfspaces (even
for k = 2) (Megiddo 1988; Blum and Rivest 1992).

The above negative results hold for realizable and proper PAC learning; the con-
cept returned by the learner must be a representation of a model in the hypothesis
class H . What about relaxing this condition? Namely, the computational issue of
finding a representation of a model in H that is consistent with the data may be
circumvented by allowing the learner to output in polynomial time a representation
of a model in some larger concept class H ′ that includes H . In this relaxed set-
ting, often referred to as improper or representation independent PAC learning, the
aforementioned class of k-term DNF formulas is efficiently learnable using k-CNF
formulas, simply because any disjunction of k monomials can be encoded into a
CNF expression, involving at most k literals per clause. Based on a similar encod-
ing, the class of decision trees with at most s leaves is efficiently learnable using
log2 s-decision lists (Blum 1992). In this representation independent setting, various
sub-exponential time algorithms have been found for learning expressive concepts,
such as DNF formulas or intersections of halfspaces, using polynomial threshold
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representations (Klivans et al. 2004; Klivans and Servedio 2004). Yet, polynomial
time learning algorithms seem to be unachievable, under the standard assumption
that NP �= RP. Notably, several negative results indicate that DNF formulas are not
efficiently learnable in the representation independent setting (Alekhnovich et al.
2008; Daniely and Shalev-Shwartz 2016). Analogous results have been obtained for
intersections of halfspaces (Klivans and Sherstov 2009).

5.3 Agnostic Concept Learning

In the agnostic PAC learning setting, which does not make any assumption about
the labels of incoming instances, the growth function of a hypothesis class, and
hence its VC-dimension, may be used for assessing the sample complexity of binary
classification under the zero-one loss. The proof of the next result, related to the
sample complexity of uniform convergence, can be found in several textbooks (Mohri
et al. 2012; Shalev-Shwartz and Ben-David 2014).

Theorem 6 Let H be a hypothesis class from a domain X to {0, 1}, and let � be
the zero-one loss function. Then, for every distribution D over X × {0, 1}, every
δ ∈ (0, 1) and every h ∈ H , with probability 1 − δ over the choice of S ∼ Dm,

|LD(h) − LS(h)| ≤
√
2 ln

∏
H (m)

m
+
√
ln 1/δ

2m

Thus, by combining the above result with Theorem 2, it follows that if H has a
finite VC-dimension, then H is agnostic PAC learnable with sample complexity

O

(
VCdim(H ) + ln 1/δ

ε2

)

As shown in Anthony and Barlett (1999), this asymptotic bound is tight: the O
function can be replacedwith the	 function. Thus, the increase of sample complexity
is mainly related to the accuracy parameter: the dependence on 1/ε is nearly linear in
the realizable case, while it is quadratic in the agnostic case.

From a computational viewpoint, a sufficient condition for achieving efficient
agnostic PAC learnablity is a polynomial time empirical risk minimizer. Indeed, as
established in Theorem 2, the erm learning rule is statistically consistent whenever
H is endowed with the uniform convergence property. To this point, recall that real-
izable concept learning is a feasibility problem: find h ∈ H such that LS(h) = 0.
By contrast, agnostic concept learning is an optimization problem: minimize LS(h)

subject to h ∈ H . This crucial difference has drastic consequences on the computa-
tional learnability of concept classes. Notably, for simple classes such as monotone
monomials and linear threshold functions, the problem of finding a concept that
minimizes is empirical error on a training sample is NP-hard (Johnson and Preparata
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1978;Angluin andLaird 1987;Höffgen andSimon 1992;Kearns andLi 1993;Kearns
et al. 1994b). Consequently, monotone monomials and linear threshold functions are
not efficiently agnostic PAC learnable, unless NP = RP.

In order to alleviate this computational barrier, a natural approach is to con-
sider approximation schemes: for a given approximation parameter α ≥ 1, an α-
approximation algorithm for H is a polynomial-time algorithm that takes as
input an arbitrary sample S, and returns as output a hypothesis h ∈ H , such that
LS(h) ≤ α infh′∈H LS(h′). In other words, the learner must find a concept for which
the empirical error is at most α times the empirical error of the erm rule. Unfor-
tunately, even under this relaxed setting, the problem of approximately minimizing
the empirical error of monotone monomials and linear threshold functions remain
NP-hard (Arora et al. 1997; Ben-David et al. 2003; Feldman et al. 2009).

Another approach, already suggested for realizable concept learning, is to allow
the learner to return hypotheses in some class H ′ that covers H . Yet, even in this
representation-independent setting, simple concept classes are hard to learn (under
the usual assumption that NP �= RP). For instance, monomials are not efficiently
agnostic PAC learnable using arbitrary disjunctions of conjunctions (Kearns et al.
1994b), or halfspaces (Feldman et al. 2012).

In a nutshell, concept learning is an area of stark contrast from the viewpoint of
runtime complexity. On the one hand, realizable concept learning is computationally
easy for relatively simple classes, but remains difficult formore expressive hypothesis
classes. On the other hand, the more “realistic” problem of agnostic concept learning
proves to be very hard, even for simple hypothesis classes.

5.4 Bagging and Boosting

As expressive models are difficult to learn, what about learning simple models and
combining them together, in order to produce more accurate predictors? Bagging
and boosting are two techniques which grew out of this pragmatic question and
became very practical tools for solving complex learning problems. The basic idea
underlying these techniques is to amplify the accuracy of weak learners. One can
think of a weak learner as an algorithm that uses a simple heuristic or “rule of thumb”
in order to produce a hypothesis whose performance is just slightly better than a pure
random guess. If such a weak learner can be implemented efficiently, then bagging
and boostingmay be used to iteratively combineweak hypotheses in order to produce
a gradually better predictor. Inwhat follows, we assume thatH is closed under linear
combinations, in order to produce model ensembles.

Introduced by Breiman (1996), the boostrap aggregating technique, abbreviated
as bagging, aims at creating diverse weak hypotheses on different random samples of
the training set S. As explained in Algorithm 1, These samples are taken uniformly
with replacement, and a simple averaging of weak hypotheses is used to produce the
final predictor. Bagging is particularly useful for learning combinations of decision
trees, trained with weak learners such as ID3 (Quinlan 1986) or C4.5 (Quinlan
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1993, 1996). When applied to tree models, bagging is often coupled with another
idea, referred to as subspace sampling: at each iteration t ∈ [T ], select uniformly at
random n′ ≤ n features from X and train the weak learner A (without pruning) on
the sample S′

t formed by the projection of St onto [n′]. This encourages the diversity in
the ensemble of weak hypotheses, and contributes to reduce the runtime of learning.
The resulting method, called random forests (Breiman 2001), is easily parallelizable,
and its performance in binary classification is comparable to that of Support Vector
Machines (Caruana et al. 2008).

The algorithmic paradigm of boosting, studied by Schapire (1990), consists in
gradually training diverse weak hypotheses by increasing the weight of previously
misclassified examples. This paradigm gave rise to a practically useful algorithm,
called AdaBoost (Freund and Schapire 1997), which is described in Algorithm 2.
For convenience, the set of labels is here given by Y = {−1,+1}. The AdaBoost
algorithm maintains a probability distribution pt over the training instances in S.
Namely, on each round t , AdaBoost starts by training the weak learner A on the
weighted dataset (St , pt ) = {(x1, y1, pt,1), . . . , (xm, ym, pt,m)}. Next, the ensemble
learner chooses a weight wt for the weak hypothesis ht , and then, updates the dis-
tribution pt in a multiplicative way, where Zt is the partition constant. A common
choice for wt is

wt = 1

2
ln

(
1

εt
− 1

)
where εt =

∑
i∈[m],ht (xi )=yi

pi,t

Algorithm 1: Bagging
input: data set S ∈ Z m , number of rounds T , weak learner A : X m → H
for t = 1 to T do

build a sample St from S by drawing m instances with replacement
run A on St to find a concept ht in H

end
output: h(x) = 1

T

∑T
t=1 ht (x)

Algorithm 2: Boosting (AdaBoost)
input: data set S ∈ Z m , number of rounds T , weak learner A : X m → H
initialize: set pt,i = 1

m for each i ∈ [m]
for t = 1 to T do

run A on (St , pt ) to find a concept ht in H
choose wt

set pt+1,i = 1
Zt

pt,i exp(−wtht (xi ))
end
output: h(x) = sign

∑T
t=1 wtht (x)
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The AdaBoost algorithm benefits from a solid theoretical analysis, surveyed in
Schapire and Freund (2012). As a well-known result, let γ ∈ (0, 1), and suppose
that at each iteration of AdaBoost, the weak learner returns a hypothesis for which
εt ≤ 1/2 − γ . Then, the training error of the final hypothesis h returned by AdaBoost
after T iterations is at most:

LS(h) ≤ exp(−2γ 2T )

From a practical viewpoint, theAdaBoost algorithm has been successfully applied
to face recognition tasks, using axis-aligned rectangles for weak hypotheses (Viola
and Jones 2001). Moreover, the boosting technique is particularly suited for learning
linear combinations of decision rules (Cohen and Singer 1999; Schapire and Singer
1999), and alternating decision trees (Freund and Mason 1999).

Finally, it is important to emphasize that bagging and boosting are not limited to
binary classification tasks. Notably, bagging and random forests have been applied to
regression, density estimation, and manifold learning; a detailed survey can be found
in Criminisi et al. (2012). The boosting technique has been extended to multi-class
learning and ranking; see again (Schapire and Freund 2012) for a comprehensive
survey about this paradigm.

6 Convex Learning

Convex learning problems cover a wide variety of learning tasks, where the hypoth-
esis class is a convex set and the loss function is convex. Many, if not most, statistical
learning problems which are easy to solve fall into this category. In this section, we
first introduce somemathematical background about convex learning problems, next
we examine several well-known algorithms for solving these problems, and then, we
briefly survey the topic of Support Vector Machines which heavily relies on convex
learning techniques.

6.1 Convex Learning Problems

Let W be a subset of an Euclidean space or, more generally, a Hilbert space. The,
W is convex if for any two points u,w ∈ W , and any scalar λ ∈ (0, 1), the point
formed by the convex combination λu + (1 − λ)w belongs to W . By extension, a
function f : W → R is convex if its epigraph {(w, v) | v ≥ f (w)} is a convex set. For
the sake of simplicity, we shall consider in this section that every convex function
is differentiable, but most results can be extended to non-differentiable functions,
using the notion of sub-differential (Hiriart-Urrut and Lemaréchal 2004; Rockafellar
1970). A real-valued, differentiable function f on W is convex if and only if, for
any u,w ∈ W ,
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f (u) − f (w) ≥ 〈∇ f (w), u − w〉

Families of convex learning problems are typically characterized in terms of three
basic properties about convex objectives. Namely, given a convex set W and three
positive scalars ρ, α, and β, a convex function f : W → R is

• ρ-Lipschitz if for any u,w ∈ W ,

| f (u) − f (w)| ≤ ρ ‖u − w‖

• α-strongly convex if for any u,w ∈ W ,

| f (u) − f (w)| ≥ 〈∇ f (w), u − w〉 + α

2
‖u − w‖2

• β-smooth if for any u,w ∈ W ,

| f (u) − f (w)| ≤ 〈∇ f (w), u − w〉 + β

2
‖u − w‖2

Furthermore, given a positive scalar B > 0, we say that a convex setW is B-bounded
if ‖w‖ ≤ B for all w ∈ W .

Informally, the Lipschitzness property indicates that f cannot change too fast. A
sufficient condition for this condition is that ‖∇ f (w)‖ ≤ ρ for every w ∈ W . The
properties of smoothness and strong convexity are related to the curvature of f .
Notably, if f is twice-differentiable, then f is β-smooth and α-strongly convex if
and only if, for every w ∈ W , we have:

α I � ∇2 f (w) � β I

where A � B denotes the fact that A − B is positive semi-definite. In other words,
the scalars α and β can be viewed as bounds on the eigenvalues of f . The ratio α/β

is often referred to as the condition number of f .

Definition 7 (Convex Learning) Let Z be an instance space, H be a hypothesis
class overZ , and � : H × Z → R be a loss function. Then, (Z ,H , �) is a convex
learning problem if H is representable by a convex set W , and for every z ∈ Z ,
the function f : W → R given by f (w) = �(hw, z) is convex.

For convex learning problems we shall replace the hypothesis class H by its
convex representation class W , and rewrite the loss function � as a mapping from
W × Z . Based on the aforementioned properties about convex objectives, convex
learning problems may be declined into several categories, depending on whether
the loss function is Lipschitz, smooth, or strongly convex on its first argument.
For example, consider the binary classification task defined over an instance space
Z = X × {−1,+1}, a convex representation classW , and the hinge loss function:
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�(w, (x, y)) = max(0, 1 − y 〈w, x〉)

If the domain set is the ball X = {x ∈ R
n : ‖x‖ ≤ ρ}, then � is both convex and

ρ-Lipschitz. Now, if we use the same domain set, but replace the above loss function
with the regularized hinge loss function:

�(w, (x, y)) = max(0, 1 − y 〈w, x〉) + α

2
‖w‖2

it follows that � is both α-strongly convex and ρ-Lipschitz. As another example,
consider the regression task defined over an instance space Z = X × R, a convex
representation class W , and the square loss function

�(w, (x, y)) = (y − 〈w, x〉)2

If the domain set is the ball X = {x ∈ R
n : ‖x‖ ≤ β/2}, then � is both convex and

β-smooth.
In general, a convex learning problem can be formulated as a stochastic convex

optimization task of the form:

minimize LD(w) = Ez∼D [�(w, z)] (14)

subject to w ∈ W

where W is a convex set, and � is convex on its first argument. We may attempt to
solve this problem in a direct way, using a stochastic convex optimization algorithm
that calls the example oracle ex(D) for approximating the unknown objective LD .
Alternatively, we may rely on an indirect approach, by using learning rules defined
over the empirical risk LS , and described in Sect. 4. In the convex setting, Regularized
RiskMinimization rrm is the paradigm of choice. Recall here that the rrm rule finds
a minimizer of

1

m

m∑
i=1

�(w, zi ) + reg(w)

subject to w ∈ W , where reg : W → R+ is a regularization function. Namely, the
next result established in Shalev-Shwartz et al. (2010), Shalev-Shwartz and Ben-
David (2014) indicates that the rrm rule is stable for various families of convex
learning problems.

Theorem 7 (Stability of rrm) Let (Z ,W , �) be a convex learning problem. Then,

• the rrm rule with the Tikhonov regularizer reg(w) = λ ‖w‖2 is stable with rate
O(1/m), whenever � is ρ-Lipschitz or β-smooth;

• the erm rule (i.e. rrm with no regularizer) is stable with rate O(1/m), whenever �

is ρ-Lipschitz and α-strongly convex.
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6.2 Convex Learning Algorithms

In the rich literature of convex optimization, a wide variety of algorithms have been
devised for solving convex learning problems in a computationally efficient way.
We invite the reader in browsing excellent textbooks about this active research topic
(Bertsekas 2015; Boyd and Vandenberghe 2004; Bubeck 2015; Kushner and Yin
2010; Nesterov 2004; Nemirovski 1995; Sra et al. 2012). Here, we shall focus on
three, well-studied convex learning algorithms: Stochastic Gradient Descent (SGD),
Stochastic Coodinate Descent (SCD), and Conditional Gradient (CG).

6.2.1 Stochastic Gradient Descent

Arguably, the Gradient Descent algorithm is one of the oldest strategy for solving
convex optimization problems (Cauchy 1847). The overall idea of this iterative opti-
mization algorithm is to improve the solution at each iteration, by taking a step along
the negative of the gradient of the function to be minimized at the current point. The
stochastic version of this algorithm, which dates back to Robbins andMonro (1951),
aims at minimizing a stochastic convex objective function of the form LD(w). To
this end, SGD takes at each iteration a step along a random direction, for which the
expectation is the negative of the gradient. As most convex learning problems are
defined over a restricted subset W of an Euclidean or Hilbert space, the adaptation
of SGD to statistical learning typically involves an additional projection step, which
maintains the current point in the set of feasible solutions W .

Algorithm 3: Stochastic Gradient Descent
input: scalar η, integer m
initialize: v1 = 0
for t = 1 to m do

wt = argminw∈W ‖w − vt‖2
zt = ex(D)

vt+1 = wt − η∇�(wt , zt )
end
output: w = 1

m

∑m
t=1 wt

The resulting projected SGDmethod is described inAlgorithm3.At each iteration
t , the algorithm first projects the current point vt onto the representation class W ,
next calls the example oracle for an instance zt ∈ Z , and then performs a descent
step using the gradient of the loss �(wt , zt ). The convergence of SGD has been
analyzed for various families of objective functions (Kushner and Yin 2010; Rakhlin
et al. 2012; Shalev-Shwartz et al. 2009; Shalev-Shwartz and Ben-David 2014). The
next theorem summarizes convergence results obtained for the three aforementioned
families.
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Theorem 8 (Convergence of SGD) Let (Z ,W , �) be a convex learning problem.
Then, the SGD algorithm is

• universally consistent with rate O(1/
√
m) if W is B-bounded, and � is ρ-Lipschitz

or β-smooth.
• universally consistent with rate Õ(1/m) if W is B-bounded, and � is both

ρ-Lipschitz and α-strongly convex.

In other words, stochastic convex optimization problems of the form (14) can be
solved directly, using the SGD algorithm, under reasonable assumptions about the
representation classW and the loss function �. The choice of the learning parameter η
is governed by the input parameters defining the family of convex learning problems.
For example, if W is B-bounded and � is ρ-Lipschitz then, using η = B/ρ

√
m, the

convergence rate is bounded by Bρ/
√
m. Thus, given a desired accuracy ε, it suffices

to run SGD m ≥ (Bρ/ε)2 iterations in order to achieve, in expectation, a risk that is
ε-close to the smallest risk.

TheGradient Descent method and its stochastic variant belong to the larger family
of Mirror Descent algorithms (Nemirovski and Yudin 1983; Beck and Teboulle
2003), used to solve regularized risk minimization tasks for various regularization
functions. The overall idea is to first map the current pointwt ∈ W into the dual space
W ∗, next perform the gradient descent in the dual space, and then mapping back the
resulting point into the primal space. Various instances of Mirror Descent schemes
include the Exponentiated Gradient algorithm (Kivinen and Warmuth 1997), and
the p-norm algorithms (Gentile 2003). One of key geometric properties of Mirror
Descent schemes is that an objective function f over the primal space W is α-
strongly convex with respect to a norm ‖·‖ if and only if its conjugate f ∗ on the dual
space W ∗ is 1/α-strongly smooth with respect to the dual norm ‖·‖∗ (Hiriart-Urrut
and Lemaréchal 2004; Kakade et al. 2012). This, together with standard properties of
Bregman divergences, typically yield convergence rates in O(1/

√
m) or Õ(1/m)which

depend only logarithmically in the dimension n of the data instances.

Algorithm 4: Stochastic Coordinate Descent

input: convex objective LS(w) = 1
m

∑m
i=1 �(w, zi )

initialize: w1 = 0
for t = 1 to T do

Choose index j uniformly at random in [n]
Choose stepsize ηt

wt+1 = wt − ηt | ∂LS (wt )
∂ j |e j

end
output: w = wT

From a computational viewpoint, the main bottleneck of the SGD algorithm,
and more generally Mirror Descent algorithms, lies in the projection step, which
is a constrained convex optimization task performed at each iteration. For simple
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representation classes W , such as balls, hypercubes, simplices, and permutahedra,
fast projection methods have been proposed (Duchi et al. 2008; Krichene et al. 2015;
Lim and Wright 2016). However, for more complex representation classes, such as
polyhedra described by linear inequalities, the projection step has to rely on general,
time-consuming, convex optimization techniques. Circumventing this bottleneck by
limiting the number of projection steps in gradient descent algorithms is a subject of
ongoing research (Mahdavi et al. 2012; Zhang et al. 2013).

6.2.2 Stochastic Coordinate Descent

When the hypothesis class is a simple convex object, characterized by separable or
block-separable constraints, the empirical risk can be minimized using the family
of Coordinate Descent algorithms (Censor and Zenios 1997; Tseng and Yun 2009;
Nesterov 2012;Wright 2015). Suchmethods, inspired from theGauss-Seidel method
for systems of linear equations, solve convex optimization tasks by iteratively per-
forming approximate minimization along coordinate directions.

Algorithm 4 describes a stochastic version of Coordinate Descent for minimizing
the empirical risk in the unconstrained setting (i.e. W = R

n). During each iteration
t , the SCD algorithm first selects a coordinate j uniformly at random, and indepen-
dently of past rounds, and then performs a descent according to the derivative of the
empirical risk LS(wt ) of the current pointwt at coordinate j . As detailed for instance
inWright (2015), the SCD algorithmmay be easily upgraded to constrained versions
of this task, using block-separable constraints.

Algorithm 5: Conditional Gradient

input: convex objective LS(w) = 1
m

∑m
i=1 �(w, zi )

initialize: w1 is an arbitrary point in W
for t = 1 to T do

vt = argminv∈W 〈∇LS(wt ), v〉
Choose stepsize ηt ∈ (0, 1)
wt+1 = (1 − ηt )wt + ηtvt

end
output: w = wT

Although SCD is a fast, easy-to-implement algorithm, its convergence analysis
requires more sophisticated conditions on the feasible set and the objective function
(Nesterov 2012;Lu andXiao 2015;Wright 2015).Notably, if LS satisfies the property
of coordinate-wise Lipschitz continuity with constants {β j }nj=1, and the diameter of
W with respect to the norm
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‖w‖β =
√√√√ n∑

j=1

β jw2
j

is bounded by a constant R, then SCD converges to the empirical risk minimizer
with rate in O(1/T). Better convergence bounds may be achieved for strongly convex
loss functions, or using accelerated versions of SCD.

6.2.3 Conditional Gradient

For hypothesis classes characterized by complex geometric objects, such as cones or
polyhedra, convex projection tasks may be computationally demanding. Yet, linear
optimization tasks on those objects are typically much easier. Projection-free algo-
rithms constitute a family of convex optimization methods which replace the convex
projection step with a cheaper linear optimization step (Clarkson 2010; Hazan and
Kale 2012; Jaggi 2013; Lacoste-Julien and Jaggi 2015; Freund and Grigas 2016;
Garber and Hazan 2016; Garber andMeshi 2016). The prototypical algorithm in this
family is the Conditional Gradient method, due to Franck and Wolfe (1956).

Algorithm 5 describes a simple version of CG. During each iteration t , the algo-
rithm starts by performing a linear optimization step using the gradient of the empir-
ical risk of the current point wt , and then updates its solution according to a convex
combination of wt and the linear minimizer vt . Different strategies for choosing the
stepsize ηt at each iteration are reported in Jaggi (2013), Freund and Grigas (2016).
Apart from the choice of ηt , CG algorithms essentially differ in the linear optimiza-
tion step. For example, a local linear optimization step is suggested in Garber and
Hazan (2016), while step-away strategies are advocated in Lacoste-Julien and Jaggi
(2015), Garber and Meshi (2016).

Overall, the performance of CG is relatively similar to the performance of SGD
(forminimizing the empirical risk), using only linear optimization steps. Specifically,
the convergence rate of CG is in

• O(1/
√
T) if W is B-bounded, and LS is ρ-Lipschitz,

• Õ(1/T) if W is B-bounded, and LS is both ρ-Lipschitz and α-strongly convex.

We mention in passing that the SGD, SCD, and SG algorithms enjoy convergence
rates in O(exp(−T ))when the objective function is both smooth and strongly convex
(Bubeck 2015).

6.3 Support Vector Machines

Asmentioned in the introduction of this section, convex learning problems constitute
the most important family of statistical learning problems where efficient learnabil-
ity results can be obtained. It is therefore not surprising that convex learning algo-
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rithms have been successfully applied to a wide range of statistical learning tasks.
In particular, the key tools for handling high-dimensional learning tasks are Sup-
port Vector Machines (SVMs). Introduced in Boser et al. (1992), SVMs have been
a subject of extensive research, both from a theoretical and practical perspective,
summarized in various textbooks (Vapnik 1998; Cristianini and Shawe-Taylor 2000;
Schölkopf and Smola 2002; Steinwart and Christmann 2008).

Support Vector Machines are defined through two main notions: margins and
kernels. Intuitively, the notion of margin is related to the sample complexity of learn-
ing: SVMs handle high-dimensional hypothesis classes by searching for largemargin
separators. A linear classifier separates a training set with a large margin if it does not
only classify examples in a correct way, but also pushes those examples away from
the separating hyperplane. Thus, a large margin classifier may require a small sample
complexity, even if the dimensionality of the feature space is high, or even infinite.
The notion of kernel is related to the runtime complexity of learning. Basically, a
kernel is a similarity measure between instances, which can be characterized as an
inner product in some Hilbert space. For classifiers involving a feature expansion
mapping, the “kernel trick” enables a computationally efficient implementation of
learning, without explicitly handling the high dimensional feature expansion vector.
Of course, the notions of margins and kernels are not limited to binary classification:
they have been extended to various learning task including, for example, multi-class
prediction and structured prediction.

There are two main categories of SVMs, depending on whether the training set
supplied to the learner is assumed to be separable, or not. For the sake of simplicity,
we focus here on zero-threshold linear functions, but the SVM rules defined below
can easily be extended to non-homogeneous linear functions, using data points in the
extendeddomain setX × {1}. A training set S = {(x1, y1), . . . , (xm, ym)} is linearly
separable if there exists a vector w such that yi = sign 〈w, xi 〉 for all i ∈ [m]. In this
separable case, the margin of the hyperplane w with respect to the training set S is
the minimal distance between an example in S and the hyperplane. In particular, if
‖w‖ = 1, then the distance between w and any example (xi , yi ) is simply given by
yi 〈w, xi 〉. Therefore, the Hard-SVM rule is to find a separating hyperplane w with
‖w‖ = 1 that maximizes the distance mini∈[m] yi 〈w, xi 〉. The Hard-SVM rule may
be formulated in an equivalent way by the (constrained) convex optimization task:

minimize ‖w‖2 (15)

subject to yi 〈w, xi 〉 ≥ 1 ∀i ∈ [m]

If the training set S is linearly separable, then this optimization task is feasible. In
this case, the solution w is normalized by ‖w‖ to yield the final predictor.

In the more general case where S is not linearly separable, the formulation (15)
can be relaxed by allowing separability constraints to be violated by some examples.
As usual, this may be formulated by adding slack variables ξ1, . . . , ξm , where each
ξi captures by how much the the constraint yi 〈w, xi 〉 ≥ 1 is violated. The resulting
Soft-SVM rule jointly minimizes the margin and the violations of separability con-
straints, using the following optimization task:
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minimize λ ‖w‖2 + 1

m

m∑
i=1

ξi (16)

subject to yi 〈w, xi 〉 ≥ 1 − ξi ∀i ∈ [m]

To this point, recall that the hinge loss between a linearmodelw and an example (x, y)
is given by �(w, (x, y)) = max{0, 1 − y 〈w, x〉}. With this formulation in hand, the
Soft-SVM rule (16) can be expressed as a standard rrm task, given by

min
w,b

(
m∑
i=1

�((w, b), (xi , yi )) + λ ‖w‖2
)

(17)

This rrm objective is referred to as the primal formulation of the Soft-SVM rule.
Since we are dealing with a convex optimization task, the Soft-SVM rule admits an
equivalent dual formulation, where the optimal solution is characterized by a linear
combination of examples in S, using Lagrangian variables α1, . . . , αm :

max
α∈Rm ,α�0

⎛
⎝ m∑

i=1

αi − 1

2

m∑
i=1

m∑
j=1

αiα j yi y j
〈
xi , x j

〉⎞⎠ (18)

and the correspondence between (17) and (18) is given by w =∑m
i=1 αi xi . If w is

an optimal solution of (17) then the data points xi for which αi is positive are called
the support vectors of w.

Based on the above formulations, various convex optimization algorithms can
be exploited for implementing linear Soft-SVMs. For example, (Shalev-Shwartz
et al. 2007) solve the primal problem (17) using Stochastic Gradient Descent, and
(Hsieh et al. 2008) solve the dual problem (18) using (dual) Coordinate Descent. The
Conditional Gradient algorithm was also advocated for solving structured prediction
tasks with SVMs (Lacoste-Julien et al. 2013).

Since the expressive power of linear functions is limited, a natural approach for
extending SVMs to non-linear functions is to use a feature expander, that is, an
embedding φ of the domain setX onto some (possibly infinite dimensional) Hilbert
space F . Based on this feature expander, the hypothesis class H is represented by
the set of vectors w such that hw(x) = sign(〈w,φ(x)〉). Given an embedding φ, the
corresponding Kernel operator is defined as

K (x, x′) = 〈φ(x), φ(x′)
〉

and the dual formulation (18) of Soft-SVM can be rewritten using the “kernel trick”:

max
α∈Rm ,α�0

⎛
⎝ m∑

i=1

αi − 1

2

m∑
i=1

m∑
j=1

αiα j yi y j K (xi , x j )

⎞
⎠ (19)
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By the Kernel Representer Theorem (Schölkopf et al. 2001), the optimal
solution w can be expressed as a linear combination of expanded points, that is,
w =∑m

i=1 αiφ(xi ). Since the dimension of w can be large or infinite, the kernel trick
allows us to efficiently encode w as a set of support vectors xi , each associated with
its coefficient αi . Furthermore, since the kernel operator K associated with a feature
expander φ defines a positive semidefinite matrix, the kernelized SVM rule (19)
is a concave optimization problem. Again, convex optimization algorithms can be
advocated for efficiently solving this task, provided that the kernel operator K can
be computed in polynomial time. Various kernels satisfying this condition have been
proposed in the literature, and we refer the reader to Herbrich (2002), Schölkopf and
Smola (2002), Shawe-Taylor and Cristianini (2004), Bottou (2007), Kung (2014),
for detailed surveys about kernel methods.

Finally, as kernels provide a way to express prior knowledge about the learning
task at hand, an important subject of ongoing research in SVMs is to learn kernels,
using a kernel family (Lanckriet et al. 2004; Bach 2008; Cortes et al. 2009, 2010).

7 Conclusion

In this chapter, we have drawn a conceptual map of statistical computational learning
byproviding answers to several questions:what is a statistical learning problem?How
tomeasure the performance of a learning algorithm?Which are themain optimization
principles in statistical learning? And, under which conditions a hypothesis class is
learnable? Based on these foundations, we have surveyed two important problems in
Machine Learning: concept learning and convex learning. In this concluding section,
we highlight several topics of research at the intersection of statistical computational
learning and AI. Due to space reasons, the list is by no means exhaustive, and we
apologize for omitting other topics of interest.

Learning Sparse Models The concept of sparsity is ubiquitous in many scientific
and engineering applications, for identifying parsimonious solutions to high-
dimensional problems. Informally, a sparse solution can be viewed as a high-
dimensional vector or matrix satisfying some sparsity constraint, which limits the
degrees of freedom of the model. Various sparsity constraints have been proposed
in the literature of machine learning and signal processing, ranging from the stan-
dard cardinality constraint that restrains the number of nonzero coordinates (Shalev-
Shwartz et al. 2010), to more sophisticated sparsity constraints which impose a
low-dimensional structure on the set of nonzero features (Hegde et al. 2015; Jain
et al. 2016). For example, in the “group-structured” sparsity constraint, the rele-
vant features are partitioned into a small number of contiguous blocks, and in the
“tree-structured” sparsity constraint, such features are arranged into a connected
acyclic graph. As convex optimization under sparsity constraints is NP-hard (Natara-
jan 1995), two main approaches have been advocated for learning sparse mod-
els: convex relaxation (Shalev-Shwartz and Tewari 2011; Bach et al. 2012), and
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approximation algorithms (Bahmani et al. 2013; Jain et al. 2014). A recent survey
on sparse modelling and learning can be found in Rish and Grabarnik (2014).

Learning Probabilistic Models In statistical learning, probabilistic models aim at
estimating the hidden distribution that generates data instances. Of particular interest
inAI are probabilistic graphical models which are able to represent high-dimensional
probability distributions (Koller and Friedman 2009; Murphy 2012). As explained
in Sect. 2, a probabilistic graphical model is a pair (G, θ), where G is a graphical
structure and θ is a vectorized set of parameters. Parameter learning is the task of
estimating from data the parameters of a probabilistic model, when the structure is
fixed. Correspondingly, structure learning is the problem of extracting the graphi-
cal structure of a probabilistic model, given a class of candidate structures, such as
directed acyclic graphs for Bayesian networks, or hypertrees for bounded-treewidth
Markov networks. Various algorithms have been proposed for estimating parameters
under the (possibly regularized) log-likelihood loss function. In particular, Expec-
tation Minimization (EM) (Dempster et al. 1977) is the prototypical algorithm for
estimating parameters in presence of missing values (Lauritzen 1995). A compre-
hensive treatment of the subject is given in Little and Rubin (2014).

Structure learning is arguably more challenging, since the corresponding regular-
ized risk minimization task involves combinatorial constraints capturing admissible
graphical structures. Although structure learning is tractable for tree-directed models
(Chow and Liu 1968) and their mixtures (Meila and Jaakkola 2006), the problem is
NP-hard for more expressive models, such as Bayesian networks (Chickering 1996),
Bayesian polytrees (Dasgupta 1999), and bounded-treewidthMarkov networks (Sre-
bro 2003). For this reason, structure learning is an active research topic relying on
both statistical and combinatorialmethods.Notably, (Cussens 2011;Kumar andBach
2013; Nie et al. 2014; Bartlett and Cussens 2017) use Integer Linear Programming
techniques for learning the structure of Bayesian networks or Markov networks with
bounded-treewidth. SAT and CSP techniques have also been proposed for solving
these structure learning problems (Cussens 2008; Berg et al. 2014; van Beek and
Hoffmann 2015).

Learning Preference Models The spectrum of applications that resort on the ability
to learn preferences is extremely wide, ranging from configuration softwares and
recommender systems to information retrieval and group decision-making (see e.g.
chapter “Compact Representation of Preferences” of Volume 1). It is therefore not
surprising that topic of preference learning has gained a considerable interest in
statistical and computational learning. As explained in Sect. 2, preference learning
problems can be divided into several categories, depending on the type of reference
set, the type of preference relation, the examples provided to the learner and, of
course, the class of preference models.

In label ranking (Vembu and Gärtner 2010), the problem is to associate instances
with a total order of predefined labels. With each training instance, we receive super-
vision given as a binary relation on the labels. More formally, the instance space is
givenZ = X × Y , whereX is the domain set, and Y is the space of all directed
acyclic graphs over the set of labels [k]. The goal is to learn from a training set S a
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hypothesis h : X → Y † in the available hypothesis class H that minimizes some
loss function � : H × Z → R. For total ranking tasks, Y † is the group of permu-
tations over [k], and for more general ranking tasks, Y † is a subset of Y . Several
families of label ranking problems can be solved by reduction to binary classifica-
tion (Hüllermeier et al. 2008), boosting (Dekel et al. 2003), multi-label classification
(Crammer and Singer 2003), ordinal regression (Herbrich et al. 2000), or regularized
least-square minimization (Gärtner and Vembu 2009).

In object ranking (Kamishima et al. 2010), X is a set of objects, and Y is a
space of total rankings (permutations) or partial rankings (DAGs) over X . Each
training instance is formed by a pair, or more generally a set, of objects in X , and
the supervision is given by a preference ordering on these objects. The goal is to learn
a hypothesis h : X → Y , chosen from a classH that minimizes some loss function
�. Again, various statistical learning techniques have been successfully applied for
solving tractable object ranking problems. They include, among others, boosting
methods (Freund et al. 2003; Xu and Li 2007), and SVMs (Joachims 2002; Kazawa
et al. 2005; Cao et al. 2006).

Ranking tasks are intrinsically related to preference aggregation problems.
Notably, the problem of finding a total ranking of objects minimizing a pairwise
loss function is generally NP-hard (Cohen et al. 1999; Alon 2006). The difficulty is
even more accute when the hypothesis class is a Mallows model or an exponential
family (Vembu et al. 2009; Lu and Boutilier 2014).

Learning Neural Models As mentioned in Sect. 2, neural models and Machine
Learning have a long shared history, dating back to Rosenblatt’s invention of the Per-
ceptron algorithm (Rosenblatt 1958). Neural networks were extensively studied in
the 1980s, butwithmixed empirical results. During this past decade, a combination of
algorithmic advances in Machine Learning, together with increasing computational
power and data size, has led to a breakthrough in the effectiveness of deep neural net-
works (Goodfellow et al. 2016). In particular, the families of Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) have shown impressive
performance on a variety of application domains, including computer vision (LeCun
et al. 2010; Krizhevsky et al. 2012; Pinheiro and Collobert 2014), speech recogni-
tion (Hinton et al. 2012; Graves et al. 2013), and natural language processing (Col-
lobert and Weston 2008; Cho et al. 2014; Kalchbrenner et al. 2014). In the present
book, deep neural networks are discussed in chapter “Reinforcement Learning” of
Volume 1, and chapter “Designing Algorithms for Machine Learning and Data Min-
ing” of Volume 2.

Despite the undoubled practical success of deep learning, there are many open
theoretical questions related to this fascinating subject of research. As discussed
in Sect. 5, intersections of separating hyperplanes over {0, 1}n are not efficiently
PAC learnable for the zero-one loss (Klivans and Sherstov 2009). This implies that
no efficient algorithm can be found for training neural networks, even if we allow
additional layers or effective activation functions. For other loss functions advocated
in deep learning, the corresponding optimization task remains highly non-convex,
and hence, generally intractable. So, there is a fundamental gap between the theory
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of statistical computational learning and the practical efficiency of deep learning,
achieved by gradient-based methods with backpropagation (Rumelhart et al. 1986).
Recent investigations in the theoretical analysis of deep models have attempted to
bridge this gap (Kawaguchi 2016;Bach2017;Kawaguchi et al. 2017; Shalev-Shwartz
et al. 2017; Song et al. 2017; Zhang et al. 2017), but much remains to be done before
having a comprehensive analysis of practical results.
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Reinforcement Learning

Olivier Buffet, Olivier Pietquin and Paul Weng

Abstract Reinforcement learning (RL) is a general framework for adaptive control,
which has proven to be efficient in many domains, e.g., board games, video games or
autonomous vehicles. In such problems, an agent faces a sequential decision-making
problem where, at every time step, it observes its state, performs an action, receives
a reward and moves to a new state. An RL agent learns by trial and error a good
policy (or controller) based on observations and numeric reward feedback on the
previously performed action. In this chapter, we present the basic framework of RL
and recall the two main families of approaches that have been developed to learn a
good policy. The first one, which is value-based, consists in estimating the value of
an optimal policy, value fromwhich a policy can be recovered, while the other, called
policy search, directly works in a policy space. Actor-critic methods can be seen as
a policy search technique where the policy value that is learned guides the policy
improvement. Besides, we give an overview of some extensions of the standard RL
framework, notably when risk-averse behavior needs to be taken into account or
when rewards are not available or not known.

Olivier Buffet, Olivier Pietquin and Paul Weng—Equally contributed in this chapter.

O. Buffet (B)
INRIA, Université de Lorraine, CNRS, UMR 7503 - LORIA, Nancy, France
e-mail: olivier.buffet@loria.fr

O. Pietquin
Université de Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL, Lille, France
e-mail: olivier.pietquin@univ-lille1.fr

Google Brain, Paris, France

P. Weng
Shanghai Jiao Tong University,
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China
e-mail: paul.weng@sjtu.edu.cn

© Springer Nature Switzerland AG 2020
P. Marquis et al. (eds.), A Guided Tour of Artificial Intelligence Research,
https://doi.org/10.1007/978-3-030-06164-7_12

389

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06164-7_12&domain=pdf
mailto:olivier.buffet@loria.fr
mailto:olivier.pietquin@univ-lille1.fr
mailto:paul.weng@sjtu.edu.cn
https://doi.org/10.1007/978-3-030-06164-7_12


390 O. Buffet et al.

1 Introduction

Reinforcement learning (RL) is a general framework for building autonomous agents
(physical or virtual), which are systems that make decisions without human super-
vision in order to perform a given task. Examples of such systems abound: expert
backgammon player (Tesauro 1995), dialogue systems (Singh et al. 1999), acrobatic
helicopter flight (Abbeel et al. 2010), human-level video game player (Mnih et al.
2015), go player (Silver et al. 2016) or autonomous driver (Bojarski et al. 2016). See
also chapter “Artificial Intelligence for Games” of Volume 2 and chapters “Artificial
Intelligence and Pattern Recognition, Vision, Learning” and “Robotics and Artificial
Intelligence” of Volume 3.

In all those examples, an agent faces a sequential decision-making problem,which
can be represented as an interaction loop between an agent and an environment. After
observing its current situation, the agent selects an action to perform. As a result,
the environment changes its state and provides a numeric reward feedback about the
chosen action. In RL, the agent needs to learn how to choose good actions based on
its observations and the reward feedback, without necessarily knowing the dynamics
of the environment.

In this chapter, we focus on the basic setting of RL that assumes a single learning
agent with full observability. Some work has investigated the partial observability
case (see Spaan (2012) for an overview of both the model-based and model-free
approaches). The basic setting has also been extended to situations where several
agents interact and learn simultaneously (see Busoniu et al. (2010) for a survey). RL
has also been tackled with Bayesian inference techniques, which we do not mention
here for space reasons (see Ghavamzadeh et al. (2015) for a survey).

In Sect. 2, we recall the Markov decision process model on which RL is formu-
lated and the RL framework, alongwith some of their classic solution algorithms.We
present two families of approaches that can tackle large-sized problems for which
function approximation is usually required. The first, which is value-based, is pre-
sented in Sect. 3. It consists in estimating the value function of an optimal policy. The
second, called policy search, is presented in Sect. 4. It searches for an optimal policy
directly in a policy space. In Sect. 5, we present some extensions of the standard RL
setting, namely extensions to the case of unknown rewards and risk-sensitive RL
approaches. Finally, we conclude in Sect. 6.

2 Background for RL

Before presenting the RL framework, we recall the Markov decision process (MDP)
model, on which RL is based. See also chapter “Decision under Uncertainty” of this
volume and chapter “Planning in Artificial Intelligence” of Volume 2.

Markov decision process.MDPs and theirmultiple variants (e.g., PartiallyObserv-
able MDP or POMDP) (Puterman 1994) have been proposed to represent and solve
sequential decision-making problems under uncertainty. An MDP is defined as a
tupleM = 〈S,A, T, R, γ, H〉 where S is a set of states, A is a set of actions, transi-
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tion function T (s, a, s ′) specifies the probability of reaching state s ′ after performing
action a in state s, reward function R(s, a) ∈ R yields the immediate reward after
performing action a in state s, γ ∈ [0, 1] is a discount factor and H ∈ N ∪ {∞} is the
horizon of the problem, which is the number of decisions to be made. An immediate
reward, which is a scalar number, measures the value of performing an action in a
state. In some problems, it can be randomly generated. In that case, R(s, a) is simply
the expectation of the random rewards. In this MDP formulation, the environment
is assumed to be stationary. Using such an MDP model, a system designer needs to
define the tuple M such that an optimal policy performs the task s/he wants.

Solving an MDP (i.e., planning) amounts to finding a controller, called a policy,
which specifies which action to take in every state of the environment in order to
maximize the expected discounted sum of rewards (standard decision criterion).
A policy π can be deterministic (i.e., π(s) ∈ A) or randomized (i.e., π(· | s) is a
probability distribution over A). It can also be stationary or time-dependent, which
is useful in finite-horizon or non-stationary problems.

A t-step history (also called trajectory, rollout or path) h = (s1, a1, s2, . . . , st+1) ∈
(S × A)t × S is a sequence of past states and actions. In the standard case, it is
valued by its return defined as

∑
t γ

t−1R(st , at ). As a policy induces a probability
distribution over histories, the value function vπ : S → R of a policy π is defined by:

vπ
H (s) = Eπ

[ H∑

t=1

γ t−1R(St , At ) | S1 = s

]

,

whereEπ is the expectation with respect to the distribution induced by π in theMDP,
and St and At are random variables respectively representing a state and an action
at a time step t . We will drop subscript H if there is no risk of confusion. The value
function can be computed recursively. For deterministic policy π , we have:

vπ
0 (s) = 0,

vπ
t (s) = R(s, π(s)) + γ

∑

s ′∈S
T (s, π(s), s ′)vπ

t−1(s
′).

In a given state, policies can be compared via their value functions. Interestingly,
in standard MDPs, there always exists an optimal deterministic policy whose value
function is maximum in every state. Its value function is said to be optimal.

In the infinite horizon case, when γ < 1, vπ
t is guaranteed to converge to vπ ,

which is the solution of the Bellman evaluation equations:

vπ(s) = R(s, π(s)) + γ
∑

s ′∈S
T (s, π(s), s ′)vπ (s ′). (1)

Given vπ , a better policy can be obtained with the following improvement step:

π ′(s) = argmax
a∈A

R(s, a) + γ
∑

s ′∈S
T (s, a, s ′)vπ (s ′). (2)
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The policy iteration algorithm consists in alternating between a policy evaluation
step (1) and a policy improvement step (2), which converges to the optimal value
function v∗ : S → R.

Alternatively, the optimal value function v∗
H : S → R can also be iteratively com-

puted for any horizon H by:

v∗
0(s) = 0

v∗
t (s) = max

a∈A
R(s, a) + γ

∑

s ′∈S
T (s, a, s ′)v∗

t−1(s
′). (3)

In the infinite horizon case, when γ < 1, v∗
t is guaranteed to converge to v∗, which

is the solution of the Bellman optimality equations:

v∗(s) = max
a∈A

R(s, a) + γ
∑

s ′∈S
T (s, a, s ′)v∗(s ′). (4)

In that case, (3) leads to the value iteration algorithm.
Two other related functions are useful when solving an RL problem: the action-

value function Qπ
t (s, a) (resp. the optimal action-value function Q∗

t (s, a)) specifies
the value of choosing an action a in a state s at time step t and assuming policy π

(resp. an optimal policy) is applied thereafter, i.e.,

Qx
t (s, a) = R(s, a) + γ

∑

s ′∈S
T (s, a, s ′)vx

t−1(s
′) where x ∈ {π, ∗}.

Reinforcement learning. In the MDP framework, a complete model of the envi-
ronment is assumed to be known (via the transition function) and the task to be
performed is completely described (via the reward function). The RL setting has
been proposed to tackle situations when those assumptions do not hold. An RL agent
searches for (i.e., during the learning phase) a best policy while interacting with the
unknown environment by trial and error. In RL, the standard decision criterion used
to compare policies is the same as in the MDP setting. Although the reward function
is supposed to be unknown, the system designer has to specify it.

In RL, value and action-value functions have to be estimated. For vπ of a given
policy π , this can be done with the standard TD(0) evaluation algorithm, where the
following update is performed after applying π in state s yielding reward r and
moving to new state s ′:

vπ
t (s) = vπ

t−1(s) − αt (s)
(
vπ
t−1(s) − (

r + vπ
t−1(s

′)
))

, (5)

where αt (s) ∈ [0, 1] is a learning rate. For Qπ , the update is as follows, after the
agent executed action a in state s, received r , moved to new state s ′ and executed
action a′ (chosen by π ):
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Qπ
t (s, a) = Qπ

t−1(s, a) − αt (s, a)
(
Qπ

t−1(s, a) − (
r + γ Qπ

t−1(s
′, a′)

))
, (6)

where αt (s, a) ∈ [0, 1] is a learning rate. This update leads to the SARSA algorithm
(named after the variables s, a, r, s ′, a′). In the same way that the policy iteration
algorithm alternates between an evaluation step and a policy improvement step, one
can use the SARSA evaluation method and combine it with a policy improvement
step. In practice, we do not wait for the SARSA evaluation update rule to converge to
the actual value of the current policy to make a policy improvement step. We rather
continuously behave according to the current estimate of the Q-function to generate
a new transition. One common choice is to use the current estimate in a softmax
(Boltzmann) function of temperature τ and behave according to a randomized policy:

πt (a | s) = eQθt (s,a)/τ

∑
b e

Qθt (s,b)/τ
.

Notice that we chose to use the Bellman evaluation equations to estimate the
targets. However we could also use the Bellman optimality equations in the case
of the Q-function and replace r + γ Q(s ′, a′) by r + maxb Q(s ′, b). Yet this only
holds if we compute the value Q∗ of the optimal policy π∗. This gives rise to the
Q-learning update rule, which directly computes the value of the optimal policy. It
is called an off-policy algorithm (whereas SARSA is on-policy) because it computes
the value function of another policy than the one that selects the actions and generates
the transitions used for the update. The following update is performed after the agent
executed action a (e.g., chosen according to the softmax rule) in state s, received r
and moved to new state s ′:

Q∗
t (s, a) = Q∗

t−1(s, a) − αt (s, a)
(
Q∗

t−1(s, a) − (r + γ max
a′ Q∗

t−1(s
′, a′))

)
. (7)

Updates (5), (6) and (7) can be proved to converge if the learning rates satisfy
standard stochastic approximation conditions (i.e.,

∑
t αt = ∞ and

∑
t α

2
t < ∞).

Besides, for (6), temperature τ would also need to converge to 0 while ensuring
sufficient exploration in order for SARSA to converge to the optimal Q-function. In
practice, αt (s, a) is often chosen constant, which would also account for the case
where the environment is non-stationary.

Those two general framework (MDP and RL) have been successfully applied
in many different domains. For instance, MDPs or their variants have been used in
finance (Bäuerle andRieder 2011) or logistics (Zhao et al. 2010). RL has been applied
to soccer (Bai et al. 2013) or power systems (Yu and Zhang 2013), to cite a few. To
tackle real-life large-sized problems, MDP and RL have to be completed with other
techniques, such as compact representations (Boutilier et al. 2000; Guestrin et al.
2004; van Otterlo 2009) or function approximation (de Farias and Van Roy 2003;
Geist and Pietquin 2011; Mnih et al. 2015).
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3 Value-Based Methods with Function Approximation

In many cases, the state-action space is too large so as to be able to represent exactly
the value functions vπ or the action-value function Qπ of a policy π . For this rea-
son, function approximation for RL has been studied for a long time, starting with
the seminal work of Bellman and Dreyfus (1959). In this framework, the functions
are parameterized by a vector of d parameters θ = [θ j ]dj=1, with θ ∈ Θ ⊂ R

d (we
will always consider column vectors) and the algorithms will aim at learning the
parameters from data provided in the shape of transitions {st , at , s ′

t , rt }Nt=1 where s
′
t

is the successor state of st drawn from T (st , at , ·). We will denote the parameterized
versions of the functions as vθ and Qθ . Popular approximation schemes are linear
function approximation and neural networks. The former gave birth to a large liter-
ature in the theoretical domain as it allows studying convergence rates and bounds
(although it remains non-trivial). The latter, although already used in the 90s (Tesauro
1995), has known a recent growth in interest following the Deep Learning successes
in supervised learning.

The case of neural networks will be addressed in Sect. 3.4 but we will start
with linear function approximation. In this particular case, a set of basis functions
φ(·) = [φ j (·)]dj=1 has to be defined by the practitioner (or maybe learned through
unsupervised learning) so that the value functions can be approximated by:

vθ (s) =
∑

j

θ jφ j (s) = θᵀφ(s) or Qθ (s, a) =
∑

j

θ jφ j (s, a) = θᵀφ(s, a).

The vector space defined by the span of φ is denoted Φ.
Notice that the exact case in which the different values of the value functions can

be stored in a table (tabular case) is a particular case of linear function approximation.

Indeed, if we consider that the state space is finite and small
(
s = {sk}|S|

k=1 ∈ S
)
, then

the value function can be represented in a table of |S| values {vk | vk = v(sk)}|S|
k=1

where |S| is the number of states. This is equivalent to defining a vector of |S|
parameters v = [vk]|S|

k=1 and a vector of |S| basis functions δ(s) = [δk(s)]|S|
k=1 where

δk(s) = 1 if s = sk and 0 otherwise. The value function can thus be written v(s) =∑
k vkδk(s) = vᵀδ(s).

3.1 Stochastic Gradient Descent Methods

3.1.1 Bootstrapped Methods

If one wanted to cast the Reinforcement Learning problem into a supervised learn-
ing problem (see chapter “Statistical Computational Learning” of this Volume and
chapter “Designing Algorithms for Machine Learning and Data Mining” of Volume
2), one could want to fit the parameters to the value function directly. For instance, to
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evaluate the value of a particular policy π , one would solve the following regression
problem (for some �p-norm and distribution μ over states):

θ∗ = argmin
θ

‖vπ
θ − vπ‖p,μ = argmin

θ

‖vπ
θ − vπ‖p

p,μ

where ‖ · ‖p,μ denotes the weighted �p-norm defined by
(
Eμ‖ · ‖p

)1/p
, Eμ is the

expectation with respect to μ. Yet, as said before, we usually cannot compute these
values everywhere and we usually only have access to some transition samples
{st , at , s ′

t , rt }Nt=1 generated according to distribution μ. So we could imagine casting
the RL problem into the following minimization problem:

θ∗ = argmin
θ

1

N

N∑

t=1

|vπ
θ (st ) − vπ(st )|p.

This cost function can be minimized by stochastic gradient descent (we will consider
an �2-norm):

θ t = θ t−1 − α

2
∇θ t−1

(
vπ

θ t−1
(st ) − vπ(st )

)2

= θ t−1 − α∇θ t−1v
π
θ t−1

(st )
(
vπ

θ t−1
(st ) − vπ(st )

)
.

Of course, it is not possible to apply this update rule as it is since we do not
know the actual value vπ(st ) of the states we observe in the transitions. But, from
the Bellman evaluation equations (1), we can obtain an estimate by replacing vπ(st )
by rt + γ vπ

θ t−1
(st+1). Notice that this replacement uses bootstrapping as we use the

current estimate of the target to compute the gradient.We finally obtain the following
update rule for evaluating the current policy π :

θ t = θ t−1 − α∇θ t−1v
π
θ t−1

(st )
(
vπ

θ t−1
(st ) − (

rt + γ vπ
θ t−1

(s ′
t )

))
.

In the case of linear function approximation, i.e., vπ
θ (s) = θᵀφ(s), we obtain:

θ t = θ t−1 − αφ(st )
(
θ

ᵀ
t−1φ(st ) − (

rt + γ θ
ᵀ
t−1φ(s ′

t )
))

.

Everything can be written again in the case of the action-value function, which leads
to the SARSAupdate rulewith linear function approximation Qπ

θ (s, a) = θᵀφ(s, a):

θ t = θ t−1 − αφ(st , at )
(
θ

ᵀ
t−1φ(st , at ) − (

rt + γ θ
ᵀ
t−1φ(s ′

t , a
′
t )

))
.

Changing the target as in the Q-learning update, we obtain for Q∗
θ (s, a) = θᵀφ(s, a):

θ t = θ t−1 − αφ(st , at )

(

θ
ᵀ
t−1φ(st , at ) −

(

rt + γ max
b

θ
ᵀ
t−1φ(s ′

t , b)

))

.
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3.1.2 Residual Methods

Instead of using the Bellman equations to provide an estimate of the target after
deriving the update rule, one could use it directly to define the loss function to be
optimized. We would then obtain the following minimization problem:

θ∗ = argmin
θ

1

N

N∑

t=1

(
vπ

θ (st ) − (
rt + γ vπ

θ (s ′
t )

))2
.

This can also be seen as theminimization of theBellman residual. Indeed theBellman
evaluation equations (vπ(s) = Eπ [R(s, A) + γ vπ(S′)]) can be rewritten as vπ(s) −
Eπ [R(s, A) + γ vπ(S′)] = 0. So by minimizing the quantity vπ(s) − Eπ [R(s, A) +
γ vπ(S′)], called the Bellman residual, we reach the objective of evaluating vπ(s).
Here, we take the observed quantity r + γ vπ(s ′) as an unbiased estimate of its
expectation. The Bellman residual can also be minimized by stochastic gradient
descent as proposed by Baird et al. (1995) and the update rule becomes:

θ t = θ t−1 − α∇θ t−1

(
vπ

θ t−1
(st ) − (

rt + γ vπ
θ t−1

(s ′
t )

)) (
vπ

θ t−1
(st ) − (

rt + γ vπ
θ t−1

(s ′
t )

))
.

In the case of a linear approximation, we obtain:

θ t = θ t−1 − α
(
φ(st ) − γφ(s ′

t )
) (

θ
ᵀ
t−1φ(st ) − (

rt + γ θ
ᵀ
t−1φ(s ′

t )
))

.

This approach, called R-SGD (for residual stochastic gradient descent), has a major
flaw as it computes a biased estimate of the value-function. Indeed, vπ

θ (st ) and vπ
θ (s ′

t )

are correlated as s ′
t is the result of having taken action at chosen by π(st ) (Werbos

1990). To address this problem, Baird et al. (1995) suggest to draw two different next
states s ′

t and s ′′
t starting from the same state st and to update as follows:

θ t = θ t−1 − α∇θ t−1

(
vπ

θ t−1
(st ) − (

rt + γ vπ
θ t−1

(s ′
t )

)) (
vπ

θ t−1
(st ) − (

rt + γ vπ
θ t−1

(s ′′
t )

))
.

Of course, this requires that a generative model or a simulator is available and that
transitions can be generated on demand.

The same discussions as in previous section can apply to learning an action-value
function. For instance, one could want to solve the following optimization problem
to learn the optimal action-value function:

θ∗ = argmin
θ

1

N

N∑

t=1

(

Q∗
θ (st , at ) − (

rt + γ max
b

Q∗
θ (s

′
t , b)

)
)2

. (8)

Yet this optimal residual cannot directly be minimized in the case of the Q-
function as the max operator is not differentiable. Notice that a sub-gradient method
can still be used.
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3.2 Least-Squares Methods

Gradient descent was used to minimize the empirical norm of either the bootstrap-
ping error or the Bellman residual in the previous section. As the empirical norm is
generally using the �2-norm and that linear function approximation is often assumed,
another approach could be to find the least squares solution to these problems. Indeed,
least squares is a powerful approach as it is a second-order type of method and offers
a closed-form solution to the optimization problem. Although there is nomethod that
explicitly applies least squares to the two aforementioned empirical errors, one can
see the fixed-point Kalman Filter (FPKF) algorithm (Choi and Van Roy 2006) as a
recursive least squaresmethod applied to the bootstrapping errorminimization. Also,
the Gaussian Process Temporal Difference (GPTD) (Engel et al. 2005) or the Kalman
Temporal Difference (KTD) (Geist and Pietquin 2010a) algorithms can be seen as
recursive least squares methods applied to Bellman residual minimization. We invite
the reader to refer to Geist and Pietquin (2013) for further discussion on this.

Yet, the most popular method inspired by least squares optimization does apply
to a different cost function. The Least-Squares Temporal Difference (LSTD) algo-
rithm (Bradtke and Barto 1996) aims at minimizing:

θ∗ = argmin
θ

1

N

N∑

i=1

(
vπ

θ (si ) − vπ
ω∗(si )

)2
,

whereω∗ = argminω
1
N

∑N
i=1

(
vπ

ω (si ) − (
ri + γ vπ

θ (s ′
i )

))2
can be understood as a pro-

jection on the space Φ spanned by the family of functions φ j ’s used to approximate
vπ . It can be seen as the composition of the Bellman operator and of a projection
operator. This cost function is the so-called projected Bellman residual. When using
linear function approximation, this optimization problem admits a closed-form solu-
tion:

θ∗ =
[

N∑

i=1

φ(si )
[
φ(si ) − γφ(s ′

i )
]ᵀ

]−1 N∑

i=1

φ(si )ri .

Note that the projected Bellman residual can also be optimized with a stochastic
gradient approach (Sutton et al. 2009).

Extensions to non-linear function approximation exist and rely on the kernel
trick (Xu et al. 2007) or on statistical linearization (Geist and Pietquin 2010b). LSTD
can be used to learn an approximate Q-function as well and can be combined with
policy improvement steps into an iterative algorithm, similar to policy iteration, to
learn an optimal policy from a dataset of sampled transitions. This gives rise to
the so-called Least Squares Policy Iteration (LSPI) algorithm (Lagoudakis and Parr
2003), which is one of the most popular batch-RL algorithm.
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3.3 Iterative Projected Fixed-Point Methods

As we have seen earlier, dynamic programming offers a set of algorithms to compute
value functions of a policy in the case the dynamics of the MDP is known. One of
these algorithms, Value Iteration, relies on the fact that the Bellman equations define
contraction operators when γ < 1. For instance, if we define the Bellman evalua-
tion operator Bπ such that Bπ Q(s, a) = R(s, a) + γEπ

[
Q(S′, A′) | S = s, A = a

]
,

one can show that iteratively applying Bπ to a random initialization of Q con-
verges to Qπ , because Bπ defines a contraction for which the only fixed point is
Qπ (Puterman 1994). The Bellman optimality operator B∗, defined as B∗Q(s, a) =
R(s, a) + γE

[
maxb Q(S′, b) | S = s, A = a

]
, is also a contraction. The same holds

for the sampled versions of the Bellman operators. For instance, let us define the
sampled evaluation operator B̂∗ such that B̂∗Q(s, a) = r + γ maxb Q(s ′, b), where
the expectation has been removed (the sampled operator applies to a single transi-
tion). Unfortunately, there is no guarantee that this remains a contraction when the
value functions are approximated. Indeed when applying a Bellman operator to an
approximate Qθ , the result might not lie in the space spanned by θ . One has thus
to project back on the space Φ spanned by φ using a projection operator ΠΦ , i.e.,
ΠΦ f = argminθ‖θᵀφ − f ‖2. If the composition of ΠΦ and B̂π (or B̂∗) is still a
contraction, then recursively applying this composition to any initialization of θ still
converges to a good approximate Qπ

θ (or Q∗
θ ). Unfortunately, the exact projection is

often impossible to get as it is a regression problem. For instance, one would need to
use least squares methods or stochastic gradient descent to learn the best projection
from samples. Therefore the projection operator itself is approximated andwill result
in some Π̂Φ operator. So the iterative projected fixed-point process is defined as:

Qθ t = Π̂Φ B̂π Qθ t−1 or Qθ t = Π̂Φ B̂∗Qθ t−1 .

In practice, the algorithm consists in collecting transitions (e.g., {si , ai , ri , s ′
i }Ni=1),

initialize θ0 to some random value, compute a regression database by apply-
ing the chosen sampled Bellman operator (e.g., {B̂∗Qθ0(si , ai ) = ri + γ maxb Qθ0

(si , b)}Ni=1), apply a regression algorithm to find the next value of parameters (e.g.,

Qθ1 = Π̂Φ B̂∗Qθ0 = argminθ
1
N

∑N
i=1

(
Qθ (si , ai ) − B̂∗Qθ0(si , ai )

)2
) and iterate.

This method finds its roots in early papers on dynamic programming (Samuel
1959;Bellmanet al. 1963) and convergenceproperties havebeen analyzedby Gordon
(1995). The most popular implementations use regression trees (Ernst et al. 2005) or
neural networks (Riedmiller 2005) as regression algorithms and have been applied
to many concrete problems such as robotics (Antos et al. 2008).

3.4 Value-Based Deep Reinforcement Learning

Although the use of Artificial Neural Networks (ANN, see chapter “Designing
Algorithms for Machine Learning and Data Mining” of Volume 2) in RL is not
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new (Tesauro 1995), there has been only a few successful attempts to combine RL
and ANN in the past. Most notably, before the recent advances in Deep Learn-
ing (DL) (LeCun et al. 2015), one can identify the work by Riedmiller (2005) as
the biggest success of ANN as a function approximation framework for RL. There
are many reasons for that, which are inherently due to the way ANN learns and
assumptions that have to be made for both gradient descent and most value-based
RL algorithms to converge. Especially, Deep ANNs (DNN) require a tremendous
amount of data as they contain a lot of parameters to learn (typically hundreds of
thousands to millions). To alleviate this issue, Tesauro (1995) trained his network to
play backgammon through a self-play procedure. The model learned at iteration t
plays again itself to generate data for training the model at iteration t + 1. It could
thus reach super-human performance at the game of backgammon using RL. This
very simple and powerful idea was reused in Silver et al. (2016) to build the first arti-
ficial Go player that consistently defeated a human Gomaster. Yet, this method relies
on the assumption that games can easily be generated on demand (backgammon and
Go rules are simple enough even though the game is very complex). In more com-
plex settings, the agent faces an environment for which it does not have access to the
dynamics, maybe it cannot start in random states and has to follow trajectories, and it
can only get transitions through actual interactions. This causes two major issues for
learning with DNNs (in addition to intensive usage of data). First, gradient descent
for training DNNs assume the data to be independent and identically distributed
(i.i.d. assumption). Second, the distribution of the data should remain constant over
time. Both these assumptions are normally violated by RL since transitions used to
train the algorithms are part of trajectories (so next states are functions of previous
states and actions, violating the i.i.d. assumption) and because trajectories are gen-
erated by a policy extracted from the current estimate of the value function (learning
the value function influences the distribution of the data generated in the future). In
addition, we also have seen in Sect. 3.1.2 that Bellman residual minimization suffers
from the correlation between estimates of value functions of successive states. All
these problems make RL unstable (Gordon 1995).

To alleviate these issues, Mnih et al. (2015) used two tricks that allowed to reach
super-human performances at playingAtari 2600 games frompixels. First, theymade
use of a biologically inspired mechanism, called experience replay (Lin 1992), that
consists in storing transitions in a Replay Buffer D before using them for learn-
ing. Instead of sequentially using these transitions, they are shuffled in the buffer
and randomly sampled for training the network (which helps breaking correlation
between successive samples). The buffer is filled on a first-in-first-out basis so that
the distribution of the transitions is nearly stationary (transitions generated by old
policies are discarded first). Second, the algorithm is based on asynchronous updates
of the network used for generating the trajectories and a slow learning network. The
slow learning network, called the target network, will be updated less often than
the network that actually learns from the transitions stored in the replay buffer (the
Q-network). This way, the distribution of transitions in the replay buffer remains
constant for a longer time from the fast learning network point of view. In addition,
the update rule of the Q-network is built such that correlation between estimates of
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Q(s, a) and Q(s ′, a′) is reduced. Indeed, the resulting algorithm (DeepQ-Network or
DQN) is inspired by the gradient-descent update on the optimal Bellman residual (8).
But instead of using the double-sampling trickmentioned in Sect. 3.1.2, two different
estimates of the Q-function are used. One according to the target network parameters
(θ−) and the other according to Q-network parameters (θ). The parameters of the
Q-network are thus computed as:

θ∗ = argmin
θ

∑

(st ,at ,s ′
t ,rt )∈D

[(

rt + γ max
b

Qθ−(s ′
t , b)

)

− Qθ (st , at )

]2

,

With this approach, the problem of non-differentiability of the max operator is also
solved as the gradient is computed w.r.t. θ and not θ−. Once in a while, the tar-
get network parameters are updated with the Q-network parameters (θ− ← θ∗) and
new trajectories are generated according to the policy extracted from Qθ− to fill
again the replay buffer and train again the Q-network. The target network policy is
actually a softmax policy based on Qθ− (see Sect. 3.1.1). Many improvements have
been brought to that method since its publication, such as a prioritized replay mecha-
nism (Schaul et al. 2016) that allows to samplemore often from the replay buffer tran-
sitions forwhich theBellman residual is larger, or theDouble-DQN trick (VanHasselt
et al. 2016) used to provide more stable estimates of the max operator.

4 Policy-Search Approaches

Value-based approaches to RL rely on approximating the optimal value function V ∗
(typically usingBellman’s optimality principle), and then acting greedilywith respect
to this function. Policy Search algorithms directly optimize control policies, which
typically depend on a parameter vector θ ∈ Θ (and are thus noted πθ ), and whose
general shape is user-defined.1 Possible representations include linear policies, (deep)
neural networks, radial basis function networks, and dynamic movement primitives
(in robotics). Using such approaches avoids issues with discontinuous value func-
tions, and makes it possible, in some cases, to deal with high-dimensional (possibly
continuous) state and action spaces. They also allow providing expert knowledge
through the shaping of the controller, or through example trajectories—to initialize
the parameters.

In the following, we mainly distinguish between model-free and model-based
algorithms—i.e., depending on whether a model is being learned or not.

1This section is mainly inspired by Deisenroth et al. (2011), although that survey focuses on a
robotic framework.
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4.1 Model-Free Policy Search

In model-free policy search, sampled trajectories are used directly to update the
policy parameters. The discussion will follow the three main steps followed by the
algorithms: (i) how they explore the space of policies, (ii) how they evaluate policies,
and (iii) how policies are updated.

4.1.1 Policy Exploration

Exploring the space of policies implies either sampling the parameter vector the
policy depends on, or perturbing the action choice of the policy. Often, the sampling
of parameters takes place at the beginning of each episode (in episodic scenarios),
and action perturbations are different at each time step, but other options are possi-
ble. Stochastic policies can be seen as naturally performing a step-based exploration
in action space. Otherwise, the exploration strategy can be modeled as an upper-
level policy πω(θ)—sampling θ according to a probability distribution governed by
parameter vector ω—, while the actual policy πθ(a|s) is refered to as a lower-level
policy. In this setting, the policy search aims at finding the parameter vector ω that
maximizes the expected return given this vector. If πω(θ) is a Gaussian distribu-
tion (common in robotics), then its covariance matrix can be diagonal—typically
in step-based exploration—or not—which leads to more stability, but requires more
samples—, meaning that the various parameters in θ can be treated in a correlated
manner or not.

4.1.2 Policy Evaluation

Policy evaluation can also be step-based or episode-based. Step-based approaches
evaluate each state-action pair. They have low variance and allow crediting several
parameter vectors. They can rely on Q-value estimates, which can be biased and
prone to approximation errors, orMonte-Carlo estimates, which can suffer from high
variance. Episode-based approaches evaluate parameters using complete trajectories.
They allowmore performance criteria than step-based approaches—e.g., minimizing
the final distance to the target. They also allow for more sophisticated exploration
strategies, but suffer all the more from noisy estimates and high variance that the
dynamics are more stochastic.

4.1.3 Policy Update

Finally, the policy can be updated in rather different manners. We will discuss
approaches relying on gradient ascents, inference-based optimization, information-
theoretic ideas, stochastic optimization and path-integral optimal control.
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PolicyGradient (PG) algorithmsfirst require estimating thegradient. Some (episode-
based) PG algorithms perform this estimate using a finite difference (FD) method
by perturbing the parameter vector. Other algorithms instead exploit the Likelihood
ratio trick, which allows estimating the gradient from a single trajectory, but requires
a stochastic policy. These can be step-based as REINFORCE (Williams 1992) or
G(PO)MDP (Baxter and Bartlett 2001; Baxter et al. 2001), or episode-based as
PEPG (Sehnke et al. 2010).

Policy gradients also include natural gradient algorithms (NPG), i.e., algorithms
that try to limit the distance between distributions Pθ (h) and Pθ+δθ (h) using the
KL divergence (estimated through the Fisher information matrix (FIM)). In step-
based NPGs (Bagnell and Schneider 2003; Peters and Schaal 2008b), using appro-
priate (“compatible”) function approximation removes the need to estimate the FIM,
but requires estimating the value function, which can be difficult. On the contrary,
episodic Natural Actor-Critic (eNAC) (Peters and Schaal 2008a) uses complete
episodes, and thus only estimates v(s1). NAC (Peters and Schaal 2008b) addresses
infinite horizon problems, the lack of episodes leading to the use of Temporal Dif-
ference methods to estimate values.

Policy gradient usually applies to randomized policies. Recent work (Silver et al.
2014; Lillicrap et al. 2016) has adapted it to deterministic policies with a continuous
action space, which can potentially facilitate the gradient estimation. Building on
DQN, actor-criticmethods have been extended to asynchronous updates with parallel
actors and neural networks as approximators (Mnih et al. 2016).

Inference-based algorithms avoid the need to set learning rates. They consider that
(i) the return R is an observed binary variable (1meaning success),2 (ii) the trajectory
h is a latent variable, and (iii) one looks for the parameter vector that maximizes the
probability of getting a return of 1. Then, an Expectation-Maximization algorithm
can address this Bayesian inference problem. Variational inference can be used in the
E-step of EM (Neumann 2011), but most approaches rely on Monte-Carlo estimates
instead, despite the fact that they performmaximum likelihood estimates over several
modes of the reward function (and thus do not distinguish them). These can be
episode-based algorithms as RWR (Peters and Schaal 2007) (uses a linear upper-
level policy) or CrKR (Kober et al. 2010) (a kernelized version of RWR, i.e., which
does not need to specify feature vectors, but cannot model correlations). These can
also be step-based algorithms as PoWER (Kober and Peters 2010), which allows a
more structured exploration strategy, and gives more influence to data points with
less variance.

Information-theoretic approaches (see chapter “Theoretical Computer Science:
Computational Complexity” of Volume 3) try to limit changes in trajectory dis-
tributions between two consecutive time steps, which could correspond to degrada-
tions rather than improvements in the policy. Natural PGs have the same objec-
tive, but need a user-defined learning rate. Instead, REPS (Peters et al. 2010)
combines advantages from NPG (smooth learning) and EM-based algorithms (no

2Transformations can bring us in this setting.
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learning-rate). Episode-based REPS (Daniel et al. 2012) learns a higher-level policy
while bounding parameter changes by solving a constrained optimization problem.
Variants are able to adapt to multiple contexts or learn multiple solutions. Step-
based REPS (Peters et al. 2010) solves an infinite horizon problem (rather than an
episodic one), optimizing the average reward per time step. It requires enforcing the
stationarity of state features, and thus solving another constrained optimization prob-
lem.A related recentmethod,TRPO(Schulman et al. 2015),which notably constrains
the changes of π(· | s) instead of those of state-action distributions, proves to work
well in practice.

Stochastic Optimization relies on black-box optimizers, and thus can easily be
used for episode-based formulations, i.e., working with an upper-level policy πω(θ).
Typical examples are CEM (de Boer et al. 2005; Szita and Lörincz 2006), CMA-
ES (Hansen et al. 2003; Heidrich-Meisner and Igel 2009), and NES (Wierstra et al.
2014), three evolutionary algorithms that maintain a parametric probability distribu-
tion (often Gaussian) πω(θ) over the parameter vector. They sample a population of
candidates, evaluate them, and use the best ones (weighted) to update the distribu-
tion. Many rollouts may be required for evaluation, as examplified with the game of
Tetris (Szita and Lörincz 2006).

Path Integral (PI) approaches were introduced for optimal control, i.e., to handle
non-linear continuous-time systems. They handle squared control costs and arbi-
trary state-dependent rewards. Policy Improvement with PIs (PI2) applies PI theory
to optimize Dynamic Movement Primitives (DMPs), i.e., representations of move-
ments with parameterized differential equations, using Monte-Carlo rollouts instead
of dynamic programming.

4.2 Model-Based Policy Search

Typical model-based policy-search approaches repeatedly (i) sample real-world tra-
jectories using a fixed policy; (ii) learn a forward model of the dynamics based on
these samples (and previous ones); (iii) optimize this policy using the learned model
(generally as a simulator). As can be noted, this process does not explicitly handle
the exploration-exploitation trade-off as policies are not chosen so as to improve
the model where this could be appropriate. We now discuss three important dimen-
sions of these approaches: how to learn the model, how to make reliable long-term
predictions, and how to perform the policy updates.

Model learning often uses probabilistic models. They first allow accounting for
uncertainty due to sparse data (at least in some areas) or an inappropriate model
class. In robotics, where action and state spaces are continuous, non-parametric
probabilistic methods can be used such as Linearly Weighted Bayesian Regression
(LWBR) of Gaussian Processes (GPs), which may suffer from increasing time and
memory requirements. But probabilistic models can also be employed to represent
stochastic dynamics. An example is that of propositional problems, which are often
modeled as Factored MDPs (Boutilier et al. 1995), where the dynamics and rewards
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are DBNs whose structure is a priori unknown. A variety of approaches have been
proposed, which rely on different representations (such as rule sets, decision trees,
Stochastic STRIPS, or PPDDL) (Degris et al. 2006; Pasula et al. 2007; Walsh et al.
2009; Lesner and Zanuttini 2011). See chapter “Planning in Artificial Intelligence”
of Volume 2.

Long-termpredictions are usually required to optimize the policy given the current
forwardmodel.While the real world is its own best (unbiased) model, using a learned
model has the benefit of allowing to control these predictions. A first approach, sim-
ilar to paired statistical tests, is to always use the same random initial states and the
same sequences of random numbers when evaluating different policies. It has been
introduced for policy-search in the PEGASUS framework (Ng and Jordan 2000) and
drastically reduces the sampling variance. Another approach is, when feasible, to
compute a probability distribution over trajectories using deterministic approxima-
tions such as linearization (Anderson and Moore 2005), sigma-point methods (e.g.,
Julier and Uhlmann 2004) or moment-matching.

Policy updates can rely on gradient-free optimization (e.g., Nelder-Mead method
or hill-climbing) (Bagnell and Schneider 2001), on sampling-based gradients (e.g.,
finite difference methods), as in model-free approaches, although they require many
samples, or on analytical gradients (Deisenroth and Rasmussen 2011), which require
the model as well as the policy to be differentiable, scale favorably with the number
of parameters, but are computationally involved.

5 Extensions: Unknown Rewards and Risk-sensitive
Criteria

In the previous sections, we recalled different techniques for solving RL problems,
with the assumption that policies are compared with the expected cumulated rewards
as a decision criterion. However, rewards may not be scalar, known or numeric,
and the standard criterion based on expectation may not always be suitable. For
instance, multiobjective RL has been proposed to tackle situations where an action
is evaluated over several dimensions (e.g., duration, length, power consumption for
a navigation problem). The interested reader may refer to Roijers et al. (2013) for
a survey and refer to chapter “Multicriteria Decision Making” of this volume for
an introduction to multicriteria decision-making. For space reasons, we focus below
only on three extensions: reward learning (Sect. 5.1), preference-based RL (Sect. 5.2)
and risk sensitive RL (Sect. 5.3).

5.1 Reward Learning

From the system designer’s point of view, defining the reward function can be viewed
as programming the desired behavior in an autonomous agent. A good choice of
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reward values may accelerate learning (Matignon et al. 2006) while an incorrect
choicemay lead to unexpected and unwanted behaviors (Randløv andAlstrøm1998).
Thus, designing this function is a hard task (e.g., robotics (Argall et al. 2009), natural
language parsers (Neu and Szepesvari 2009) or dialogue systems (El Asri et al.
2012)).

When the reward signal is not known, a natural approach is to learn from demon-
stration. Indeed, in some domains (e.g., autonomous driving), it is much simpler for
an expert to demonstrate how to perform a task rather than specify a reward function.
Such an approach has been called apprenticeship learning (Abbeel and Ng 2004),
learning from demonstration (Argall et al. 2009), behavior cloning or imitation learn-
ing (Hussein et al. 2017). Two families of techniques have been developed to solve
such problems. The first group tries to directly learn a good policy from (near) opti-
mal demonstrations (Argall et al. 2009; Pomerleau 1989) while the second, called
inverse RL (IRL) (Ng and Russell 2000; Russell 1998), tries to first recover a reward
function that explains the demonstrations and then computes an optimal policy from
it. The direct methods based on supervised learning usually suffer when the reward
function is sparse and even more when dynamics is also perturbed (Piot et al. 2013).

As the reward function is generally considered to be a more compact, robust and
transferable representation of a task than a policy (Abbeel and Ng 2004; Russell
1998), we only discuss reward learning approaches here.

As for many inverse problems, IRL is ill-posed: any constant function is a trivial
solution that makes all policies equivalent and therefore optimal. Various solutions
were proposed to tackle this degeneracy issue, differing on whether a probabilistic
model is assumed or not on the generation of the observation. When the state and/or
action spaces are large, the reward function is generally assumed to take a parametric
form: R(s, a) = fθ (s, a) for fθ a parametric function of θ . One important case, called
linear features, is when f is linear in θ , i.e., R(s, a) = ∑

i θiφi (s, a) where φi are
basis functions.

No generative model assumption. As underlined by Neu and Szepesvari (2009),
many IRL methods can be viewed as finding the reward function R that minimizes a
dissimilaritymeasure between the policyπ∗

R optimal for R and the expert demonstra-
tions. Most work assume a linear-feature reward function, with some exceptions that
we mention below. Abbeel and Ng (2004) introduced the important idea of expected
feature matching, which says that the expected features of π∗

R and those estimated
from the demonstrations should be close. Thus, they notably proposed the projection
method, which amounts to minimizing the Euclidean distance between those two
expected features. Neu and Szepesvari (2007) proposed a natural gradient method
for minimizing this objective function. Syed and Schapire (2008) reformulated the
projection method problem as a zero-sum two-player game, with the nice property
that the learned policymay perform better than the demonstrated one. Abbeel and Ng
(2004)’s work was extended to the partially observable case (Choi and Kim 2011).

Besides, (Ratliff et al., 2006) proposed a max-margin approach enforcing that the
found solution is better than any other one by at least a margin. Interestingly, the
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method can learn frommultipleMDPs. It was later extended to the non-linear feature
case (Ratliff et al. 2007).

Another technique (Klein et al. 2012; Piot et al. 2014) consists in learning a
classifier based on a linearly parametrized score function to predict the best action
for a state given the set of demonstrations. The learned score function can then be
interpreted as a value function and can be used to recover a reward function.

Traditional IRL methods learn from (near) optimal demonstration. More recent
approaches extend IRL to learn from other types of observations, e.g., a set of (non-
necessarily optimal) demonstrations rated by an expert (ElAsri et al. 2016;Burchfield
et al. 2016), bad demonstrations (Sebag et al. 2016) or pairwise comparisons (da Silva
et al. 2006; Wirth and Neumann 2015). In the latter case, the interactive setting is
investigated with a reliable expert (Chernova and Veloso 2009) or unreliable one
(Weng et al. 2013).

Generative model assumption. Another way to tackle the degeneracy issue is to
assume a probabilistic model on how observations are generated. Here, most work
assumes that the expert policy is described byBoltzmann distributions, where higher-
valued actions are more probable. Two notable exceptions are the work of Grollman
andBillard (2011),which shows how to learn from failed demonstrations usingGaus-
sian mixture models, and the Bayesian approach of Ramachandran and Amir (2007),
with the assumption that state-action pairs in demonstrations follow such a Boltz-
mann distribution. This latter approach has been extended to Boltzmann distribution-
based expert policy and for multi-task learning (Dimitrakakis and Rothkopf 2011),
and to account for multiple reward functions (Choi and Kim 2012). This Bayesian
approach has been investigated to interactive settings where the agent can query for
an optimal demonstration in a chosen state (Lopes et al. 2009) or for a pairwise
comparison (Wilson et al. 2012; Akrour et al. 2013, 2014).

Without assuming a prior, Babes-Vroman et al. (2011) proposed to recover the
expert reward function by maximum likelihood. The approach is able to handle the
possibility of multiple intentions in the demonstrations. Furthermore, Nguyen et al.
(2015) suggested an Expectation-Maximization approach to learn from demonstra-
tion induced by locally consistent reward functions.

To tackle the degeneracy issue, Ziebart et al. (2010) argued for the use of the
maximum entropy principle, which states that among all solutions that fit the obser-
vations, the least informative one (i.e., maximum entropy) should be chosen, with
the assumption that a reward function induces a Boltzmann probability distribution
over trajectories. When the transition function is not known, Boularias et al. (2011)
extended this approach by proposing to minimize the relative entropy between the
probability distribution (over trajectories) induced by a policy and a baseline distribu-
tion under an expected feature matching constraint.Wulfmeier et al. (2015) extended
this approach to the case where a deep neural network is used for the representation
of the reward function, while Bogert et al. (2016) took into account non-observable
variables.
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5.2 Preference-Based Approaches

Another line of work redefines policy optimality directly based on pairwise compar-
isons of histories without assuming the existence of a scalar numeric reward function.
This notably accounts for situations where reward values and probabilities are not
commensurable. In this context, different decision criteria e.g., quantile (Gilbert and
Weng 2016) may be used. One popular decision model (Yue et al. 2012; Fürnkranz
et al. 2012) is defined as follows: a policy π is preferred to another policy π ′ if

P[hπ � hπ ′ ] ≥ P[hπ ′ � hπ ], (9)

where� is a preorder over histories, hπ is a random variable representing the history
generated by policy π and therefore P[hπ � hπ ′ ] is the probability that a history
generated by π is not less preferred than a history generated by π ′. Based on (9),
Fürnkranz et al. (2012) proposed a policy iteration algorithm. However, one crucial
issuewith (9) is that the concept of optimal solution is not well-defined as (9) can lead
to preference cycles (Gilbert et al. 2015). Busa-Fekete et al. (2014) circumvented this
problem by refining this decision model with criteria from social choice theory. In
Gilbert et al. (2015), the issue was solved by considering mixed solutions: an optimal
mixed solution is guaranteed to exist by interpreting it as a Nash equilibrium of a
two-player zero-sum game. Gilbert et al. (2016) proposed amodel-free RL algorithm
based on a two-timescale technique to find such a mixed optimal solution.

5.3 Risk-Sensitive Criteria

Taking into account risk is important in decision-making under uncertainty (see
chapter “Decision under Uncertainty” of this volume). The standard criterion based
on expectation is risk-neutral. When it is known that a policy will only be used a
few limited number of times, variability in the obtained rewards should be penalized.
Besides, in some hazardous domains, good policies need to absolutely avoid bad or
error states. In those two cases, preferences over policies need to be defined to be
risk-sensitive.

In its simplest form, risk can directly be represented as a probability. For instance,
Geibel andWysotzky (2005) adopted such an approach and consider MDP problems
with two objectives where the first objective is the standard decision criterion and
the second objective is to minimize the probability of reaching a set of bad states.

A more advanced approach is based on risk-sensitive decision criteria (Barbera
et al. 1999). Variants of Expected Utility (Machina 1988), which is the standard
risk-sensitive criterion, were investigated in two cases when the utility function is
exponential (Borkar 2010; Moldovan and Abbeel 2012) and when it is quadratic
(Tamar et al. 2012, 2013; Gosavi 2014). In the latter case, the criterion amounts to
penalizing the standard criterion by the variance of the cumulated reward. While the
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usual approach is to transform the cumulated reward, Mihatsch and Neuneier (2002)
proposed to directly transform the temporal differences during learning.

Other approaches consider risk measures (Denuit et al. 2006) and in particu-
lar coherent risk measures (Artzner et al. 1999). Value-at-risk, popular in finance,
was considered in Gilbert and Weng (2016). Policy gradient methods (Chow and
Ghavamzadeh 2014; Tamar et al. 2015b) were proposed to optimize Conditional
Value-at-Risk (CVaR) and were extended to any coherent risk measure (Tamar et al.
2015a). Jiang and Powell (2017) proposed dynamic quantile-based risk measures,
which encompasses VaR and CVaR, and investigated an approximate dynamic pro-
gramming scheme to optimize them.

In risk-constrained problems, the goal is to maximize the expectation of return
while bounding a risk measure. For variance-constrained problems, Prashanth and
Ghavamzadeh (2016) proposed an actor-critic algorithm. For CVaR-constrained
problems, Borkar and Jain (2014) proposed a two-timescale stochastic approxima-
tion technique, while Chow et al. (2016) investigated policy gradient and actor-critic
methods.

One important issue to consider when dealing with risk-sensitive criteria is that
the Bellman optimality principle generally does not hold anymore: a sub-policy of
an optimal risk-sensitive policy may not be optimal. However, in most cases, the
Bellman optimality principle may be recovered by considering a state-augmented
MDP, where the state includes the rewards cumulated so far (Liu and Koenig 2006).

6 Conclusion

Recently, thanks to a number of success stories, reinforcement learning (RL) has
become a very active research area. In this chapter,we recalled the basic setting ofRL.
Our focus was to present an overview of the main techniques, which can be divided
into value-based and policy search methods, for solving large-sized RL problems
with function approximation. We also presented some approaches for tackling the
issue of unknown rewards that a system designer would encounter in practice and
recalled some recent work in RL when risk-sensitivity needs to be taken into account
in decision-making.

Currently RL still has too large sample and computational requirements for many
practical domains (e.g., robotics). Research work is very active on improving RL
algorithms along those two dimensions, notably by exploiting the structure of the
problem (Kulkarni et al. 2016) or other a priori knowledge, expressed in temporal
logic (Wen et al. 2017) for instance, or by reusing previous learning experience with
transfer learning (Taylor and Stone 2009), lifelong learning (BouAmmar et al. 2015),
multi-task learning (Wilson et al. 2007) or curriculum learning (Wu and Tian 2017),
to cite a few. Having more efficient RL algorithms is important as it will pave the
way to more applications in more realistic domains.



Reinforcement Learning 409

References

Abbeel P, Coates A, Ng AY (2010) Autonomous helicopter aerobatics through apprenticeship
learning. Int J Robot Res 29(13):1608–1639

Abbeel P, NgA (2004) Apprenticeship learning via inverse reinforcement learning. In: International
conference machine learning

Akrour R, Schoenauer M, Sebag M (2013) ECML PKDD. Interactive robot education. Lecture
notes in computer science

Akrour R, Schoenauer M, Souplet J-C, Sebag M (2014) Programming by feedback. In: ICML
Anderson BDO, Moore JB (2005) Optimal filtering. Dover Publications
Antos A, Szepesvári C, Munos R (2008) Fitted Q-iteration in continuous action-space MDPs. In:
Advances in neural information processing systems, pp 9–16

Argall B, Chernova S,VelosoM,BrowningB (2009)A survey of robot learning fromdemonstration.
Robot Auton Syst 57(5):469–483

Artzner P, Delbaen F, Eber J, Heath D (1999) Coherent measures of risk. Math Financ 9(3):203–228
Babes-Vroman M, Marivate V, Subramanian K, Littman M (2011) Apprenticeship learning about
multiple intentions. In: ICML

Bagnell JA, Schneider JG (2001) Autonomous helicopter control using reinforcement learning
policysearchmethods. In: Proceedings of the international conference on robotics and automation,
pp 1615–1620

Bagnell JA, Schneider JG (2003) Covariant policy search. In: Proceedings of the international joint
conference on artifical intelligence

Bai A, Wu F, Chen X (2013) Towards a principled solution to simulated robot soccer. In: RoboCup-
2012: robot soccer world cup XVI. Lecture notes in artificial intelligence, vol 7500

Baird L et al (1995) Residual algorithms: Reinforcement learning with function approximation. In:
Proceedings of the twelfth international conference onmachine learning, pp 30–37

Barbera S, Hammond P, Seidl C (1999) Handbook of utility theory. Springer, Berlin
Bäuerle N, Rieder U (2011) Markov decision processes with applications to finance. Springer
Science and Business Media

Baxter J, Bartlett P (2001) Infinite-horizon policy-gradient estimation. J Artif Intell Res 15:319–350
Baxter J, Bartlett P,Weaver L (2001) Experiments with infinite-horizon, policy-gradient estimation.
J Artif Intell Res 15:351–381

Bellman R, Dreyfus S (1959) Functional approximations and dynamic programming. Math Tables
Aids Comput 13(68):247–251

Bellman R, Kalaba R, Kotkin B (1963) Polynomial approximation-a new computational technique
in dynamic programming: allocation processes. Math Comput 17(82):155–161

Bogert K, Lin JF-S, Doshi P, Kulic D (2016) Expectation-maximization for inverse reinforcement
learning with hidden data. In: AAMAS

Bojarski M, Testa DD, Dworakowski D, Firner B, Flepp B, Goyal P, Jackel LD, Monfort M, Muller
U, Zhang J, Zhang X, Zhao J (2016) End to end learning for self-driving cars. Technical report,
NVIDIA

Borkar V, Jain R (2014) Risk-constrained Markov decision processes. IEEE Trans Autom Control
59(9):2574–2579

Borkar VS (2010) Learning algorithms for risk-sensitive control. In: International symposium on
mathematical theory of networks and systems

Bou Ammar H, Tutunov R, Eaton E (2015) Safe policy search for lifelong reinforcement learning
with sublinear regret. In: ICML

Boularias A, Kober J, Peters J (2011) Relative entropy inverse reinforcement learning. In: AISTATS
Boutilier C, Dearden R, Goldszmidt M (1995) Exploiting structure in policy construction. In:
Proceedings of the fourteenth international joint conference on artificial intelligence, pp 1104–
1111

Boutilier C, Dearden R, Goldszmidt M (2000) Stochastic dynamic programming with factored
representations. Artif Intell 121(1–2):49–107



410 O. Buffet et al.

Bradtke SJ, Barto AG (1996) Linear least-squares algorithms for temporal difference learning.
Machine Learning 22:33–57

Burchfield B, Tomasi C, Parr R (2016) Distance minimization for reward learning from scored
trajectories. In: AAAI

Busa-Fekete R, Szörenyi B, Weng P, Cheng W, Hüllermeier E (2014) Preference-based reinforce-
ment learning: evolutionary direct policy search using a preference-based racing algorithm.Mach
Learn 97(3):327–351

Busoniu L, Babuska R, De Schutter B (2010) Innovations in multi-agent systems and applications –
1, vol 310, chapterMulti-agent reinforcement learning: an overview, Springer, Berlin, pp 183–221

Chernova S, Veloso M (2009) Interactive policy learning through confidence-based autonomy. J
Artif Intell Res 34:1–25

Choi D, Van Roy B (2006) A generalized Kalman filter for fixed point approximation and efficient
temporal-difference learning. Discret Event Dyn Syst 16(2):207–239

Choi J, KimK-E (2011) Inverse reinforcement learning in partially observable environments. JMLR
12:691–730

Choi J,KimK-E (2012)NonparametricBayesian inverse reinforcement learning formultiple reward
functions. In: NIPS

Chow Y, Ghavamzadeh M (2014) Algorithms for CVaR optimization in MDPs. In: NIPS
Chow Y, Ghavamzadeh M, Janson L, Pavone M (2016) Risk-constrained reinforcement learning
with percentile risk criteria. JMLR 18(1)

da Silva VF, Costa AHR, Lima P (2006) Inverse reinforcement learning with evaluation. In: IEEE
ICRA

Daniel C, Neumann G, Peters J (2012) Hierarchical relative entropy policy search. In: Proceedings
of the international conference of artificial intelligence and statistics, pp 273–281

de Boer P, Kroese D, Mannor S, Rubinstein R (2005) A tutorial on the cross-entropy method. Ann
Oper Res 134(1):19–67

de Farias D, Van Roy B (2003) The linear programming approach to approximate dynamic pro-
gramming. Oper Res 51(6):850–865

Degris T, Sigaud O, Wuillemin P-H (2006) Learning the structure of factored Markov decision pro-
cesses in reinforcement learning problems. In: Proceedings of the 23rd international conference
on machine learning

Deisenroth MP, Neumann G, Peters J (2011) A survey on policy search for robotics. Found Trends
Robot 2(1–2):1–142

Deisenroth MP, Rasmussen CE (2011) PILCO: a model-based and data-efficient approach to policy
search. In: Proceedings of the international conference on machine learning, pp 465–472

Denuit M, Dhaene J, Goovaerts M, Kaas R, Laeven R (2006) Risk measurement with equivalent
utility principles. Stat Decis 24:1–25

Dimitrakakis C, Rothkopf CA (2011) Bayesianmultitask inverse reinforcement learning. In: EWRL
El Asri L, Laroche R, Pietquin O (2012) Reward function learning for dialogue management. In:
STAIRS

El Asri L, Piot B, Geist M, Laroche R, Pietquin O (2016) Score-based inverse reinforcement
learning. In: AAMAS

EngelY,Mannor S,MeirR (2005)Reinforcement learningwithGaussian processes. In: Proceedings
of the 22nd international conference on Machine learning, ACM, pp 201–208

Ernst D, Geurts P,Wehenkel L (2005) Tree-based batchmode reinforcement learning. JMach Learn
Res 6(Apr):503–556

Fürnkranz J, Hüllermeier E, Cheng W, Park S (2012) Preference-based reinforcement learning: a
formal framework and a policy iteration algorithm. Mach Learn 89(1):123–156

Geibel P, Wysotzky F (2005) Risk-sensitive reinforcement learning applied to control under con-
straints. JAIR 24:81–108

Geist M, Pietquin O (2010a) Kalman temporal differences. J Artif Intell Res 39:483–532



Reinforcement Learning 411

Geist M, Pietquin O (2010b) Statistically linearized least-squares temporal differences. In: 2010
international congress on ultra modern telecommunications and control systems and workshops
(ICUMT), IEEE, pp 450–457

Geist M, Pietquin O (2011) Parametric value function approximation: a unified view. In: ADPRL
Geist M, Pietquin O (2013) Algorithmic survey of parametric value function approximation. IEEE
Trans Neural Netw Learn Syst 24(6):845–867

Ghavamzadeh M, Mannor S, Pineau J, Tamar A (2015) Bayesian reinforcement learning: a survey.
Found Trends Mach Learn 8(5–6):359–492

Gilbert H, Spanjaard O, Viappiani P, Weng P (2015) Solving MDPs with skew symmetric bilinear
utility functions. In: International joint conference in artificial intelligence (IJCAI), pp 1989–1995

Gilbert H, Weng P (2016) Quantile reinforcement learning. In: Asian workshop on reinforcement
learning

Gilbert H, Zanuttini B, Viappiani P, Weng P, Nicart E (2016) Model-free reinforcement learning
with skew-symmetric bilinear utilities. In: International conference on uncertainty in artificial
intelligence (UAI)

Gordon GJ (1995) Stable function approximation in dynamic programming. In: Proceedings of the
twelfth international conference onmachine learning, pp 261–268

Gosavi AA (2014) Variance-penalized Markov decision processes: dynamic programming and
reinforcement learning techniques. Int J General Syst 43(6):649–669

Grollman DH, Billard A (2011) Donut as I do: learning from failed demonstrations. In: IEEE ICRA
Guestrin C, Hauskrecht M, Kveton B (2004) Solving factored MDPs with continuous and discrete
variables. In: AAAI, pp 235–242

Hansen N, Muller S, Koumoutsakos P (2003) Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

Heidrich-Meisner V, Igel C (2009) Neuroevolution strategies for episodic reinforcement learning.
J Algorithms 64(4):152–168

Hussein A, Gaber MM, Elyan E, Jayne C (2017) Imitation learning: a survey of learning methods.
ACM Comput Surv

Jiang DR, Powell WB (2017) Risk-averse approximate dynamic programming with quantile-based
risk measures. Math Oper Res 43(2):347–692

Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–
422

Klein E, Geist M, Piot B, Pietquin O (2012) Inverse reinforcement learning through structured
classification. In: NIPS

Kober J, Oztop E, Peters J (2010) Reinforcement learning to adjust robot movements to new situa-
tions. In: Proceedings of the 2010 robotics: science and systems conference

Kober J, Peters J (2010) Policy search for motor primitives in robotics. Mach Learn 1–33
Kulkarni T, Narasimhan KR, Saeedi A, Tenenbaum J (2016) Hierarchical deep reinforcement learn-
ing: integrating temporal abstraction and intrinsic motivation. In: NIPS

LagoudakisMG, Parr R (2003) Least-squares policy iteration. JMach Learn Res 4(Dec):1107–1149
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
Lesner B, Zanuttini B (2011) Handling ambiguous effects in action learning. In: Proceedings of the
9th European workshop on reinforcement learning, p 12

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2016) Continuous
control with deep reinforcement learning. In: ICLR

Lin L-H (1992) Self-improving reactive agents based on reinforcement learning, planning and
teaching. Mach Learn 8(3/4):69–97

Liu Y, Koenig S (2006) Functional value iteration for decision-theoretic planning with general
utility functions. In: AAAI, AAAI, pp 1186–1193

Lopes M, Melo F, Montesano L (2009) Active learning for reward estimation in inverse reinforce-
ment learning. In: ECML/PKDD. vol 5782, Lecture notes in computer science, pp 31–46

Machina M (1988) Expected utility hypothesis. In: Eatwell J, Milgate M, Newman P (eds) The new
palgrave: a dictionary of economics. Macmillan, pp 232–239



412 O. Buffet et al.

Matignon L, Laurent GJ, Le Fort-Piat N (2006) Reward function and initial values: better choices
for accelerated goal-directed reinforcement learning. Lect Notes CS 1(4131):840–849

Mihatsch O, Neuneier R (2002) Risk-sensitive reinforcement learning. Mach Learn 49:267–290
Mnih V, Badia AP, Mirza M, Graves A, Lillicrap TP, Harley T, Silver D, Kavukcuoglu K (2016)
Asynchronous methods for deep reinforcement. learning. In: ICML

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran
D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement
learning. Nature 518:529–533

Moldovan T, Abbeel P (2012) Risk aversion Markov decision processes via near-optimal Chernoff
bounds. In: NIPS

Neu G, Szepesvari C (2007) Apprenticeship learning using inverse reinforcement learning and
gradient methods. In: UAI

Neu G, Szepesvari C (2009) Training parsers by inverse reinforcement learning. Mach Learn
77:303–337

Neumann G (2011) Variational inference for policy search in changing situations. In: Proceedings
of the international conference on machine learning, pp 817–824

NgA,Russell S (2000)Algorithms for inverse reinforcement learning. In: ICML,MorganKaufmann
Ng AY, Jordan M (2000) PEGASUS : A policy search method for large MDPs and POMDPs. In:
Proceedings of the conference on uncertainty in artificial intelligence

Nguyen QP, LowKH, Jaillet P (2015) Inverse reinforcement learning with locally consistent reward
functions. In: NIPS

Pasula HM, Zettlemoyer LS, Kaelbling LP (2007) Learning symbolicmodels of stochastic domains.
J Artif Intell Res 29:309–352

Peters J, Mülling K, Altun Y (2010) Relative entropy policy search. In: Proceedings of the national
conference on artificial intelligence

Peters J, Schaal S (2007) Applying the episodic natural actor-critic architecture to motorprimitive
learning. In: Proceedings of the European symposium on artificial neural networks

Peters J, Schaal S (2008a) Natural actor-critic. Neurocomputation 71(7–9):1180–1190
Peters J, Schaal S (2008b) Reinforcement learning of motor skills with policy gradients. Neural
Netw 4:682–697

Piot B, Geist M, Pietquin O (2013) Learning from demonstrations: is it worth estimating a reward
function? In: ECML PKDD, Lecture notes in computer science

PiotB,GeistM, PietquinO (2014)Boosted andReward-regularized classification for apprenticeship
learning. In: AAMAS, France, Paris, pp 1249–1256

Pomerleau D (1989) Alvinn: an autonomous land vehicle in a neural network. In: NIPS
Prashanth L, Ghavamzadeh M (2016) Variance-constrained actor-critic algorithms for discounted
and average reward MDPs. Mach Learn

Puterman M (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley,
New York

Ramachandran D, Amir E (2007) Bayesian inverse reinforcement learning. In: IJCAI
Randløv J, Alstrøm P (1998) 1998. Learning to drive a bicycle using reinforcement learning and
shaping. In: ICML

Ratliff N, Bagnell J, Zinkevich M (2006) Maximum margin planning. In: ICML
Ratliff N, Bradley D, Bagnell JA, Chestnutt J (2007) Boosting structured prediction for imitation
learning. In: NIPS

Riedmiller M (2005) Neural fitted Q iteration-first experiences with a data efficient neural rein-
forcement learning method. In: ECML, vol 3720. Springer, Berlin, pp 317–328

Roijers D, Vamplew P, Whiteson S, Dazeley R (2013) A survey of multi-objective sequential
decision-making. J Artif Intell Res 48:67–113

Russell S (1998) Learning agents for uncertain environments. In: Proceedings of the eleventh annual
conference on Computational learning theory, ACM, pp 101–103



Reinforcement Learning 413

Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev
3(3):210–229

Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized experience replay. In: ICLR
Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust region policy optimization. In:
ICML

Sebag M, Akrour R, Mayeur B, Schoenauer M (2016) Anti imitation-based policy learning. In:
ECML PKDD, Lecture notes in computer science

SehnkeF,OsendorferC,RückstießT,GravesA, Peters J, Schmidhuber J (2010) Parameter-exploring
policy gradients. Neural Netw 23(4):551–559

SilverD,HuangA,MaddisonCJ,GuezA, Sifre L, van denDriesscheG, Schrittwieser J, Antonoglou
I, Panneerschelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I,
Lillicrap T, Leach M, Kavukcuoglu K, Graepel T, Hassabis D (2016) Mastering the game of Go
with deep neural networks and tree search. Nature 529:484–489

SilverD, LeverG,HeessN,Degris T,WierstraD,RiedmillerM (2014)Deterministic policy gradient
algorithms. In: ICML

Singh S, Kearns M, Litman D, Walker M (1999) Reinforcement learning for spoken dialogue
systems. In: NIPS

SpaanMT (2012)Reinforcement Learning, chapter Partially observableMarkov decision processes.
Springer, Berlin

Sutton R,Maei H, Precup D, Bhatnagar S, Silver D, Szepesvári C,Wiewiora E (2009) Fast gradient-
descent methods for temporal-difference learning with linear function approximation. In: ICML

Syed U, Schapire RE (2008) A game-theoretic approach to apprenticeship learning. In: NIPS
Szita I, Lörincz A (2006) Learning tetris using the noisy cross-entropy method. Neural Comput
18:2936–2941

Tamar A, Chow Y, Ghavamzadeh M, Mannor S (2015a) Policy gradient for coherent risk measures.
In: NIPS

Tamar A, Di Castro D, Mannor S (2012) Policy gradient with variance related risk criteria. In:
ICML

Tamar A, Di Castro D,Mannor S (2013) Temporal difference methods for the variance of the reward
to go. In: ICML

Tamar A, Glassner Y, Mannor S (2015b) Optimizing the CVaR via sampling. In: AAAI
Taylor ME, Stone P (2009) Transfer learning for reinforcement learning domains: a survey. J Mach
Learn Res 10:1633–1685

Tesauro G (1995) Temporal difference learning and td-gammon. Commun ACM 38(3):58–68
Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In:
AAAI, pp 2094–2100

van Otterlo M (2009) The logic of adaptive behavior. IOS
Walsh T, Szita I, Diuk C, Littman M (2009) Exploring compact reinforcement-learning represen-
tations with linear regression. In: Proceedings of the 25th conference on uncertainty in artificial
intelligence

WenM, Papusha I, Topcu U (2017) Learning from demonstrations with high-level side information.
In: IJCAI

Weng P, Busa-Fekete R, Hüllermeier E (2013) Interactive Q-learning with ordinal rewards and
unreliable tutor. In: Workshop reinforcement learning with. generalized feedback, ECML/PKDD

Werbos PJ (1990) Consistency of HDP applied to a simple reinforcement learning problem. Neural
Netw 3:179–189

Wierstra D, Schaul T, Glasmachers T, Sun Y, Peters J, Schmidhuber J (2014) Natural evolution
strategies. JMLR 15:949–980

Williams R (1992) Simple statistical gradient-following algorithms for connectionnist reinforce-
ment learning. Mach Learn 8(3):229–256

Wilson A, Fern A, Ray S, Tadepalli P (2007) Multi-task reinforcement learning: A hierarchical
Bayesian approach. In: ICML



414 O. Buffet et al.

Wilson A, Fern A, Tadepalli P (2012) A Bayesian approach for policy learning from trajectory
preference queries. In: Advances in neural information processing systems

Wirth C, Neumann G (2015) Model-free preference-based reinforcement learning. In: EWRL
Wu Y, Tian Y (2017) Training agent for first-person shooter game with actor-critic curriculum
learning. In: ICLR

Wulfmeier M, Ondruska P, Posner I (2015) Maximum entropy deep inverse reinforcement learning.
In: NIPS, Deep reinforcement learning workshop

Xu X, Hu D, Lu X (2007) Kernel-based least squares policy iteration for reinforcement learning.
IEEE Trans Neural Netw 18(4):973–992

Yu T, Zhang Z (2013) Optimal CPS control for interconnected power systems based on SARSA
on-policy learning algorithm. In: Power system protection and control, pp 211–216

Yue Y, Broder J, Kleinberg R, Joachims T (2012) The k-armed dueling bandits problem. J Comput
Syst Sci 78(5):1538–1556

Zhao Q, Chen S, Leung S, Lai K (2010) Integration of inventory and transportation decisions in a
logistics system. Transp Res Part E: Logist Transp Rev 46(6):913–925

Ziebart B, Maas A, Bagnell J, Dey A (2010) Maximum entropy inverse reinforcement learning. In:
AAAI



Argumentation and
Inconsistency-Tolerant Reasoning

Leila Amgoud, Philippe Besnard, Claudette Cayrol, Philippe Chatalic
and Marie-Christine Lagasquie-Schiex

Abstract This chapter is devoted to logical models for reasoning from contradictory
information. It deals with methods, such as argumentation, that refrain from giving
up any piece of information (by contrast with revision, as discussed in chapter “Main
Issues in Belief Revision, Belief Merging and Information Fusion” of this volume).
The baseline is to get the best, resorting to various possibilities, from the available
information in order to reason in the most sensible way despite contradictions.

1 Introduction

Intelligent agents reason. Should they also be autonomous, they have to be able to
reason no matter what the available information, and whatever defects may plague
available information. Chapter “Knowledge Representation: Modalities, Condition-
als, andNonmonotonicReasoning” of this volume dealswith the case that not enough
information is available. This chapter deals with the case that there is too much
information—but not in the sense of an excessive amount (this chapter is not con-
cerned with a situation in which there is plethora of information or there are pieces of
information such that one of them entails the others). How could there be “too much
information” then?Well, when two pieces of information contradict each other, there
seems to be undue information. This chapter is devoted to approaches to reasoning in
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the presence of contradictory information. Reasoning from contradictory statements
is not to be confused with reasoning that merely mentions contradictory statements.
As an illustration for the latter, from the fact that “it rains” and the principle that “if
it snows then it does not rain”, the assumption that “it snows” implies that “it does
not rain”, in contradiction with the fact that “it rains”; this refutes the assumption
giving rise to this contradiction, and it can be concluded that “it does not snow”.
This chapter focuses on reasoning involving contradictory statements such that these
statements are to be taken for granted instead of being of hypothetical nature.

An example of such reasoning is getting, on the one hand, the information that
Mr Thestre is tall, and, and the other hand, that Mr Thestre is short. Question is, what
to do, then, in terms of handling information and reasoning?

The answer “eradicate bad information” falls short of settling the matter. First,
although the terms of a contradiction may happen to originate from well-identified
sources (with the benefit that such extra data can sometimes be used to solve dilem-
mas), this is not always the case. In particular, a knowledge base needs not have
been created with recording of the source for each item in the base. For instance,
the format of items may preclude such recording, or knowledge of the source may
have been unknown or lost. Moreover, even in the case that each piece of informa-
tion comes with a well-identified source, this needs not be enough to discriminate
“bad information” (also, despite some rather widespread prejudice, introducing a
temporal representation is no panacea).

All these reasons underlie the study and development of computational models
of reasoning from contradictory information.

2 Reasoning from Inconsistent Information

2.1 Introduction

Having two contradictory pieces of information is not always a disaster, though there
are better situations.

For instance, “he is the elder of the family” and “only one of his brothers is older
than him”. It is not likely to affect other pieces of information, even less if this
information has very little to do with the above-mentioned statements; for instance,
“my supervisor is leaving tomorrow for a family holiday”.

Unfortunately, this observation cannot be extended to a classical logic formaliza-
tion. If two contradictory statements E and E ′ are formalized by two classical logic
formulae A and A′, such that there exists a consequence B of A with the negation of
B being a consequence of A′, then the consequences of the conjunction A ∧ A′ are
all the classical logic formulae!

Under these conditions, reasoning has no value: each formula being a
consequence, any statement would be a valid conclusion. It is obviously inaccept-
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able for a reasoning model. So, inconsistent information is harmful for classical
deduction.

However, when an autonomous agent reasons and interacts with its environment,
she may be faced with different sources of inconsistency: false beliefs, unreliable
observations, exchange of information with other agents having diverging opinions.
As shown above, an intelligent agent must give up classical deduction in order to
exploit her knowledge base, when the base contains contradictory formulae. So an
autonomous intelligent agent must be provided with mechanisms for reasoning from
inconsistent information.

Possible options range from getting rid of classical logic as a formal reason-
ing model, to different methods for pre-processing contradictory information before
applying classical logic. This range of options is the topic of the following section.

2.2 Models for Reasoning from Inconsistency

Reasoning from inconsistent pieces of information, represented as logical formulae,
is a fundamental issue in Artificial Intelligence. Its importance is reflected by the
number of approaches developed so far: belief revision, belief merging, reasoning
from preferred consistent subbases, as well as paraconsistent logics and argumenta-
tive formalisms.

Two kinds of approaches have emerged, corresponding to two attitudes in front
of inconsistent knowledge. The first one is to avoid inconsistency by modifying the
contents of the knowledge base, using extra knowledge. The second one is to accept
the available knowledge and to cope with inconsistency. This attitude is particularly
relevant when it is not possible to get new pieces of information.

Within the first kind of approaches, two directions have been followed:

• In order to avoid inconsistency: when the pieces of information are introduced suc-
cessively, belief revision offers the most appropriate setting, and when conflicting
beliefs stem from different sources, belief merging is the right setting (these for-
malisms are presented in chapter “Main Issues in Belief Revision, Belief Merging
and Information Fusion” of this volume).

• Once inconsistency has been discovered, it is still possible to remove it by acquir-
ing additional knowledge. The idea is to identify wrong pieces of belief through
knowledge-gathering actions (also called tests) or to check some of the sources,
in order to retrieve a unique consistent knowledge base (Lang and Marquis 2000;
Konieczny et al. 2003).

These approaches will not be further discussed in this chapter, which is mainly
devoted to formalisms able to cope with inconsistency without removing any piece
of information. The issue is to deal with an available knowledge base containing
contradictory pieces of information. So, the set of consequences that can be derived
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from the given base must be weakened. This can be achieved either by weakening
the input base while keeping classical entailment, or by weakening the consequence
relation of classical logic while keeping the input base intact.

2.2.1 Weakening the Input Base

The first idea is to select one or several consistent subsets of the input base and then
to apply classical entailment for inferring from these subsets. Note that no piece of
information is removed from the input base. Weakening merely consists in inhibiting
some pieces of information when computing consistent subsets. Hence the name of
virtual restoration of consistency, or weakening by inhibition.

Restoring consistency consists in computing the preferred consistent subsets of
the input base. Several criteria for defining preferred subsets have been proposed,
ranging from the maximality for set-inclusion to criteria induced by a priority order-
ing between the formulae of the input base.

This technique goes back to Rescher and Manor (1970), and has been extensively
developed from the work of Poole (1988), Brewka (1989). Reasoning by virtual
restoration of consistency is the topic of Sect. 3.

Variable forgetting (Lang and Marquis 2010) is another more recent technique
for weakening pieces of information so as to restore consistency. The idea is that
inconsistency may be caused by information carried by some of the variables. Then
consistency can be restored by focussing on the variables “responsible for inconsis-
tency” and simplifying the knowledge base by ignoring these variables.

A given formula is weakened by forgetting a set of variables in this formula. As
for weakening by inhibition, several criteria for choosing these sets of variables can
be proposed, depending for instance on a priority ordering on the variables.

Note that in the weakening based approaches, the available knowledge is repre-
sented by a set of formulae, which is not interpreted as a conjunction of formulae.
That is why these approaches are often referred to as “syntax-based” approaches.

2.2.2 Weakening the Consequence Relation

The idea is to accept inconsistent information and to propose systems for reasoning
in presence of inconsistency. These systems are generally based on paraconsistent
logics, or argumentative formalisms.

Paraconsistent logics avoid trivialization by weakening classical entailment. They
are presented in Sect. 4.

Argumentative logics have been introduced by Elvang-Gøransson and Hunter
(1995) for reasoning with classically inconsistent information. The idea is to justify
each inference that follows from consistent subsets of the inconsistent input base. The
justification is based on the notions of argument and acceptability of an argument:
An argument is a consistent subset of the input base together with the inference of a
conclusion from that subset.
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Due to the inconsistency of the input base, multiple conflicting arguments may be
produced. Then, acceptability criteria enable to differentiate arguments and to select
the most acceptable of them. Only conclusions justified by acceptable arguments are
finally considered.

A comparative study between approaches for virtual consistency restoration and
argumentative approaches to reasoning from inconsistencywas carried out in (Cayrol
1995; Amgoud 2012a, b). More generally, argumentation systems are presented in
Sect. 5.

Following the same line of accepting inconsistency, another approach has been
proposed in a decentralized setting (Chatalic et al. 2006).

The available information is distributed between several agents (called peers).
Each peer has her own knowledge base, which is assumed to be consistent, and also
hosts information about other peers. The global knowledge base may be inconsistent
even if the base of each peer is consistent.

Peer-to-peer reasoning consists in computing well-founded consequences of a
formula, i.e. consequences of the formula w.r.t. a consistent subset of the global
knowledge base. Such a computation is novel in the sense that it is decentralized and
distributed between different peers, without any global control.

This approach will be presented in Sect. 6.

3 Reasoning Based on Virtual Restoration of Consistency

3.1 Introduction

The aim of this approach is to remove “virtually” some pieces of information from
an inconsistent base in order to “restore consistency” (this removal is said virtual
since the base is not really modified). This approach follows two steps:

• first a selection mechanism is needed for choosing the pieces of information that
must be removed; generally, this is done using a preference relation over these
pieces of information (generally a preordering); the use of this mechanism induces
the production of some “preferred subbases” that are consistent by construction;

• then, an inference principle manages the preferred subbases using classical entail-
ment.

This process can be synthetized as follows:

(E,≤) Inconsistent base associated with a preordering↓ Step 1: application of a selection mechanism m
{Y1, . . . ,Yn} Set of consistent m-preferred subbases↘↓↙ Step 2: application of an inference principle p

(E,≤) |∼ p,m A Inference of the formula A from the set (E,≤)
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Thus, an entailment relation based on the virtual restoration of consistency can be
represented by the pair p-m (p for the used inference principle and m for the used
selection mechanism).

Historically, this approach was introduced in (Rescher and Manor 1970) using
a first version of selection mechanisms and inference principles in the definition of
“strong” consequence (a formula is entailed by each subbase that is maximal for
set-inclusion).

Then, from the late 1980s and in all the 1990s, many works were realized in order
to explore this subject. The aimwas either the definition of new selectionmechanisms
(Poole 1988; Brewka 1989; Cayrol et al. 1993; Dubois et al. 1991; Benferhat et al.
1993a), or the proposal of some inference principles (Pinkas and Loui 1992), or
the study and the characterization of the resulting entailment relations following at
least two points of view: axiomatisation (Kraus et al. 1990; Pinkas and Loui 1992;
Gärdenfors and Makinson 1994; Cayrol and Lagasquie-Schiex 1995; Cayrol et al.
1998) and computational complexity (Nebel 1991; Gottlob 1992; Cayrol et al. 1998).

More recently, in (Martinez et al. 2013), it has been shown that this approach can
be considered as a particular case of a more general framework for reasoning from
inconsistency.

3.2 Presentation of Some Variants

The reasoning based on consistency restoration needs a selection mechanism and an
inference principle, each of them existing in many different variants. We will present
the most common variants, knowing that the preference relation ≤ associated with
the base E is often a total preordering over the formulae of the base expressing a
stratification of this base.1

Selection mechanisms.
The most common method consists in the use of consistent subbases of (E,≤)

maximal for set-inclusion; this is the method introduced in (Rescher and Manor
1970). However, there exist other possibilities for using the relation ≤ over E
in order to select preferred consistent subbases. Here, we present three of them:
the preference relation “Best-Out” issued from possibilistic logic, a preference
relation combining the preordering ≤ and the maximality for set-inclusion, and
a preference relation combining the preordering ≤ and the maximality for the
cardinality.

Let (E,≤) be a stratified base. It is usual to represent the stratification of the base
by a partition {E1, . . . , En} meaning that any formula of Ei is strictly preferred to any
formula of E j for i < j . Let X = X1 ∪ . . . ∪ Xn and Y = Y1 ∪ . . . ∪ Yn be two consistent
subbases of (E,≤) (with Xi = X ∩ Ei and Yi = Y ∩ Ei ).

1Note that there exist other works, not described here, exploiting partial preorderings (Cayrol et al.
1993; Brewka 1994; Benferhat and Garcia 2002; Benferhat and Yahi 2012; Cayrol et al. 2014).
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Best-Out preference (Benferhat et al. 1993a): let X be a consistent subbase of E, consider
the notation a(X) = min{i | ∃A ∈ Ei \ X}. Then Y is Bo-preferred to X if and only if
a(X) ≤ a(Y ).2

Preference based on inclusion (Cayrol et al. 1993; Geffner 1992):3 Y is Incl-preferred
to X if and only if ∃i such that Xi ⊂ Yi and ∀ j, 1 ≤ j < i, X j = Y j .

Preference based on cardinality (Lehmann 1995; Benferhat et al. 1993a): Y is Card-
preferred to X if and only if ∃i such that |Xi | < |Yi | and ∀ j, 1 ≤ j < i, |X j | =
|Y j | (|Z | denoting the cardinality of Z).

Links exist between these different mechanisms (for instance, a Card-preferred
subbase is also Incl-preferred). We will use T (resp. Incl, Card, Bo) to denote
the selection mechanism producing the set of the consistent subbases maximal for
set-inclusion (resp. Incl-preferred, Card-preferred, Bo-preferred) of (E,≤).
Inference principles.
There exist at least twowell-known principles applicable in presence of conflicting
subbases (the skeptical principle and the credulous principle) that are used in
(Rescher andManor 1970). Moreover, a more complete taxomony was established
by Pinkas and Loui (1992) with regard to the studied principles. For instance:

Let (E,≤) be a base equipped with a preordering, and m(E,≤) denote a set of consistent
subbases of (E,≤) (for instance, m(E,≤) can be obtained using one of the mechanisms
T, Incl, Card or Bo) and let A be a propositional formula, the following inference
principles can be defined:

Uni principle:A is skeptically inferred fromm(E,≤) if and only if A is classically inferred
from each element of m(E,≤).

Exi principle: A is credulously inferred from m(E,≤) if and only if A is classically
inferred from at least one element of m(E,≤).

Arg principle:4 A is argumentatively inferred from m(E,≤) if and only if A is classically
inferred from at least one element of m(E,≤) and there is no element of m(E,≤) that
classically infers ¬A.

3.3 An Illustrative Example

Consider the following base (E,≤) stratified in four levels and representing a variant
of the very well known problem of the penguins, the penguin being here replaced by
an emu (emeans “emu”, bmeans “bird”, f means “flying”,wmeans “havingwings”,
a means “having atrophied wings”). The stratification corresponds to a preordering
between formulae (reflecting their reliability, their importance, …).

2This ordering only depends on the stratum having the highest priority in which at least one formula
has been removed for restoring consistency.
3The subbases maximal for the preference based on set-inclusion are also called subtheories in
(Brewka 1989) and correspond exactly to the strongly maximal consistent subbases of Dubois et al.
(1991).
4This principle consists in keeping among the credulous consequences only those such that their
negation is not credulously inferred (Benferhat et al. 1993b). This inference is said argumentative.
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Tweety is an emu e
an emu is a bird e → b

an emu does not fly e → ¬ f
a bird flies b → f

a bird has wings b → w
having wings allows one to fly w → f

if a bird does not fly then it has atrophied wings (b ∧ ¬ f ) → a
(the formulae e and e → b have a higher priority than e → ¬ f and b → f which
themselves have a higher priority than b → w and w → f , and the formula (b ∧
¬ f ) → a has the lowest priority).

We present five subbases among the consistent subbases of this base:5

• Y1 = {e, e → b, e → ¬ f, b → w, (b ∧ ¬ f ) → a} which entails e, b, ¬ f , w, a
• Y2 = {e, e → b, e → ¬ f,w → f, (b ∧ ¬ f ) → a}which entails e, b,¬ f ,¬w, a
• Y3 = {e, e → b, b → f, b → w,w → f, (b ∧ ¬ f ) → a} which entails e, b, f ,
w,

• Y4 = {e, e → ¬ f, b → f, b → w,w → f, (b ∧ ¬ f ) → a} which entails e, ¬b,
¬ f , ¬w,

• Y5 = {e → b, e → ¬ f, b → f, b→w,w → f, (b ∧ ¬ f )→a} which entails ¬e.

These five subbases are T-preferred, Y1 to Y3 are also Incl-preferred and the third
one is Card-preferred.

The literals inferred according to the different principles are:

• with Uni-T, nothing whereas with Uni-Incl, e and b are inferred;
• with Exi-T, f ,¬ f ,w,¬w, e,¬e, b,¬b and a are inferred, whereas with Exi-Incl,
only f , ¬ f , w, ¬w, e, b and a are inferred;

• with Arg-T, a is inferred whereas with Arg-Incl, e, b and a are inferred;
• with Exi-Card, Arg-Card and Uni-Card, e, b, f and w are inferred.

Note that Exi-T allows the inference of f , ¬ f , w, ¬w, e, ¬e, b, ¬b and a, but
not ¬a (as it would be the case with classical deduction). Particularly, f and ¬ f
cannot be combined in order to generate other conclusions by deduction. Thus Exi-T
does not authorize the entailment of all literals and this is the reason that justifies
this method as an inconsistency treatment; nevertheless this does not mean that the
set of conclusions is “purged” of any source of inconsistency.

5Note that the Bo-preferred subbases are not presented here. Nevertheless all of them respect a
common property: they contain the two formulae e and e → b and so they entail e and b.
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3.4 Discussion

This combination of selection criteria and inference principles leads to the definition
of weak consequence relations that do not respect the monotonicity property (i.e. the
addition of new information to the base can call into question a conclusion previously
obtained). For instance, if we add in the first stratum of the previous example a new
statement “Tweety does not have atrophied wings” (expressed by the formula ¬a),
we can illustrate the non-monotonicity with the relationArg-Incl; indeed, the Incl-
preferred subbases are modified (the formula ¬a is added at any subbase, whereas
the formula (b ∧ ¬ f ) → a is removed from Y1 and Y2) and so some conclusions
previously obtained disappear: so, with Arg-Incl, ¬a is inferred and not a.

The very important number of such deductive relations has induced many other
works in order to analyze these relations in this new framework (Kraus et al. 1990;
Gärdenfors and Makinson 1994; Da Silva Neves et al. 2002; Benferhat et al. 2005).

4 Paraconsistent Logics

4.1 Foundations

Except for Jaśkowski (1948), seminal work introducing paraconsistent logics starts
with da Costa (1974), Anderson and Belnap (1975), followed by Rescher and Bran-
dom (1979) and others (a recent development over some of these is (Payette 2015).
The work by da Costa is motivated by the idea of a formalization of naive set the-
ory, which requires to address the notion of inference from contradictory premises.
Anderson and Belnap’s motivation is less strongly tied to paraconsistent inference
(despite explicit mention of rejecting the principle that a contradiction entails every-
thing) and is instead grounded in the notion of pure implication: for a statement “if
E then C” to be true, it must involve a link between the content of E and the content
of C .

The intuition underlying paraconsistent logics is that classical inference must be
“restricted” in some way (Ripley 2015). In this sense, paraconsistent logics are an
approach which is “dual” to the approach described in Sect. 3. It must be stressed that
paraconsistent logics do not assume that there is something wrongwith contradictory
premises (Priest 1987).

Formally, premises {A,¬A} are first class citizens over which inference is to
apply. What inference can it be? It must take into account the reasons why classical
inference collapses in the presence of contradictions: ex falso quodlibet sequitur.
This is the traditional name for the following inference schema

A ¬A

B
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which expresses that two contradictory formulae A and ¬A are enough to deduce
any formula B.

The ex falso quodlibet sequitur is not a primitive principle of classical logic. It
is not possible to say “let us take classical logic except for the ex falso quodlibet
sequitur”. Indeed, the ex falso quodlibet sequitur is a derived principle. Two main
ways to derive the ex falso quodlibet sequitur are as follows. The first resorts to
weakening

A

B → A

as well as non-constructive contraposition

¬A → B

¬B → A

so that a derivation for the ex falso quodlibet sequitur is:

(i) A premise
(i i) ¬B → A weakening over (i)
(i i i) ¬A → B non–constructive contraposi tion over (i i)
(iv) ¬A premise
(v) B modus ponens over (i i i) and (iv)

A second way to derive the ex falso quodlibet sequitur uses disjunctive syllogism

A ∨ B ¬A

B

as well as the rule of disjunction introduction

A

A ∨ B

so that a derivation of the ex falso quodlibet sequitur is:

(i) A premise
(i i) A ∨ B dis junction introduction over (i)
(i i i) ¬A premise
(iv) B dis junctive syllogism over (i i) and (i i i)

Details differ depending on language, proof theory, … Further proofs are examined
in (Øgaard 2016).
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4.2 Paraconsistent Inference

When founding a paraconsistent logic, there is no way out but giving up some princi-
ple(s) at work in the above derivations so that they break down. For instance, relevant
logic admit neither weakening nor disjunctive syllogism. These two points are in full
agreement with Anderson and Belnap’s idea: for example, as regards weakening, “if
E ′ then E” is untrue when E and E ′ have nothing to do with each other, even in the
event that E would be true. Alternatively, it is also possible to impose an ordering
over the application of inference rules (Besnard and Hunter 1995). There are even
more striking options, for instance a logic (Tennant 1987) that fails transitivity of
inference (i.e., the sequence (i), (i i), (i i i), . . .).

Let us now digress a little bit so as to mention that paraconsistency is compatible
with other options in reasoning (an illustration is (Rahman 2001)).

Back in track, here is, as an example, an axiomatization of the relevant logic R of
Anderson and Belnap:

Implication:
A → A
(A → B) → ((B → C) → (A → C))

(A → (B → C)) → (B → (A → C))

(A → (A → B)) → (A → B)

Negation:
(A → ¬A) → ¬A
¬¬A → A
(A → ¬B) → (B → ¬A)

Disjunction:
A → A ∨ B
A → B ∨ A
(A → C) ∧ (B → C) → ((A ∨ B) → C)

Conjunction:
A ∧ B → A
B ∧ A → A
(A → B) ∧ (A → C) → (A → (B ∧ C))

Conjunction and disjunction:
A ∧ (B ∨ C) → (A ∧ B) ∨ C

with the inference rules:
A A → B

B

A B

A ∧ B

R is paraconsistent as evidenced by the fact that

A ¬A

B

is not derivable from the above axiomatics (formally, {A,¬A} ��R B).
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Another insightful hint to found paraconsistent inference is the idea ofminimizing
inconsistency. Pioneer for such an approach is Priest (1991), who was followed
by Arieli and Avron (1996), Besnard and Schaub (1998). The original idea (Priest
1991) is that, as well as the truth-values true and false, there exists a truth-value
contradictory and a model of a set of formulae X is an interpretation in which all
formulae of X are true or contradictory (intuitively, “at least” true) and such that the
set of propositional symbols assigned contradictory is minimal.

For such logics, it is crystal-clear that a contradiction does notmean that something
is wrong: the inference

{A,¬A} �L A ∧ ¬A

makes perfect sense (what is concluded is the fact that there is a contradiction about
A) and this is not equivalent to

{A,¬A} �L B.

A recent attempt at a unifying approach to paraconsistent logics is (Carnielli and
Coniglio 2016).

4.3 An Example: In the Beginning Was the Egg…

Here is a small exercise in formalization about the chicken or the egg dilemma:

e first was the egg
c first was the chicken
r first was the rooster
e f c the egg comes from the chicken
c f e the chicken comes from the egg

Consider the propositional language based on these five propositional symbols e, c,
r , e f c, and c f e. As premises, consider (i) the egg comes from the chicken, (ii) the
chicken comes from the egg, (iii) if the egg comes from the chicken then it is not the
case that first was egg, (iv) if the chicken comes from the egg then it is not the case
that first was the chicken, and (v) “first was the egg” and “first was the chicken” are
not equivalent. Formally,

X =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e f c
c f e

e f c → ¬e
c f e → ¬c
¬(e ↔ c)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

According to classical logic, X |= A for each formula A. In contrast, by virtue of a
logic such as R,
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X �R ¬e
X �R ¬c

...

and for R as well as any paraconsistent logic L

X �L r

unlike classical logic that, from these premises, entails that first was the rooster (as
a result of the ex falso quodlibet sequitur).

5 Argumentation

5.1 Introduction

Argumentation is a cognitive process based upon constructing and evaluating
arguments designed with the aim of increasing or decreasing adherence to a view-
point.

According to Plantin (1996), foundations of a theory of argumentation date back
467 B.C. At the time, Corax and Tisias had already developed a method of argumen-
tation in order to defend landlords in court.

Up to the 1950s, argumentation was studied through rhetorics and logic. In the
1960 and 1970s, philosophers Perelman and Toulmin were the most influential
authors on the topic. Perelman described techniques used by people (Perelman and
Olbrechts-Tyteca 1958) and Toulmin developed a theory of how argumentation takes
place. Since the dawn of the 1990s, argumentation has made its way as a topic in
Artificial Intelligence, becoming a major keyword in the domain. Argumentation is
indeed regarded as an intuitive paradigm for nonmonotonic reasoning (Dung 1995),
reasoning from inconsistent information (Amgoud and Ben-Naim 2015; Besnard
and Hunter 2008; Simari and Loui 1992; Aubry and Risch 2005),6 merging infor-
mation from multiple sources (Amgoud and Kaci 2007), decision making under
uncertainty (Amgoud and Prade 2009; Bonet and Geffner 1996), learning concepts
(Mozina et al. 2007), and other applications involving conflicting pieces of infor-
mation. Argumentation also plays a major role in the analysis and formalization
of dialogues. For example, (Fouqueré and Quatrini 2012) presented a linear logic
formalization of argumentative dialogues.

6There are plenty of other references.
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5.2 Architecture of an Argumentation System

5.2.1 Outline

An argumentation process begins with constructing arguments from a knowledge
base, continuing with a definition of interactions among these arguments, as well
as an evaluation of the intrinsic strength of arguments, and, lastly, an evaluation of
arguments so as to determinewhat arguments are to be usedwhen it comes to drawing
conclusions from the knowledge base.

5.2.2 Logical Formalism

An argumentation system is defined from a logic (L ,CN) whereL is a set of well-
formed formulae and CN is a consequence operator overL . The languageL is used
to represent information whereas CN is essential to the definition of arguments and
their interactions. In the literature, there are two main families of logics involved
in the definition of argumentation systems: Tarskian logics (Amgoud and Besnard
2009) and rule-based logics (Prakken and Sartor 1997).

After (Tarski 1956), CN is a function from 2L to 2L that satisfies various prop-
erties (being a closure operator, …). There is no constraint over the language L .
Most of the well-known logics (classical logic, intuitionistic logic, modal logics, …)
are Tarskian. The second family of logics takes L to be a set of literals (i.e., atoms
possibly governed by negation ¬), a set of rules (possibly split into strict rules and
defeasible rules) of the form l1, . . . , ln−1 � ln (where� can either be a strict version
→ or a non-strict version ⇒) such that each li is a literal. The meaning of such a
rule is that if l1, . . . , ln−1 are true then so is ln (conditions apply when � is of the
non-strict kind ⇒).

Importantly, logics in either family must admit a notion of consistency. In the
second family for example, a set of formulae X of L is said to be consistent for
(L ,CN) iff CN(X) contains no literals l and l ′ such that l is equivalent to ¬l ′.

5.2.3 The Notion of an Argument

An argument is a reason to hold a conclusion. It is defined from formulae of a
knowledge base K ⊆ L using the consequence operator CN. Such an argument is
accordingly relative to K .

As to the notion of a formal argument, the following definition is widely used.

Let K be a knowledge base. An argument of K is a pair (X, x) such that

1. X ⊆ K

2. X is consistent

3. x ∈ CN(X)
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4. �X ′ ⊂ X such that X ′ satisfies all three conditions above.

X is said to be the support and x the conclusion of the argument.

The following example illustrates this notion of an argument for the case of propo-
sitional logic.

Let K = {x, y, x → ¬y} be a base in propositional logic. Please observe that the set of all
arguments of K is infinite, some of them are:

A1 = ({x}, x) A4 = ({x, x → ¬y},¬y)
A2 = ({y}, y) A5 = ({y, x → ¬y},¬x)
A3 = ({x → ¬y}, x → ¬y) A6 = ({x, y}, x ∧ y)

5.2.4 Interactions Among Arguments

Arguments constructed from a knowledge base can interact in twoways: by attacking
or by supporting. An attack expresses disagreement or conflict between two argu-
ments. It is a binary relation, meant to capture inconsistency in a knowledge base. It
can be defined in a number of ways. In any case, choices made for such a relation
are crucial to an argumentation system. Indeed, a poor choice could cause such a
system to produce undesirable outcome. Here are some examples of attack relations
between two arguments A1 = (X1, x1) and A2 = (X2, x2):

• A1 attacks A2 iff the set {x1, x2} is inconsistent, or
• A1 attacks A2 iff ∃x ∈ X2 such that the set {x1, x} is inconsistent, or
• A1 attacks A2 iff ∃X ′ ⊆ X2 such that the set {x1} ∪ X ′ is inconsistent.

On the other hand, an argumentmay support another argument. This is represented
by means of a binary relation expressing some confluence between two arguments
(Cayrol and Lagasquie-Schiex 2013). The fact that an argument supports another
argument needs not entail that the latter be accepted by an argumentation system.
Here are some examples of support relations between two arguments A1 = (X1, x1)
and A2 = (X2, x2):

• A1 supports A2 iff x1 = x2, or

• A1 supports A2 iff ∃x ∈ X2 such that x1 = x , or

• A1 supports A2 iff the set X1 ∪ X2 is consistent and ∃x ∈ X2 such that x1 = x .

5.2.5 Preferences Among Arguments

Both kinds of interactions (attack and support) are about the logical structure of
arguments. They do not take into account quality, even regarding the formulae occur-
ring in argument supports. Yet, quality could be taken advantage of when it comes to
compare arguments. This idea gives rise to another binary relation, dubbed preference
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relation. In (Bench-Capon 2003), any argument underlies a value (be it economical,
moral, …), whose importance determines whether this argument is preferred to what
other arguments. More generally, there are different ways to take into account a
(pre-)order over K when comparing arguments. For example, for inconsistency
handling in a knowledge base, an argument based on ironclad information is to be
preferred to other arguments (Benferhat et al. 1993b).

Let K = K1 ∪ . . . ∪ Kn be a stratified base such that the formulae of Ki are more certain
than the formulae of K j for j > i . A certainty level can be ascribed to each subbase as
follows:

Level(X) = min {i | Xi+1 ∪ . . . ∪ Xn = ∅} where Xi = X ∩ Ki . By convention,
Level(∅) = 0.

This certainty level is used to compare arguments as follows:

Let A1 = (X1, x1), A2 = (X2, x2) be two arguments constructed from a stratified base
K = K1 ∪ . . . ∪ Kn . Then, A1 is preferred to A2, denoted A1 ≥ A2, iff Level(X1) ≤
Level(X2).

5.2.6 Evaluation of Arguments

Since arguments can attack and support one another, it seems important to elicit
“good” arguments to support a formula to be inferred from an inconsistent knowledge
base.An idea is to defineacceptability semantics for arguments, forwhich the seminal
work is (Dung 1995). It develops an approach to argumentation whose core notion is
acceptability of an argument. To start with, an argumentation system is viewed as a
set of arguments endowedwith an attack relation between these arguments. Structure
and origin of the components are undetermined.

An argumentation system is a pair (A ,R) where A is a set of arguments andR is a binary
relation over A . Intuitively, (A, B) ∈ R means that A attacks B.

Hence, an argumentation system can be represented as a directed graph whose
nodes are the arguments of A and arcs are the attacks of R. Semantics are defined
in order to provide an evaluation of subsets of arguments of such a system. These
semantics are supposed to meet at least two requirements: consistency and defense.

Let (A ,R) be an argumentation system and B ⊆ A .

• B is conflict-free iff �A, B ∈ B such that (A, B) ∈ R.

• B defends an argument A iff ∀B ∈ A , if (B, A) ∈ R, then ∃C ∈ B s.t. (C, B) ∈ R.

The main semantics proposed by Dung (from which the other semantics can be
defined) is based on the principle of admissibility:

Let B be a conflict-free set of arguments, and let F : 2A → 2A be the function defined
by F (B) = {A ∈ A | B defends A}.

• B is admissible iff B ⊆ F (B).
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• B is a complete extension iff B = F (B).

• B is a grounded extension iff B is a minimal (for set-inclusion) complete extension.

• B is a preferred extension iff B is a maximal (for set-inclusion) complete extension.

• B is a stable extension iffB is a preferred extension that attacks (in the sense ofR) every
argument in A \ B.

Consider the argumentation system represented by the following graph.

d a f g

c

be

This system has only one stable extension E1 = {b, d, f }, it has two preferred extensions
E1 = {b, d, f } and E2 = {a, g}, it has a grounded extension E3 = ∅.

As is proved in (Dung 1995), an argumentation system has only one grounded
extension, but it can have several extensions if considering another semantics (as
illustrated by the previous example). An argumentation system has always at least
one preferred extension but it may happen to have no stable extension.

Once extensions are computed, a qualitative overall strength is assigned to each
argument as follows: an argument is skeptically accepted if it belongs to all exten-
sions, credulously accepted if it belongs to some but not all extensions, and rejected
otherwise.

Many proposals extending the original model (Dung 1995) have been made,
for example taking account the support relation (Boella et al. 2010; Cayrol and
Lagasquie-Schiex 2013), the relative strength of attacks (Martínez et al. 2008; Dunne
et al. 2011), or attacks over attacks (Modgil 2009; Baroni et al. 2011), or audience
(Bench-Capon et al. 2007), etc.

Lastly, various instantiations of the original model have been proposed. Some of
them capture one or more approaches to non-monotonic reasoning. Dung (1995)
presents an instantiation that captures extensions of default logic (Reiter 1980)
whereas (Nouioua and Risch 2012) deals with answer set programming
(ASP). Cayrol (1995) defines another instantiation, that captures maximal consistent
subbases of a knowledge base.

More recently, two other families of semantics are emerging: gradual semantics
and ranking semantics. Gradual semantics assign to each argument a numerical
value representing its overall strength. Examples of such semantics are h-Categorizer
(Besnard and Hunter 2001; Pu et al. 2014), weighted h-Categorizer, weighted max-
based and weighted card-based semantics (Amgoud et al. 2017), game-theoretical
semantics (Matt and Toni 2008), social semantics (Leite and Martins 2011), and
trust-based semantics (da Costa Pereira et al. 2011). Ranking semantics rank order



432 L. Amgoud et al.

arguments from the strongest to the weakest ones. Examples of ranking semantics
are tuple-based semantics (Cayrol and Lagasquie-Schiex 2005), Burden-based and
Discussion-based semantics (Amgoud and Ben-Naim 2013; Amgoud et al. 2016),
and the parametrized one defined in (Bonzon et al. 2017) for persuasion purposes.
Obviously, each gradual semantics leads to a ranking one.

It was shown recently in (Amgoud and Ben-Naim 2016; Amgoud et al. 2017) that
extension semantics and gradual/ranking semantics are based on different principles.
For instance, the number of attackers is taken into account by existing gradual/ranking
semantics while it does not play any role in extension semantics. Thus, extension
semantics and gradual/ranking semantics may not provide the same evaluations of
arguments.

5.2.7 Inference Relations

The last step in an argumentation process consists of defining inference relations
permitting to draw plausible conclusions from a knowledge base. This step reuses
results from the evaluation of arguments.

Here are a few examples of inference relations in the case of extension-based
semantics (Dung 1995):

Let (A ,R) be an argumentation system obtained from a knowledge baseK . Let E1, . . . , En
be the extensions of this system under a given semantics. Let x ∈ L .

• K |∼ x iff ∃A = (X, x) ∈ A s.t. A ∈ ⋂
i Ei , or

• K |∼ x iff ∀i = 1..n, ∃A = (X, x) ∈ A s.t. A ∈ Ei

The plausible conclusions in case of gradual/ranking semantics are simply those
supported by at least one argument (Amgoud and Ben-Naim 2015). Note that a
formula and its negationmayboth be plausible. Thismeans that the approach tolerates
inconsistency.More importantly, the conclusions are ranked from themost to the least
plausible ones. A formula is ranked higher than another formula if it is supported by
an argument which is stronger than any argument supporting the second formula.

This is the way argumentation allows us to reach our initial objective of capturing
reasoning from inconsistent information.

6 Reasoning in Peer-to-Peer Inference Systems

Peer-to-peer architectures are characterized by the absence of any central control
authority or hierarchical organization. Each peer can simultaneously behave as a
server and as a client, that can both provide and consume shared resources. This
homogeneity contributes to the robustness of the whole, each peer being able to join
or leave the network at anytime without compromising the stability of the whole sys-
tem. Such features appear essential for building flexible and scalable fully distributed
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applications over the internet. Well known applications typically share files, comput-
ing power or data flows. Peer-to-Peer Inference Systems exploit this paradigm for
sharing knowledge and reasoning capabilities.

6.1 Peer-to-Peer Inference Systems

APeer-to-Peer InferenceSystem (P2PIS) is a finite network of peersP = (Pi )i=1..n .
Each peerPi has its own (propositional) language Li built on a proper alphabet Ai

and corresponds to a set of formulae Pi = Si ∪ Mi . The set Si corresponds to the
proper knowledge of the peer and is made exclusively from formulae constructed on
Li . The set Mi describes semantic links, calledmappings, established byPi to relate
some of its own concepts with those of other peers. Mi is made of formulae of the
language L built on the alphabet A = ⋃

i=1..n Ai , that contain at least one term of Li

and one term of another language L j ( j �= i). In the following we assume without
loss of generality that such theories are expressed in clausal form.

An important characteristic of P2PIS is that each peer only has a local view of
the system in which it belongs. Actually it is only aware of its own knowledge and
of the mappings that connect it to its direct neighbours in the network of peers. But
each of them knows neither the global theory � = ⋃

i=1..n Pi nor the topology of
the network of peers, on which no particular assumption can be made. The challenge
is thus to propose fully decentralized reasoning algorithms, making it possible for
the peers to collaborate in an appropriate way during inference tasks over the global
theory, despite the fact that each of them only has a local view of the whole system.

Works by Adjiman et al. (2004, 2005, 2006) have proposed an incremental
message-passing algorithm (DeCA), that can produce all proper prime implicates
of a clause with respect to the global theory. However this algorithm assumes the
global theory � to be consistent. Yet in a peer-to-peer inference system where each
peer is independent and can freely design its local theory and its mappings, this
cannot be ensured. In this context, one may wonder whether it is possible to detect
inconsistencies in the global theory in a decentralizedway and, in such cases, whether
it is possible to avoid deriving trivial conclusions.

6.2 Inconsistency in Peer-to-Peer Inference Systems

Among the two classical alternatives : repair or tolerate inconsistencies, the first one
must clearly be ruled out. In a peer-to-peer system, each peer being independent, it can
only control its own theory and cannot force other peers involved in inconsistencies
to repair themselves. Moreover, given the homogeneity of the peers, each peer is as
legitimate as others and it is difficult to hold one of them as particularly responsible
for the cause of an inconsistency. Inmany cases, the responsibility is rather collective.
Therefore the only realistic approach seems to be consideringmethods able to tolerate
inconsistencies. Particularly, onewould like to restrict conclusions that can be derived
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to the well-founded ones, i.e. those that can be derived from a consistent subset of
�.

While consistency of the global theory cannot be ensured, assuming the consis-
tency of the local theory Si ∪ Mi of each peer seems reasonable. This can be checked
easily with a local satisfiability test. Since the languages Li used for expressing the
proper knowledge of the respective peers Pi are disjoint, S = ⋃

i=1..n Si is thus
necessarily consistent. In some way, inconsistencies can be considered caused by
mappings of M = ⋃

i=1..n Mi . This seems intuitively acceptable since, while each
peer can be held as qualified for stating knowledge using its own language, when
establishing mappings with other peers, a peer does not necessarily have a good
perception of the semantics of the concepts introduced by its neighbours.

This approach is followed in (Chatalic et al. 2006), where causes of incoherence,
called nogoods, are defined as sets ng of mappings from M , such that S ∪ ng |= ⊥.
For any minimal nogood ng and any mapping m ∈ ng, ⊥ is necessarily a proper
prime implicate of m relatively to S ∪ ng \ {m}. This peculiarity is exploited by the
P2P- NG algorithm, that is able to detect all nogoods of �. This algorithm can be
seen as a specialization of DeCA that can produce all minimal sets of mappings
(called mapping supports) used in a derivation of ⊥, by resolution from an initial
input clause. This algorithm runs in the same way on each peer of the network and
proceeds in two steps. From a given clause (initially, a new mapping m that a peer
Pk wants to add), it first produces all implicates that only contain literals of other
peers’ languages, while keeping track of the (local) mappings used in each proof.
Each obtained clause c = l1j1 ∨ . . . ∨ lnjn is split and for each literal l

i
ji
in the language

L ji of a neighbour peer P ji , P2P- NG is launched again on P ji , with the input
clause liji . The results of the recursive calls on neighbour peers are then recombined
on the queried peer in an incremental way, using a distribution operator. If the final
result is non empty, each obtained set of mappings constitutes with the mapping m a
nogood, that will be stored onPk . A history mechanism, included in the transmitted
messages, prevents possible problems induced by cycles in the graph of peers, that
cannot be excluded, and guarantees the completion of the process.

6.3 Illustrative Example

The behaviour of P2P- NG is illustrated on Fig. 1, assuming that the mappings of the
different peers are added successively, according to the order m3, m2, m1, m4. From
m3, the peer P3 locally produces b1 whereas P1 cannot produce ⊥ from b1.

From m2, the peer P2 locally produces a1. It then queries the peer P1, that
produces ¬b1 locally, without using any mapping. P1 in turn queries the peer P3,
that manages to produce ⊥ using {m3}. Finally, the set {m3} is sent back toP1, and
then toP2. Hence, the latter has detected a nogood {m2,m3}, which is stored on the
peer P2. When adding m1 and m4 toP4, no further inconsistencies are detected.

Note that the different nogoods are stored in a completely decentralized way.
Moreover, among all peers involved in a nogood ng, the only peer that is aware of
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PeerP2
S2: a2

M2:
m2 : ¬a2 ∨a1

Peer P1
S1: ¬a1 ∨¬b1

M1:

PeerP3
S3: b3

M3:
m3 : ¬b3 ∨b1

PeerP4
S4: ¬q4 ∨a4

M4:
m1 : ¬a4 ∨b4 ∨a1
m4 : ¬a4 ∨ c4 ∨a1 ∨b1

a1 b1

a
1 ,b

1
Fig. 1 An inconsistent P2PIS

ng is the one on which it is stored. The completeness of P2P- NG guarantees that all
nogoods are detected and they are stored somewhere on the network.

The WF- DeCA algorithm (Chatalic et al. 2006), can compute well-founded
proper implicates of a clausewith respect to�. As P2P- NG, it computes theminimal
mapping supports of the produced implicates. Simultaneously, while other peers of
the network taking part in the current reasoning are visited, all the nogoods stored on
these peers, that could invalidate mapping supports of produced implicates, are col-
lected and sent back together with the implicates. Mapping supports containing such
nogoods are discarded, as well as implicates with no remaining mapping support.

In the previous example, if P4 is asked to compute proper prime implicates of
q4, the local consequents that are obtained are {q4, a4, b4 ∨ a1, c4 ∨ a1 ∨ b1}, with
respective sets of mapping supports {∅}, {∅}, {{m1}} and {{m4}}, and no nogood
is collected. On P1, ⊥ is obtained as an implicate of a1, with the set of mapping
supports {{m3}}, and no nogood is collected. OnP2,⊥ is obtained as an implicate of
b1, with the set of mapping supports {{m2}} and the nogood {{m2,m3}} is collected.
Eventually, implicates obtained on P4 are b4, supported by {{m1,m3}}, and c4,
supported by {{m1,m2,m3}}. But since the latter contains the nogood {m2,m3} (that
has been retrieved when visitingP2) it is not well-founded and is thus discarded.

Note that in this approach, both p and ¬p can be derived as well-founded
consequents, from different consistent subsets of �. To deal with such cases, (Binas
and McIlraith 2008) has proposed an extension of this work, based on argumenta-
tion techniques. Their approach comes down to generalizing the notion of support
to minimal subsets of all formulae from which an implicate can be derived (not only
mappings). They assume the existence of a total order on the set of peers and intro-
duce priority degrees, that are used to prefer some implicates over others, according
to the priority of arguments supporting them. However, assuming such a global total
order on the whole set of peers looks unrealistic in the context of peer-to-peer and
it goes against the principles of a completely decentralized approach on possibly
dynamic networks.
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7 Conclusion

Artificial Intelligence, by considering reasoning models, has nurtured the develop-
ment of various logical approaches to reasoning from contradictory information.

This chapter sketches various approaches distinctive of the principle “make the
best of” with such information, without having to temper with it in some way or
another. It is all about tolerating inconsistency instead of attempting (in a presumably
vain endeavour) to avoid it.

Beside the problem of reasoning from contradictory information, there exist other
works on inconsistencymeasureswhose objective is to evaluate towhat extent a given
body of information is inconsistent (Hunter 2002; Dubois et al. 2003; Hunter and
Konieczny 2010; Grant and Martinez 2018).

Since early nineties, most works on argumentation focused either on defining par-
ticular semantics for the evaluation of arguments, or on showing how argumentation
can be used for solving different problems. Consequently, there is a great number
of semantics without formal tools for evaluating and comparing them. For bridging
this gap, Amgoud and Ben-Naim (2013) proposed properties for comparing rank-
ing semantics. Amgoud et al. (2017), Bonzon et al. (2017), Amgoud and Ben-Naim
(2018), Baroni et al. (2018) discussed other properties for different kinds of argumen-
tation frameworks (attack graphs, support graphs, bipolar graphs, weighted graphs).
These properties allow a better understanding of each semantics and a clear compar-
ison of pairs of semantics. They could also provide a classification of semantics in
terms of their suitability to particular applications.

References

Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2004) Distributed reasoning in a peer-
to-peer setting, short paper. In: 16th European conference on artificial intelligence (ECAI’04,
(ed) Lopez de Mántaras R, Saitta L. IOS, Valencia, Spain, pp 945–946

Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2005) Scalability study of peer-to-peer
consequence finding. In: Pack Kaelbling L, Saffiotti A (eds) 19th international joint conference
on artificial intelligence (IJCAI’05). Professional Book Center, Edinburgh, Scotland, U.K., pp
351–356

Adjiman P, Chatalic P, Goasdoué F, Rousset MC, Simon L (2006) Distributed reasoning in a peer-
to-peer setting: application to the semantic web. J Artif Intell Res 25:269–314

Amgoud L (2012a) The outcomes of logic-based argumentation systems under preferred semantics.
In: Hüllermeier E, Link S, Seeger B (eds) 6th international conference on scalable uncertainty
management (SUM’12), vol 7520. Lecture notes in artificial intelligence. Springer, Germany, pp
72–84

Amgoud L (2012b) Stable semantics in logic-based argumentation systems. In: Hüllermeier E, Link
S, Seeger B (eds) 6th international conference on scalable uncertainty management (SUM’12),
vol 7520. Lecture notes in artificial intelligence. Springer, Germany, pp 58–71

Amgoud L, Ben-Naim J (2013) Ranking-based semantics for argumentation frameworks. In: LiuW,
SubrahmanianV,Wijsen J (eds) 7th international conference on scalable uncertaintymanagement
(SUM’13), vol 8078. Lecture notes in artificial intelligence. Springer, USA, pp 134–147



Argumentation and Inconsistency-Tolerant Reasoning 437

Amgoud L, Ben-Naim J (2015) Argumentation-based ranking logics. In:Weiss G, Yolum P, Bordini
R, Elkind E (eds) 14th international conference on autonomous agents and multiagent systems
(AAMAS’15). ACM, Istanbul, Turkey, pp 1511–1519

Amgoud L, Ben-Naim J (2016) Axiomatic foundations of acceptability semantics. In: Baral C, Del-
grande J, Wolter F (eds) 15th international conference on principles of knowledge representation
and reasoning (KR’16). AAAI, Cape Town, South Africa, pp 2–11

Amgoud L, Ben-Naim J (2018) Weighted bipolar argumentation graphs: Axioms and semantics.
In: 27th international joint conference on artificial intelligence (IJCAI’18), Stockholm, Sweden

Amgoud L, Besnard P (2009) Bridging the gap between abstract argumentation systems and logic.
In: Godo L, Pugliese A (eds) 3rd international conference on scalable uncertainty management,
vol 5785. Lecture notes in artificial intelligence. Springer, USA, pp 12–27

Amgoud L, Kaci S (2007) An argumentation framework for merging conflicting knowledge bases.
Int J Approx Reason 45(2):321–340

Amgoud L, Prade H (2009) Using arguments for making and explaining decisions. Artif Intell J
173(3–4):413–436

Amgoud L, Ben-Naim J, Doder D, Vesic S (2016) Ranking arguments with compensation-based
semantics. In: Baral C, Delgrande J, Wolter F (eds) 15th international conference on principles
of knowledge representation and reasoning (KR’16). AAAI, South Africa, pp 12–21

Amgoud L, Ben-Naim J, Doder D, Vesic S (2017) Acceptability semantics for weighted argumen-
tation frameworks. In: Sierra C (ed) 26th international joint conference on artificial intelligence
(IJCAI’17). Melbourne, Australia, pp 56–62

Anderson A, Belnap N (1975) Entailment: the logic of relevance and necessity, vol 1. Princeton
University, Princeton

Arieli O, Avron A (1996) Reasoning with logical bilattices. J Log, Lang Inf 5(1):25–63
Aubry G, Risch V (2005) Toward a logical tool for generating new arguments in an argumentation-
based framework. In: 17th. IEEE international conference on tools with artificial intelligence
(ICTAI’05). IEEE Computer Society, China, pp 599–603

Baroni P, Cerutti F, GiacominM, Guida G (2011) AFRA: Argumentation framework with recursive
attacks. Int J Approx Reason 52(1):19–37

Baroni P, Rago A, Toni F (2018) How many properties do we need for gradual argumentation? In:
32nd AAAI conference on artificial intelligence (AAAI’18), New Orleans, USA

Bench-CaponTJM(2003)Persuasion in practical argument using value-based argumentation frame-
works. J Log Comput 13(3):429–448

Bench-Capon TJM, Doutre S, Dunne PE (2007) Audiences in argumentation frameworks. Artif
Intell 171(1):42–71

Benferhat S, Garcia L (2002) Handling locally stratified inconsistent knowledge bases. Studia
Logica 70(1):77–104

Benferhat S,Yahi S (2012)Étude comparative des relations d’inférence à partir de bases de croyances
partiellement préordonnées. Revue d’Intelligence Artificielle 26(1–2):39–61

Benferhat S, Cayrol C, Dubois D, Lang J, Prade H (1993a) Inconsistency management and priori-
tized syntax-based entailment. In: Bajcsy R (ed) 13th international joint conference on artificial
intelligence (IJCAI’93). Morgan Kaufmann, France, pp 640–645

Benferhat S, Dubois D, Prade H (1993b) Argumentative inference in uncertain and inconsistent
knowledge bases. In: Heckerman D, Mamdani A (eds) 9th conference on uncertainty in artificial
intelligence. Morgan Kaufmann, USA, pp 411–419

Benferhat S, Bonnefon JF, Da Silva Neves R (2005) An overview of possibilistic handling of default
reasoning: an experimental study. Synthese 146(1–2):53–70

Besnard P, Hunter A (1995) Quasi-classical logic: Non-trivializable classical reasoning from incon-
sistent information. In: Froidevaux C, Kohlas J (eds) 3rd European Conference on Symbolic and
Quantitative Approaches to Reasoning and Uncertainty (ECSQARU’95), Springer, Fribourg,
Switzerland, Lecture Notes in Artificial Intelligence, vol 946, pp 44–51

Besnard P,HunterA (2001)A logic-based theory of deductive arguments. Artif Intell 128(1–2):203–
235



438 L. Amgoud et al.

Besnard P, Hunter A (2008) Elements of argumentation. MIT, USA
Besnard P, Schaub T (1998) Signed systems for paraconsistent reasoning. J Autom Reason
20(1):191–213

Binas A, McIlraith S (2008) Peer-to-peer query answering with inconsistent knowledge. In:
Brewka G, Lang J (eds) 11th international conference on principles of knowledge representation
and reasoning, Morgan Kaufmann, Australia, pp 329–339, http://www.cs.toronto.edu/~sheila/
publications/bin-mci-kr08.pdf

Boella G, Gabbay D, van der Torre L, Villata S (2010) Support in abstract argumentation. In: Baroni
P, Cerutti F, Giacomin M, Simari G (eds) Computational models of argument (COMMA’10),
Frontiers in artificial intelligence and applications, vol 216. IOS. Desenzano del Garda, Italy, pp
111–122

Bonet B, Geffner H (1996) Arguing for decisions: A qualitative model of decision making. In:
Horvitz E, Jensen FV (eds) 12th conference on uncertainty in artificial intelligence (UAI’96).
Morgan Kaufmann, USA, pp 98–105

Bonzon E, Delobelle J, Konieczny S, Maudet N (2017) A parametrized ranking-based semantics
for persuasion. In: Moral S, Pivert O, Sánchez D, Marín N (eds) 11th international conference
on scalable uncertainty management (SUM’17), vol 10564. Lecture notes in computer science.
Granada, Spain, pp 237–251

Brewka G (1989) Preferred subtheories: An extended logical framework for default reasoning.
In: Sridharan NS (ed) 11th International Joint Conference on Artificial Intelligence (IJCAI’89).
Morgan Kaufmann, Detroit (MI), USA, pp 1043–1048

Brewka G (1994) Reasoning about priorities in default logic. In: Hayes-Roth B, Korf RE (eds) 12th
national conference on artificial intelligence (AAAI’94). AAAI/MIT, USA, pp 940–945

Carnielli W, Coniglio ME (2016) Paraconsistent logic: consistency, contradiction and negation,
logic, epistemology, and the unity of science, vol 40. Springer, Berlin

Cayrol C (1995)On the relation between argumentation and non-monotonic coherence-based entail-
ment. In: Mellish CS (ed) 14th international joint conference on artificial intelligence (IJCAI’95).
Morgan Kaufmann, Canada, pp 1443–1448

Cayrol C, Lagasquie-Schiex MC (1995) Non-monotonic syntax-based entailment: a classification
of consequence relations. In: Froidevaux C, Kohlas J (eds) 3rd European conference on symbolic
and quantitative approaches to reasoning and uncertainty (ECSQARU’95), vol 946. Lecture notes
in artificial intelligence. Springer, Switzerland, pp 107–114

Cayrol C, Lagasquie-SchiexMC (2005) Graduality in argumentation. J Artif Intell Res 23:245–297
Cayrol C, Lagasquie-SchiexMC (2013) Bipolarity in argumentation graphs: towards a better under-
standing. Int J Approx Reason 5(7):876–899. https://doi.org/10.1016/j.ijar.2013.03.001

Cayrol C, Royer V, Saurel C (1993) Management of preferences in assumption-based reasoning.
In: Yager R, Bouchon B (eds) Advanced Methods in Artificial Intelligence, Lecture Notes in
Artificial Intelligence, vol 682, Springer, pp 13–22, extended version in Technical Report IRIT-
CERT, 92-13R (University Paul Sabatier Toulouse)

Cayrol C, Lagasquie-Schiex MC, Schiex T (1998) Nonmonotonic reasoning: from complexity to
algorithms. Ann Math Artif Intell 22(3–4):207–236

Cayrol C, Dubois D, Touazi F (2014) On the semantics of partially ordered bases. In: Beierle C,
Meghini C (eds) 8th international symposium on foundations of information and knowledge
systems (FoIKS’14), vol 8367. Lecture notes in artificial intelligence. Springer, France, pp 136–
153

Chatalic P, Nguyen GH, Rousset MC (2006) Reasoning with inconsistencies in propositional peer-
to-peer inference systems. In: Brewka G, Coradeschi S, Perini A, Traverso P (eds) 17th European
conference on artificial intelligence (ECAI’06). IOS, Italy, pp 352–357

da Costa NCA (1974) On the theory of inconsistent formal systems. Notre Dame J Form Log
15(4):497–510

da Costa Pereira C, Tettamanzi A, Villata S (2011) Changing one’smind: Erase or rewind? In:Walsh
T (ed) 22nd international joint conference on artificial intelligence (IJCAI’11). IJCAI/AAAI,
Barcelona, Spain, pp 164–171

http://www.cs.toronto.edu/~sheila/publications/bin-mci-kr08.pdf
http://www.cs.toronto.edu/~sheila/publications/bin-mci-kr08.pdf
https://doi.org/10.1016/j.ijar.2013.03.001


Argumentation and Inconsistency-Tolerant Reasoning 439

Da Silva Neves R, Bonnefon JF, Raufaste E (2002) An empirical test of patterns for nonnomotonic
reasoning. Ann Math Artif Intell 34(1–3):107–130

Dubois D, Lang J, Prade H (1991) Inconsistency in possibilistic knowledge bases - to live or not
to live with it. In: Zadeh LA, Kacprzyk J (eds) Fuzzy logic for the management of uncertainty.
Wiley, New York, pp 335–351

Dubois D, Konieczny S, Prade H (2003) Quasi-possibilistic logic and its measures of information
and conflict. Fundamenta Informaticæ 57(2–4):101–125

Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artif Intell J 77(2):321–357

Dunne P, Hunter A, McBurney P, Parsons S, Wooldridge M (2011) Weighted argument systems:
Basic definitions, algorithms, and complexity results. Artif Intell J 175(2):457–486

Elvang-Gøransson M, Hunter A (1995) Argumentative logics: reasoning from classically inconsis-
tent information. Data Knowl Eng 16(2):125–145

Fouqueré C, Quatrini M (2012) Un cadre formel issu de la théorie de la démonstration pour la
théorie de l’argumentation. Math Soc Sci 2(198):49–83

Gärdenfors P, Makinson D (1994) Nonmonotonic inference based on expectations. Artif Intell J
65:197–245

Geffner H (1992) Default reasoning: causal and conditional theories. MIT, USA
Gottlob G (1992) Complexity results for nonmonotonic logics. J Log Comput 2(3):397–425
Grant J, Martinez MV (eds) (2018) Measuring inconsistency in information, studies in logic, vol
73. College Publications

Hunter A (2002) Measuring inconsistency in knowledge via quasi-classical models. In: Dechter
R, Sutton R (eds) 18th american national conference on artificial intelligence (AAAI’2002).
AAAI/MIT, Canada, pp 68–73

Hunter A, Konieczny S (2010) On the measure of conflicts: shapley inconsistency values. Artif
Intell J 174(14):1007–1026
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Abstract This chapter focuses on the dynamics of information represented in
logical or numerical formats, from pioneering works to recent developments. The
logical approach to belief change is a topic that has been extensively studied in
Artificial Intelligence, starting in the mid-seventies. In this problem, logical formu-
las represent beliefs held by an intelligent agent that must be revised upon receiving
new information that conflicts with prior beliefs and usually has priority over them.
In contrast, in the merging problem, the logical theories that must be combined have
equal priority. Such logical approaches recalled here make sense for merging beliefs
as well as goals, even if each of these problems cannot be reduced to the other. In
the last part, we discuss a number of issues pertaining to the fusion and the revision
of uncertainty functions representing epistemic states, such as probability measures,
possibilitymeasures and belief functions. The need to copewith logical inconsistency
plays a major role in these problems. The ambition of this chapter is not to provide
an exhaustive bibliography, but rather to propose an overview of basic notions, main
results and new research issues in this area.
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1 Introduction

The dynamics of beliefs, or yet belief change, is an important research topic in
Artificial Intelligence. In many practical artificial intelligence problems, we face
the situation where an agent entertains assumptions about the world and receives
a new reliable piece of information that contradicts prior beliefs of this agent or
information previously received. Such information can be imperfect in the sense that
it is possibly incomplete, imprecise or uncertain. In this approach, it is assumed that
assumptions about the world, called “beliefs”, are constructed by an intelligent agent
from information received (observations, testimonies) and also from background
knowledge or experience. When a newpiece of information comes in, and contradicts
the current epistemic state of the agent, revision consists in restoring consistency,
so as to integrate the new piece of information, while minimally modifying initial
beliefs. Besides, if the new input comes from several sources, the corresponding
pieces of information can contradict each other, in which case information fusion
aims to extract reliable facts, by exploiting complementarity between sources, and
solving conflicts so as to reduce imprecision and uncertainty.

First works in belief revision can be found in the literature on subjective probabil-
ities, mainly the works of Richard Jeffrey in the 1960’s. In this framework (Jeffrey
1983), the agent’s beliefs are represented by a measure of probability and belief revi-
sion is couched in terms of what Jeffrey calls “probability kinematics”. Some time
later, logical approaches to revision have been developed in the area of epistemology,
under the name “theory change”, the starting point being the study of how scientific
theories evolve. First results on logical change operations date back to years 1975–
1977 in the field of epistemology (Levi 1980) and the history of sciences (Harper
1975).

Besides, in the area of databases, the issue of updating has been the focus point of
several works, in particular (Fagin et al. 1983), where a methodology for updating
logical deductive databases based onmodel theorywas proposed. This approach does
not rely on a set of formulas, rather on a set of logical interpretations. In the mid-
1980’s, connections between results obtained in epistemology, artificial intelligence
and databases have been laid bare, and this convergence process proved fruitful.

First attempts at formalizing revision in artificial intelligence come from philo-
sophical logics with the works of Carlos Alchourrón, Peter Gärdenfors and David
Makinson (Alchourrón et al. 1985; Gärdenfors 1988) in the 1980s. They proposed
postulates, now known as AGM postulates, that characterize revision operations.
Later on, they proposed first concrete revision operations for theories, i.e., deduc-
tively closed sets of logical formulas.1

The originality of the AGM approach lies in the abstract standpoint chosen for
studying the revision problem. This specificity can be highlighted by the following
aspects:

1Logical formulas and their logical consequences.
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• The study of postulates that any reasonable revision operation should satisfy
(instead of focusing on a particular revision operation as in previous works);

• Aconsistency-based approach, so-called coherentist, that insists on the importance
ofmaintaining the consistency of the set of beliefs.2 This approach does not depend
on the nature of beliefs (sources, justification, distinction between explicit and
derived beliefs · · · ); it relies on a very simple representation framework for pieces
of information (beliefs) that play the same role (hence the use of logical theories).

This view is in oppositionwith the so-called foundational approaches,which insist on
the different roles played by available pieces of information (e.g. the original ones vs.
the derived ones). The latter historically refer to techniques from truth-maintenance
systems (Doyle 1979; de Kleer 1986), that handle justifications for each agent belief.

Coherentist approaches have the merit to focus on the belief change process per
se, so as to reach a higher level of generality. However, they can be criticized, because
the idea of assigning different statuses to information items (justifications, level of
reliability, or genericity, etc.) is something natural that is not captured by the AGM
framework. The coherentist approach must be seen as a first step enabling general
principles for revision to be laid bare. Then the notions thus established can be
adapted to the foundational setting where pieces of information do not have the same
status.

Let us mention as other examples of approaches that are linked to the founda-
tional point of view, the revision of belief bases that are not deductively closed, after
Hansson (1998, 1993, 1999), where a distinction is made between explicit beliefs
in the base and implicit beliefs that are deduced from it via inference. Nethertheless
these approaches take into account the “coherentist” framework.

Another distinction ismadebetweenbeliefs andknowledge, the latter being under-
stood as generic information (Dubois 2008). Beliefs pertain to the current state of the
world, and evolve as new observations of the same type are acquired. In contrast with
beliefs, knowledge, due to its genericity, is more stable and seldom questioned by
the arrival of new observations on the current state of the world. However the belief
revision process relies on the agent’s available knowledge to construct new beliefs
in agreement with the new observations. Belief revision is thus clearly related to
non-monotonic reasoning and non-monotonic logics as detailed in chapter “Knowl-
edge Representation: Modalities, Conditionals, and Nonmonotonic Reasoning” of
this volume.

Regarding information fusion, many publications have appeared since the 1970’s
in the setting of probability theory (see Genest and Zidek 1986; Cooke 1991 for sur-
veys) and more general uncertainty theories (e.g., the combination rule of Dempster
in evidence theory (Shafer 1976) and the conjunction and disjunction connectives
in possibility theory (Dubois and Prade 1988)). Besides, the problem of coherent
merging of heterogeneous logical databases has produced many works in the area of
databases since the 1980’s. It is only from the mid 1990’s that logical approaches to
fusion raised interest in the AI community (Baral et al. 1991; Revesz 1993, 1997;

2However, methods for inconsistency management are surveyed at a more general level in chapter
“Argumentation and Inconsistency-Tolerant Reasoning” of this volume.
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Lin and Mendelzon 1998; Cholvy and Hunter 1997). A set of postulates character-
izing the rational behavior of merging operations was proposed by Konieczny and
Pino Pérez (2002a), based on the works by Revesz (1993, 1997), quite in the same
spirit as the AGM postulates of belief revision. The multisource merging problem
has been the focus of numerous studies in the recent past years.

Be it about revision or fusion, there are many concrete methods available, because
there does not seem to exist a universal revision or fusion operation that would be
satisfactory in all circumstances. The choice of the method depends on the epistemic
status of pieces of information to be handled, and also on the application context.

This chapter is composed of six sections. The next one is dedicated to logical
approaches to belief revision and Sect. 3 is devoted to iterated belief revision. Then
Sect. 4 gives the state of art about logical approaches to theory merging. Section5
provides a quick survey of numerical approaches to revision and fusion before con-
cluding in Sect. 6. The ambition of this chapter is not to provide an exhaustive bibliog-
raphy. It rather proposes an overview of the main results and opens on new research
issues in revision and merging. However this chapter does not consider problems
of updating and reasoning about action, which are the topic of chapter “Reasoning
About Action and Change” of this volume.

2 Belief Revision

In this section, an agent’s beliefs are represented by logical formulas. A belief base
is a finite set of logical formulas. The deductive closure of a belief base is called
a belief set or theory. Belief revision consists in making an agent’s beliefs evolve
in the presence of new information of the same nature as her beliefs. The expected
properties of belief revision operators are intuitively summarized by three principles:

• Success3: change must succeed, i.e. after revision, the new information item must
be accepted in the new belief set.

• Consistency: after revision, the sets of beliefs must be consistent (In order to avoid
trivialization).

• Minimal change: the agent’s beliefs have to be modified as little as possible in
order to ensure that no information is removed without necessity and no unwanted
information is added.

2.1 Principles and Belief Revision Approaches

The various revision operators can be classified according to the formal frame-
work used for representing information: logical (syntactic, semantic) or quantitative

3Also called priority to new information.
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(for instance, numerical). Without being exhaustive, we give an overview of the main
logical approaches proposed in the literature.

2.1.1 Coherentist Logical Approaches

Within these approaches, the agent’s beliefs are supposed to consist of a logical
theory, often represented by a single propositional formula. The revision of a (closed)
belief set amounts (in the finite propositional case) to looking for the models of the
new information item closest to the models of the formula representing the belief set.
The minimal change principle is defined in terms of pre-orders over the language
formulas (under the irrelevance of syntax hypothesis), like in the AGM approach
detailed below, or in terms of models like in the Katsuno and Mendelzon (1991)
approach or (Grove 1988). Within the approaches by Borgida (1985) and Dalal
(1988b), this pre-order may be represented in term of distances. For Dalal’s operator
the chosen distance is the Hamming distance between interpretations, that is the
number of propositional variables on which these interpretations differ. The revision
operation consists in looking formodels of the new information itemwhoseHamming
distance from the models of the belief set is as small as possible. Within the general
approach of Katsuno and Mendelzon (1991) one has to look for the models of the
new information item whose plausibility is maximal, given a total pre-order over
interpretations representing this plausibility relation.

Note that coherentist approaches to revision are syntax-independent.Yet, theymay
fail to be language-independent, namely changing the set of propositional variables
used to describe a problem may affect the result of the revision process (while, for
instance, inference in propositional logic is language-independent). This issue, even
if already mentioned in the early nineties (Sombé 1994), was seriously studied only
recently by Marquis and Schwind (2014).

2.1.2 Syntactic Approaches

With syntactic approaches, greater importance is given to thewaybeliefs are encoded.
Revision deals with finite belief bases, that is finite sets of propositional formulas.
Drawing inspiration from theory revision approaches, Nebel (1991) proposed, in
particular, an operation related to partial intersections (partial meet) within the con-
text of finite belief bases, briefly presented in Sect. 2.3.1. Besides, most approaches
stem from the construction of consistent subbases maximal according several cri-
teria (Benferhat et al. 1993; de Kleer 1990; Lehmann 1995). From a dual point
of view, other approaches rely on the minimal withdrawal of formulas in order to
restore consistency with the new additional information, like kernel revision where
incision functions remove subsets of formulas minimal according to set inclusion
(Hansson 1997) or like the approach based on removed sets, i.e., subsets of formulas
to remove that are minimal according to cardinality (Papini 1992;Wurbel et al. 2000;
Benferhat et al. 2010a). Within these approaches, two equivalent bases may be dif-
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ferently revised; for instance {a, b} has not the same meaning as the formula a ∧ b
any longer, which means that the comma must be interpreted in a non-classical way
(Konieczny et al. 2005). These approaches are closely related to consistency restora-
tion methods presented in the chapter “Argumentation and Inconsistency-Tolerant
Reasoning” of this volume.

2.2 The AGM Approach and its Variants

Alchourrón, Gärdenfors and Makinson provided a formalization of belief revision
principles for logic theories in terms of postulates (Alchourrón et al. 1985;Gärdenfors
1988). This axiomatic approach, called the AGM paradigm, became a standard for
the theory of belief revision in artificial intelligence. For more details the reader is
referred to the special issue of the Journal of Philosophical Logic dedicated to the 25
years of the AGM theory (Fermé and Hansson 2011b), or to the papers dedicated to
the genesis of this theory (Gärdenfors 1992;Makinson2003;Gärdenfors 2011; Fermé
and Hansson 2011a). The AGM paradigm considers the problem of the evolution of
a theory, i.e., a deductively closed set of classical logic formulas, K = Cn(K )where
Cn(K ) is the set of logical consequences of K . Actually, the AGM paradigm makes
sense for any monotonic (Tarskian) logic equipped with classical connectives, for
instance first-order or modal logic.

Let K be an agent’s beliefs. A formula α may have 3 different epistemic statuses:

• α ∈ K , the agent believes that α is true. We say that α is accepted by the agent.
• ¬α ∈ K , the agent believes that α is false. We say that α is rejected by the agent.
• α /∈ K and ¬α /∈ K , then the truth value of α is unknown (indeterminate) for the
agent.

Belief change operators can be defined as transitions between these different epis-
temic states, as illustrated in Fig. 1.

When a formula changes from the indeterminate status to the accepted one
(or symmetrically rejected one), this transition is called expansion, and denoted
by +, since one only adds information (one moves from K to K + α = Cn(K ∪
{α})). The reverse transition (from accepted/rejected to indeterminate) is called

Fig. 1 Transitions between
epistemic states
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contraction, denoted by −, since one needs to remove information from the agent’s
beliefs. When the formula directly switches from the “accepted” status to “rejected”
one (or symmetrically from “rejected” to “accepted”) the transition is called revision
and is denoted by ∗. In this case, the agent changes its mind on the truthfulness of a
piece of information. As suggested by Fig. 1, it is possible to split revision, which is
for the piece of information α a transition from the rejected status to the accepted one,
into a contraction step, which implements the transition from the rejected status to
the unknown one, followed by an expansion step, which performs the transition from
the unknown status to the accepted one. This is, more formally, expressed by Levi’s
identity K ∗ α = (K − ¬α) + α. Besides, Harper’s identity allows one to define a
contraction operator from a revision one: K − α = K ∩ (K ∗ ¬α). These identities
show the very close link between revision and contraction operators, i.e., the ones can
be defined from the others. However, logicians and philosophers usually consider the
contraction operators as basic, while most researchers in AI select revision operators
as primitive because they are the most needed ones in the field of knowledge based
systems.

For these three types of belief change operators, we want to ensure that they have
the expected behavior, which is reflected by the satisfaction of rationality properties.
In the following, we focus on revision but we do not study expansion nor contraction
operations. There exists a set of properties any reasonable belief change operator
should satisfy. These postulates insist on minimal change and the need to maintain
the consistency of the belief sets through the revision operations.

2.2.1 AGM Postulates

A revision operator ∗ is a function that maps a theory K and a formula α to a new
theory K ∗ α which satisfies the following properties4:

(K*1) K ∗ α is a theory (closure).
(K*2) α ∈ K ∗ α (success).
(K*3) K ∗ α ⊆ K + α (inclusion).
(K*4) If ¬α /∈ K , then K + α ⊆ K ∗ α (vacuity).
(K*5) K ∗ α = K⊥ if and only if |= ¬α (consistency preservation).
(K*6) If |= α ↔ β, then K ∗ α = K ∗ β (syntax independence).
(K*7) K ∗ (α ∧ β) ⊆ (K ∗ α) + β (conjunctive inclusion).
(K*8) If ¬β /∈ K ∗ α, then (K ∗ α) + β ⊆ K ∗ (α ∧ β) (conjunctive vacuity).

The interpretation of these postulates is the following: Postulate K*1 expresses
that the result of revision is a theory. PostulateK*2 says that the new information item
α is true in the new theory. Postulate K*3 means that revising by new information
cannot add any belief that is not a consequence of the new information item and of
the theory. Postulates K*3 and K*4 together state that when the new information
item does not contradict the initial theory, then the result of revision boils down to

4K + α = Cn(K ∪ {α}). Besides K⊥ denotes an inconsistent theory.



448 D. Dubois et al.

the expansion of this theory. They reflect an elementary form of minimal change
(if the new information item does not contradict a prior information, the latter one is
unchanged). K*5 expresses the fact that the only way to get an inconsistent theory
by revision is to revise by an inconsistent information. K*6 says that the result of
revision has to be independent from the syntactic encoding of the new information
item. These six postulates are basic for revision operators.

The two postulates K*7 and K*8 are called additional postulates. They state that
revising by the conjunction of two pieces of information amounts to a revision by
the first one and an expansion by the second one whenever possible (whenever the
second piece of information does not contradict any belief resulting from the first
revision). This property is rather natural within different choice theories (decision,
social choice etc.) (Rott 2001).

The expansion operator K + α has also been axiomatized in the framework of
the AGM approach in order to justify the fact that it consists of adding α to K
and computing the deductive closure of K ∪ {α}. When α is consistent with K , the
expansion of K coincides with its revision.

2.2.2 KM Postulates

In order to characterize different semantic approaches within the same framework,
Katsuno and Mendelzon (1991) restricted the AGM framework to standard, finite
propositional logic. They reformulated the AGM postulates for the revision of a
propositional formula representing a set of beliefs or a theory.

Let ϕ, μ and ψ be propositional formulas, respectively the prior information and
the new information item. The operator ◦ is a revision operator if it satisfies the
following postulates:

(R1) ϕ ◦ μ |= μ.
(R2) If ϕ ∧ μ is consistent then ϕ ◦ μ ≡ ϕ ∧ μ.
(R3) If μ is consistent then ϕ ◦ μ is consistent.
(R4) If ϕ1 ≡ ϕ2 and μ1 ≡ μ2 then ϕ1 ◦ μ1 ≡ ϕ2 ◦ μ2.
(R5) (ϕ ◦ μ) ∧ ψ |= ϕ ◦ (μ ∧ ψ).
(R6) If (ϕ ◦ μ) ∧ ψ is consistent then ϕ ◦ (μ ∧ ψ) |= (ϕ ◦ μ) ∧ ψ .

Let ∗ be a revision operator over theories and ◦ be a revision operator on proposi-
tional formulas. We say that the operator ∗ corresponds to the operator ◦ if when
K = Cn(ϕ), then K ∗ α = Cn(ϕ ◦ α). The interpretation is thus clear: R1 is equiv-
alent to K*2 (success); R2 is equivalent to K*3 and K*4 (reduction to expansion in
case of consistency between prior information and the new information item); R3 is
the consistency postulateK*5 andR4 us the irrelevance of syntaxK*6.5 Finally,R5
and R6 are equivalent toK*7 andK*8, respectively. And de facto one can prove the
following theorem (Katsuno and Mendelzon 1991):

5This postulate is omitted if formulas are replaced by their sets of models.
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Theorem 1 Let ∗ be a revision operator and ◦ its corresponding operator. Then ∗
satisfies the postulates K*1–K*8 if and only if ◦ satisfies the postulates R1–R6.

2.3 Representation Theorems

While postulates describe the desirable properties of revision operators, repre-
sentation theorems characterize revision operators satisfying these postulates. We
only present some representation theorems (there are other ones, see for example
Alchourrón and Makinson 1985; Fariñas del Cerro and Herzig 1996).

2.3.1 Partial Intersections of Theories

Partial meet revision operators rely on the idea of keeping as many formulas as
possible from the initial theory, which expresses the minimal change principle. One
could wish to keep the set of all subsets of the theory that do not imply the negation
of information to be added. More formally, Let K be a theory and α be a proposition.
The set of maximal sub-theories of K not implying ¬α is denoted by K⊥¬α.6

Several revision operators can be defined from this set. A first approach, called
“full meet” revision, consists in considering the expansion by α of the set∩(K⊥¬α)

of formulas that can be inferred from all the sub-theories of K⊥¬α. This revision
operation, derived from the Levi’s identity, is too cautious, since it is possible to
show that K ∗ α = Cn({α}) whenever ¬α ∈ K , in other words, all initial beliefs are
forgotten (Gärdenfors 1988).

A more constructive contraction operation consists in selecting a single maximal
sub-theory K ′ not implying ¬α. In this case, if ¬α ∈ K , it is possible to show that
either¬α ∨ β ∈ K − ¬α or¬α ∨ ¬β ∈ K − ¬α (Gärdenfors 1988). Consequently,
the revision operation obtained thanks to the Levi’s identity is extreme, since for any
formula β, either β ∈ K ∗ α or ¬β ∈ K ∗ α, too many beliefs are added (resulting
in complete belief sets, i.e., having a single model).

A compromise solution between the two previous revision operations is to
only keep some sub-theories (the “best”, the most “typical”, etc ...). The contrac-
tion operation is defined by selecting a subset S (K⊥¬α) of K⊥¬α and stating
K − ¬α = ∩S (K⊥¬α) if ¬α ∈ K (partial meet).

A representation theorem specifies that every partial meet revision operator, pro-
duced by the Levi’s identity, satisfies the expected logical properties for revision
and conversely every operator satisfying these logical properties can be defined by
a partial meet revision operator. More formally (Alchourrón et al. 1985):

Theorem 2 An operator ∗ is a partial meet revision operator if and only if it satisfies
the postulates K*1–K*6.

6It is reduced to {K } if K is consistent with α.
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It is possible to constrain the selection function to be relational. A selection
function S is relational if and only if for every K there exists a relation ≤ over
the union of all K⊥α for every non-tautological α of K such that S (K⊥α) =
{K ′ ∈ K⊥α | K ′ ≤ K ′′,∀K ′′ ∈ K⊥α}. If≤ is transitive thenS is called relational
transitive. Thus the following result holds (Alchourrón et al. 1985):

Theorem 3 An operator ∗ is a relational transitive partial meet revision operator
if and only if ∗ satisfies the postulates K*1–K*8.

2.3.2 Epistemic Entrenchment

The formulas of a theory can be ranked according to their importance, plausibility
or reliability: thus only the least entrenched formulas are removed, which reflects
their tendency to remain inside a theory throughout contraction. More formally, let
two formulas α and β, the notation α ≤EE β means that β is at least as entrenched
(certain/prioritary) as α and α <EE β means that β is more entrenched than α. The
following postulates have been proposed (Gärdenfors 1988). The relation ≤EE is
called epistemic entrenchment if it satisfies the following properties:

(EE1) If α ≤EE β and β ≤EE γ , then α ≤EE γ (transitivity).
(EE2) If α |= β, then α ≤EE β (monotonicity).
(EE3) α ≤EE α ∧ β or β ≤EE α ∧ β (conjunction).
(EE4) If K �= K⊥, α /∈ K if and only if ∀β α ≤EE β (minimality).
(EE5) If β ≤EE α ∀β, then |= α (maximality).

Thanks to EE1, these axioms ensure that the relation ≤EE is a complete pre-order
over the formulas of the language.EE2means that if a formula is implied by another,
the first one is at least as entrenched as the second one, since it cannot be less certain
than the latter. In the context of the other postulates EE3 specifies that if one wishes
to give up α ∧ β from K , this can be performed only removing either α or β. The loss
of information resulting from the withdrawal of α ∧ β is the same as the withdrawal
of one of the two. EE4means that the formulas that do not belong to K are minimal
in≤EE (the formulas at least slightly entrenched thus form a deductively closed set).
EE5 expresses that the formulas most entrenched are the tautologies. Note that two
equivalent formulas are equally entrenched and this relation may be defined over sets
of models. Moreover K is completely defined by ≤EE .

Taking into account the epistemic entrenchment of the formulas of K , a con-
traction operation can be defined in order to only remove the least important for-
mulas. More precisely, if α is not a tautology β ∈ K − α if and only if β ∈ K and
α ≤EE α ∨ β.

Conversely, from a contraction operation an epistemic entrenchment can be
defined: α <EE β if and only if α /∈ K − (α ∧ β). The revision operation obtained
from the Levi’s identity satisfies the postulates K*1–K*8. Moreover, the following
representation theorem specifies that every revision operation satisfying the AGM
postulates can be defined in terms of epistemic entrenchment (Gärdenfors 1988).
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Theorem 4 A revision operation ∗ satisfies K*1–K*8 if and only if there exists
a binary relation over the formulas of K , denoted by ≤, satisfying the postulates
EE1–EE5.

One can directly define K ∗ α from the dual relation ≤Π of ≤EE : α ≤Π β if and
only if ¬β ≤EE ¬α. This relation is known from Lewis (1973) as a comparative
possibilistic relation and it is characteristic of possibility measures (Dubois 1986),
while ≤EE is characteristic of necessity measures (Dubois and Prade 1991). The
underlying vision of uncertainty in the AGM approach is thus possibilistic and not
probabilistic. In this case, It is clear that K = {α : α >EE ¬α} = {α : α >Π ¬α}
and K ∗ α = {β : β ∧ α >Π ¬β ∧ α}.

One can see in K ∗ α the set of beliefs accepted within the environment where α

is true (a form of conditioning of the possibility relation). From a plausibility relation
� between formulas satisfying a minimal number of properties (like EE2), one can
retrieve the six basic postulates of revision K*1–K*6 just by imposing the closure
of the set of accepted beliefs in the sense of � (Dubois et al. 2004).

2.3.3 Faithful Assignments

At the semantic level, Katsuno and Mendelzon (1991) interpret formulas ϕ in terms
of faithful assignments that rank interpretations of the language in terms of relative
plausibility. More formally, a faithful assignment is a function that maps any theory
represented by a propositional formula ϕ to a pre-order over interpretations ≤ϕ such
that:

(1) If ω |= ϕ and ω′ |= ϕ, then ω =ϕ ω′.
(2) If ω |= ϕ and ω′ �|= ϕ, then ω <ϕ ω′.
(3) If ϕ1 ≡ ϕ2 then ≤ϕ1=≤ϕ2 .

7

The following result holds (Katsuno and Mendelzon 1991):

Theorem 5 A revision operator ◦ satisfies the postulates R1–R6 if and only there
exists a faithful assignment which maps each formula to a total pre-order ≤ϕ such
that Mod(ϕ ◦ μ) = min(Mod(μ),≤ϕ).

This result in terms of models is easely linked to Theorem4, noting that the total
pre-order ≤ϕ induces a possibility relation over the formulas (β ≤Π α if and only if
∃ω |= α,∀ω′ |= β, ω ≤ϕ ω′).Within this approach,more possible thanmeans closer
to ϕ than, which allows one to interpret the theorem in terms of minimal change. This
form of revision is the ordinal version of possibilistic conditioning, which satisfies
all the AGM postulates (Dubois and Prade 1992). One can see that the theory of
qualitative possibility initiated by Lewis is central to the AGM approach. De facto,
the view of revision according to AGM as expressed by the revision postulatesK*7–
K*8 is in agreement with possibility theory, but not with other uncertainty theories
like probability theory.

7Since it is a semantic approach, this pre-order does not depend on the syntactic form of the formula.
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3 Iterated Revision

The AGM approach focuses on the evolution of the agent’s beliefs, represented by a
theory. The Katsuno and Mendelzon’s representation theorem shows that revision is
guided by a plausibility pre-order over interpretations, however it does not discuss
the evolution of this pre-order. By contrast knowing how to revise a pre-order makes
it possible to iterate the revision process. However, it requires a representation richer
than a simple belief set. The AGM characterization is not sufficient to model the
iteration of the revision process. It requires additional constraints on the evolution
of the plausibility pre-order. As we shall see later, this plausibility pre-order models
the notion of epistemic state.

3.1 Postulates for Iterated Revision

An epistemic state, denoted by Ψ , encodes the agent’s current beliefs but also other
information on the relative plausibility of formulas. This epistemic state is, within
the AGM framework, represented by a total pre-order ≤Ψ representing the relative
plausibility of interpretations. More generally, an epistemic state is an abstract entity
which symbolizes an agent’s belief state, fromwhich a (closed) belief set, denoted by
Bel(Ψ ), can be extracted, representing the agent’s accepted current beliefs, induced
by the epistemic state, thanks to the pre-order ≤Ψ .8

Darwiche and Pearl (1997) reformulated the Katsuno andMendelzon’s postulates
for the revision of epistemic states and added specific postulates for its iteration.
Postulates R
1, R
2, R
3, R
5, R
6 are directly obtained from the KM postulates
replacing ϕ with Bel(Ψ ) and ϕ ◦ μ by Bel(Ψ ◦ μ). In contrast, postulate R
4 is
weakened:

(DP4) If Ψ1=Ψ2 and μ1≡μ2, then Bel(Ψ1 ◦ μ1) ≡ Bel(Ψ2 ◦ μ2).

It requires the epistemic states to be identical (not only the belief sets). This subtle
difference allows for consistently making a link with suitable postulates for iteration.
These new postulates will constrain the behavior of the operators during successive
iterations:

(C1) If α |= μ, then Bel((Ψ ◦ μ) ◦ α) ≡ Bel(Ψ ◦ α).
(C2) If α |= ¬μ, then Bel((Ψ ◦ μ) ◦ α) ≡ Bel(Ψ ◦ α).
(C3) If Bel(Ψ ◦ α) |= μ, then Bel((Ψ ◦ μ) ◦ α) |= μ.
(C4) If Bel(Ψ ◦ α) �|= ¬μ, then Bel((Ψ ◦ μ) ◦ α) �|= ¬μ.

The interpretation of these postulates is the following. C1 expresses that if two
pieces of information are successively incorporated and if the second one implies

8Within the AGM approach, the epistemic state is attached to a theory K and its revision. Here the
theory Bel(Ψ ) is dictated by the epistemic state ≤Ψ . Its models are the minimal interpretations of
≤Ψ .
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the first one then only incorporating the second one gives the same result. C2 does
the same if two contradictory pieces of information come in.

C3 states that a piece of information should be kept if revision is performed by a
piece of information which, given a belief set, implies the first one.

C4 expresses that no information can contribute to its own dismissal.
In (Darwiche and Pearl 1994) postulatesC1–C4 have first been proposed as addi-

tional postulates to usual Katsuno andMendelzon’s postulatesR
1–R
6. Freund and
Lehmann (1994) have shown that C2 is not in agreement with the AGM postulates.
Moreover Lehmann (1995) has shown that postulates C1 and R
1–R
6 imply C3
andC4. Darwiche and Pearl (1997) rewrote their postulates and the AGM postulates
int terms of epistemic states which solves this contradiction and makes C3 and C4
not redundant.

Faithful assignments have also been generalized to epistemic states. Conditions
(1) and (2) are directly renewed replacing ϕ with Bel(Ψ ). In contrast, condition (3)
becomes: if Ψ1 = Ψ2, then ≤Ψ1=≤Ψ2 . It requires the epistemic states to be equal.
The representation theorem is generalized as follows in (Darwiche and Pearl 1997):

Theorem 6 A revision operator ◦ satisfies postulates R
1, R
2, R
3, DP 4, R
5,
R
6 if and only if there exists a faithful assignment that maps each epistemic state
Ψ to a total pre-order over interpretations ≤Ψ such that: Mod(Bel(Ψ ◦ μ)) =
min(Mod(μ),≤Ψ ).

A second representation theorem in (Darwiche and Pearl 1997) adds constraints
relative to iteration:

Theorem 7 A revision operator that satisfies R
1, R
2, R
3, DP4, R
5, R
6 also
satisfiesC1–C4 if and only if the operator and its corresponding faithful assignment
satisfy:

(CR1) If ω |= μ and ω′ |= μ, then ω ≤Ψ ω′ iff ω ≤Ψ ◦μ ω′.
(CR2) If ω |= ¬μ and ω′ |= ¬μ, then ω ≤Ψ ω′ iff ω ≤Ψ ◦μ ω′.
(CR3) If ω |= μ and ω′ |= ¬μ, then ω <Ψ ω′ only if ω <Ψ ◦μ ω′.
(CR4) If ω |= μ and ω′ |= ¬μ, then ω ≤Ψ ω′ only if ω ≤Ψ ◦μ ω′.

This representation theorem is important because it means that iterated revision
operators can be considered as transition functions between total pre-orders (with
the constraints given by CR1–CR4), and thus total pre-orders can be considered
as the canonical representation of epistemic states, since the representation theorem
expresses that whatever is the exact representation of epistemic states, it is possible
to model their behavior through a faithful assignment.

Other postulates have been proposed. Boutilier (1993, 1996) proposed an absolute
minimization postulate which can be considered as performing a minimal change on
the total pre-order corresponding to epistemic states: (CB) If Bel(Ψ ◦ α) |= ¬μ then
Bel((Ψ ◦ α) ◦ μ) ≡ Bel(Ψ ◦ μ).

However, this change minimization leads to a bad behavior of the revision oper-
ator, since it totally erases the effect of α if the second piece of information μ con-
tradicts the belief set after revising by α (Darwiche and Pearl 1997). It is somewhat
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problematic that the Darwiche and Pearl’s characterization permits such an operator.
It thus has been proposed to define admissible revision operators, in order to remove
it. These operators are defined by an additional iteration postulate (Booth and Meyer
2006):
(P) If Bel(Ψ ◦ α) �|= ¬μ then Bel((Ψ ◦ μ) ◦ α) |= μ.
A revision operator is called admissible (Booth and Meyer 2006) if it satisfies R
1,
R
2, R
3, DP4, R
5, R
6, C1, C2 and P9 and the corresponding representation
theorem is obtained in (Booth and Meyer 2006; Jin and Thielscher 2007):

Theorem 8 Let ◦ be a revision operator which satisfies R
1, R
2, R
3, DP4, R
5,
R
6. The operator ◦ satisfies P if and only if the operator and its corresponding
faithful assignment satisfy:
(CP) If ω |= μ and ω′ |= ¬μ, then ω ≤Ψ ω′ only if ω <Ψ ◦μ ω′.

A generalization of iterated revision using so-called improvement operators has
beenproposed later in (Konieczny and Pino Pérez 2008). These operators carry out
a more cautious form of change, where the plausibility of the new information item
increases within the agent’s epistemic state, but this new piece of information is not
systematically totally accepted after revision, and therefore the success postulateR
2
is not satisfied anymore.

There exists a number of iterated revision operators in the literature. We only
present some of them; for a more exhaustive survey see (Rott 2009) and (Konieczny
and Pino Pérez 2002b).

For instance, Boutilier proposes an operator called natural revision that stems
from the principle of absolute minimal change, and that tries to modify as lit-
tle as possible the total pre-order corresponding to the initial epistemic state. The
idea is to let the most plausible models of the new piece of information be mini-
mal in the revised pre-order, the relative ordering between the other interpretations
being unchanged. This operator satisfies Darwiche and Pearl’s postulates. It is the
only revision operator which satisfies properties R
1, R
2, R
3, DP4, R
5, R
6,
C1–C4 and the property of absolute minimization CB (Darwiche and Pearl 1997).
One can note that the more drastic revision rule for revision with memory proposed
by Papini (2001) where all the models of the new piece of information are preferred
to its counter-models (the relative ordering in both of these subsets of interpretations
is preserved) allows for the reversibility of iterated revision operators thanks to a
suitable encoding of total pre-orders in terms of polynomials.

3.2 Extension to Partial Pre-orders

In case of partial ignorance, totally pre-ordered information is not available. Then
partial pre-orders are more suitable for representing incomplete ordinal information

9One can note that C3 and C4 are consequences of these postulates.
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or incomparability. Benferhat et al. (2005) extended the KM postulates to epistemic
states represented by partial pre-orders.

Postulate R
6 splits into two postulates:

(P6) If Bel(Ψ ◦ μ1) |= μ2 and Bel(Ψ ◦ μ2) |= μ1 then Bel(Ψ ◦ μ1) ≡ Bel(Ψ ◦
μ2);

(P7) Bel(Ψ ◦ μ1) ∧ Bel(Ψ ◦ μ2) |= Bel(Ψ ◦ (μ1 ∨ μ2)).

Postulate R2 is too strong for partial preorders. It is replaced by:

(P2) Bel(Ψ ◦ �) ≡ Bel(Ψ ).

P2 expresses that the agent’s current beliefs must not change in case where new
information is a tautology. Two weakenings of R
2 can be derived from this set of
postulates:

(P2’) Bel(Ψ ) ∧ μ |= Bel(Ψ ◦ μ).

This postulate stipulates that the common models of the initial beliefs and new infor-
mation are contained in the models of the new beliefs and:

(P2w) If Bel(Ψ ) |= μ then Bel(Ψ ◦ μ) ≡ Bel(Ψ ) ∧ μ

This postulate expresses that if the initial beliefs are contained in new information,
the new beliefs are equivalent to the conjunction of the initial beliefs and new infor-
mation.

The notion of faithful assignment has been extended to partial pre-orders using
the concept of P-faithful assignment. With respect to Darwiche and Pearl, conditions
(1) and weakened (3) are unchanged. However condition (2) is not appropriate any
longer since it stipulates that each model of the agent’s current beliefs is preferred
to any counter-model of the current beliefs. This condition is weakened in:

(2p) If ω′ �|= Bel(Ψ ), then there exists ω such that ω |= Bel(Ψ ) and ω ≺Ψ ω′,
stipulating that each counter-model of the agent’s current beliefs is strictly less pre-
ferred than at least one model of current beliefs. The Katsuno and Mendelzon’s
representation theorem is generalized as follows by Benferhat et al. (2005):

Theorem 9 A revision operator ◦ satisfies postulatesR
1, P
2,R
3,DP4,R
5, P6,
P7 if and only if there exists a P-faithful assignment which maps each epistemic state
Ψ to a partial pre-order over interpretations �Ψ such that: Mod(Bel(Ψ ◦ μ)) =
min(Mod(μ),�Ψ ).

The iterated revision operators such as natural revision or revision with memory
have been easily extended to partial pre-orders from a semantic point of view. In
contrast, the extension to partial pre-orders of their syntactic counter-part is more
complex since it consists in building a partial pre-order, called comparator, over
subsets of formulas from a partial pre-order over formulas. Several comparators
have been proposed: the one based on inclusion (Junker and Brewka 1989), the
possibilistic order (Benferhat et al. 2004) following research works dating back
to Lewis (1973) and Halpern (1997), more recently its lexicographic refinement
(Yahi et al. 2008), which enables removed sets revision to be extended to partially
pre-ordered belief bases (Sérayet et al. 2011).
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3.3 Comments on Iterated Revision

In general, revision assumes that the new information item is of the same nature as the
information to be revised. This is clearly the case with probabilistic (Jeffrey 1983),
possibilistic (Benferhat et al. 2010b), or Spohn-type approaches (Spohn 2012), (see
Sect. 5.1). Within Darwiche and Pearl’s logical framework, this is much less clear.
The epistemic state itself (the ordering over models) only implicitly appears (except
in postulate DP4). However, in contrast one could assume that the new information
item μ is another epistemic state (partially defined) and formulate postulates where
these epistemic states explicitly appear. Indeed, in many iterated revision operators,
the new information itemμ is clearly interpreted as a constraint of the formμ >Π ¬μ

which must be satisfied by the final epistemic state.
These elegantmathematicalmodels should not lead us to forget that it is necessary,

when defining a belief change operator, to properly highlight the conditions of its
application and on which kind of data it operates, which is called its ontology by
Friedman and Halpern (1996), in order to avoid technical developments useless in
practice. Anyway, it is useful to know the nature of the data under concern in order to
have additional intuitions on the way to interpret revision and the AGM framework.
For example, Dubois (2008) makes the following distinctions:

• If the total plausibility pre-order encodes generic knowledge (for example, coming
from a base of rules of type “birds fly”) justifying the agent’s beliefs on the current
case (the bird Tweety, which is believed to fly), and if the new information item is
of the same nature as these factual beliefs (that is, relative to the same current case:
“Tweety is a penguin”), there is no reason to change this pre-order (our generic
knowledge on birds). One simply restricts this pre-order to interpretations which
are in agreement with the new information item and modifies the beliefs (about
Tweety: “It does not fly”). This point of view assumes that the new information
item is not inconsistent. In this case, belief revision is only another point of view
on non-monotonic inference (Gärdenfors 1990).

• If the plausibility pre-order is considered to be of the same nature as the new
information item, then this pre-order has to be revised and the AGM theory is not
sufficient. This case covers two situations:

– The plausibility pre-order and the new information item are uncertain factual
information: for example, one modifies the plausibility ordering on candidates
that are likely to win the elections (e.g., I had thought that Barrack was going
to win; however, because Mitt was better at the televised debate, now I believe
that Mitt will win). In this case, the change problem can be addressed from a
merging point of view, since all information items play the same role for the
agent.

– The plausibility pre-order and the new information item both encode generic
information. In this case, one can argue that the new information item does
not play the same role as the pre-order (the agent is much less willing to do
away with its generic knowledge than factual beliefs) and a pre-order revision
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is required (Kern-Isberner 2001). However, one can prefer to directly revise the
rule base that induces the plausibility pre-order (Boutilier 1996).

The axiomatic approach to revision theory is similar to the one for decision
theory, where postulates deal with observable objects (choices, preferences) and the
representation theorem lays bare underlying probabilities and utility functions. In
revision theory, postulates are formulated on belief sets and the resulting epistemic
states are implicit. However, it seems easy for an agent to declare some proposi-
tions more plausible than other ones, or to provide default rules. This remark sug-
gests an iterated revision approach in the style of Arrow axioms, where postulates
would directly deal with pre-orders and not only on belief sets that they induce (see
Kern-Isberner 2001; Ma et al. 2010 for steps forward in this direction), or with
uncertainty distributions (this is the case for the characterization of the Jeffrey rule
in Sect. 5.1) or yet with default rules bases (Boutilier 1996).

4 Logical Approaches to Merging

Merging operators aim at combining several pieces of information given by various
sources. Each source is individually consistent, however, generally they may be
mutually inconsistent. Like in belief revision, some basic requirements can be stated
for equally reliable pieces of information:

• Optimism principle: all available pieces of information have to be used.
• Fairness principle: no source is favored by the result of the merging.
• Consistency principle: the result of the merging is consistent.

Merging operators allow for defining a consistent set of pieces of information
from sets of pieces of information that may be mutually inconsistent. Moreover, they
may produce pieces of information that none of the initial sources alone was able
to infer. This behavior illustrates the optimism principle. Suppose, for example, that
one source of information knows that a is true and that another source knows a → b.
Then the combination of these two sources may infer that b is true, while no source
alone can. The Fairness principle states that if the sources are mutually consistent
then the result of merging is consistent with each of them, but if the sources are
mutually inconsistent then the result of merging is either consistent with all of them
or consistent with none. This principle is valid for information merging as well as for
preference aggregation. Nevertheless, these two problems are distinct, even if they
share a lot of common tools. In preference aggregation, the result may conflict with
the preferences of each source as long as it represents an acceptable compromise.
In information merging, some authors propose an alternative to Fairness principle,
which states that a piece of information that is rejected by all the sources is not
acceptable (Everaere et al. 2010; Dubois 2011). The consistency principle is valid
for both revision and merging.
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There mainly exist two families of approaches for information merging: the
numerical approaches and the logical ones. The oldest approaches are the numer-
ical ones. They mostly concern the domains such as the merging of expert opin-
ions, often represented by probability distributions, and robotics where pieces of
information coming from sensors are merged. Symbolic approaches to merging
multi-source information have fostered many research works within the AI commu-
nity since the 1990s (Baral et al. 1991; Revesz 1993; Lin 1996; Revesz 1997; Cholvy
1998; Konieczny and Pino Pérez 2002a). When they are syntax-independent, these
symbolic approaches are relatively close to information merging based on possibility
theory (Dubois and Prade 1987, 1995; Bloch 1996).

4.1 Semantic Approach to Merging Under Constraint

In the following, we consider a profile, denoted by E = {K1, . . . , Kn} which is
a multi-set of n logical bases representing belief sets. The profile represents the
available informationof a groupof agents.Wedenote by

∧
E , the base K1 ∪ · · · ∪ Kn

whose models are the intersection of the sets of models of the bases Ki . A profile
E is consistent if and only if

∧
E is consistent. We denote by E = E1 � E2 the

profile obtained by the concatenation of the two profiles E1 and E2. By extension
K1 � . . . � Kn is the profile consisting of the logical bases Ki .

In the same spirit as the AGM postulates for revision, Konieczny and Pino Pérez
(2002a) proposed some postulates representing the expected properties of merging
operators, when all sources are equally reliable. It is assumed that sources are mutu-
ally independent, i.e., there does not exist any link between them. All sources are
equally important and provide consistent logical bases. Each source provides pieces
of information of the same reliability and priority.

More formally, a constrained merging operator Δ is a function from a profile E
and a formula μ representing an integrity constraint,10 which returns a base Δμ(E)

satisfying the following properties:

(IC0) Δμ(E) |= μ.
(IC1) If μ is consistent, then Δμ(E) is consistent.
(IC2) If E is consistent with μ, then Δμ(E) ≡ ∧

E ∧ μ.
(IC3) If E1 ≡ E2 and μ1 ≡ μ2, then Δμ1(E1) ≡ Δμ2(E2).
(IC4) If K |=μ and K ′ |=μ, then Δμ(K � K ′)∧ K �|=⊥ implies Δμ(K � K ′)∧

K ′ �|=⊥.
(IC5) Δμ(E1) ∧ Δμ(E2) |= Δμ(E1 � E2).
(IC6) If Δμ(E1) ∧ Δμ(E2) is consistent, then Δμ(E1 � E2) |= Δμ(E1) ∧

Δμ(E2).
(IC7) Δμ1(E) ∧ μ2 |= Δμ1∧μ2(E).
(IC8) If Δμ1(E) ∧ μ2 is consistent, then Δμ1∧μ2(E) |= Δμ1(E) ∧ μ2.

10When there is no constraint, we state μ = �, i. e. μ is a tautology.
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Most of these properties had already been proposed by Revesz (1997) to char-
acterize (model-fitting) operators. The intuitive meaning of these postulates is the
following: (IC0) assures that the result of merging satisfies the integrity constraint.
(IC1) is the consistency principle. It states that, if the integrity constraint is con-
sistent, then the result of merging should be consistent, i.e., that some consistent
information can always be synthesized from the group of agents. (IC2) corresponds
to the optimism postulate: when possible, the result of merging is the conjunction
of the bases with the integrity constraint. In other words, when there is no conflict
between the agents and the integrity constraint, the merging is simply the union of
the bases and μ. (IC3) expresses that the result of merging is syntax-independent,
i.e., only reflects the opinions expressed by sources and is not impacted by the syn-
tactic form of information. (IC4) is the Fairness principe. When the opinions of two
experts are merged, the merging operator must not give preference to one of them.
(IC5) and (IC6) together express that if one can find two subgroups that agree on at
least one alternative, then the result of merging is exactly the set of alternatives the
two groups agree on. (IC7) and (IC8) are a direct generalization of the postulates
(R5) and (R6) for revision (see Sect. 2.2.2). They state some conditions on the con-
junctions of integrity constraints. In particular, they ensure that the merging process
is based on a complete preordering expressing ideas of plausibility of interpretations,
or proximity to belief bases in the profile.

It is possible to require additional constraints on the behavior of these operators.
For instance, two important subclasses of constrained merging operators are the
majority and arbitration (egalitarian) operators (Konieczny and Pino Pérez 2002a).

As in the revision case, a representation theorem shows that a constrainedmerging
operator corresponds to a family of pre-orders over interpretations. To this end,
a so-called syncretic assignment is defined. This is a function mapping each profile
E to a pre-order ≤E over interpretations such that for any profiles E, E1, E2 and for
any base K , K ′ the following conditions hold:

(1) If ω |= ∧
E and ω′ |= ∧

E , then ω �E ω′.
(2) If ω |= ∧

E and ω′ �|= ∧
E , then ω <E ω′.

(3) If E1 ≡ E2, then ≤E1=≤E2 .
(4) ∀K , K ′,∀ω |= K ∃ω′ |= K ′ ω′ ≤K�K ′ ω.
(5) If ω ≤E1 ω′ and ω ≤E2 ω′, then ω ≤E1�E2 ω′.
(6) If ω <E1 ω′ and ω ≤E2 ω′, then ω <E1�E2 ω′.

Conditions (1) and (2) express the optimism principle. (3) states that the merging
process is syntax-independent. These three conditions are a generalization of faith-
ful assignment conditions for revision operators (Katsuno and Mendelzon 1991).
(4) corresponds to the Fairness principle: the pre-order associated to a profile con-
sisting of two logical bases is such that for each model of the first one, there must
exist a model of the second one that is as least as good as the first one.

(5) is a monotonicity property for aggregation in the broad sense (like a Pareto
condition in decision theory) and (6) strengthens this property requiring strict mono-
tonicity (strong Pareto condition).
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The representation theorem for constrained merging operators (or IC merging
operators) is the following (Konieczny and Pino Pérez 2002a)11:

Theorem 10 An operator Δμ is an IC merging operator if and only if there exists
a syncretic assignment that maps each profile E to a total pre-order ≤E such that
Mod(Δμ(E)) = min(Mod(μ),≤E ).

Constrained merging generalizes belief revision. Indeed, conditions (1), (2) and
(3) satisfied by a syncretic assignment for merging are similar to the conditions
verified by a faithful assignment for revision. Furthermore, a revision operator ◦ can
be defined from a constrained merging operator Δμ by letting K ◦ μ = Δμ({K }).
Namely, ifΔμ satisfies (IC0)–(IC8) then ◦ satisfies (R1)–(R6) (Konieczny and Pino
Pérez 2002a).

4.2 Families of Merging Operators

We present a brief overview of the main families of merging operators.

4.2.1 Model-Based Operators

The following approach is syntax-independent. As a consequence, this approach can
be encoded by an aggregation operation on pre-orders over models. It is easier to
encode these pre-orders with numerical functions. The link between faithful assign-
ments and logical bases consists in assuming that the plausibility of an interpretation
is directly related to its proximity to themodels of the base. Then it is natural to encode
the relative plausibility (or the preference) using a distance between interpretations
d(ω, ω′).12

The model-based operators select the interpretations that are the closest to the
profile. These operators are parametrized by a distance and an aggregation function
(Konieczny and Pino Pérez 2002a). An aggregation operator (see also Grabisch et al.
2009) is a family of functions fn, n > 0, n ∈ N,mapping anyfinite n-tuple of positive
reals x1, . . . , xn to a positive real y ∈ IR+:

• if x ≤ y, then fn(x1, . . . , x, . . . , xn) ≤ fn(x1, . . . , y, . . . , xn) (monotonicity)
• fn(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0 (minimality)
• f1(x) = x (identity)

Let d be a distance between interpretations and E = {K1, . . . , Kn}; the pre-order
≤E over interpretations is defined as follows: ω ≤E ω′ if and only if d(ω, E) ≤
d(ω′, E), with

11For the infinite case, see Chacón and Pino Pérez (2006).
12In fact, a pseudo-distance satisfying d(ω, ω′) = d(ω′, ω), and d(ω, ω′) = 0 if and only if ω = ω′
is sufficient, because triangular inequality is not required.
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d(ω, E) = fn(d(ω, K1) . . . , d(ω, Kn)),

where d(ω, Ki ) = minω′|=Ki d(ω′, ω). A constrained merging operator Δ
d, f
μ is

defined by: Mod(Δ
d, f
μ (E)) = min(Mod(μ),≤E ). The operators studied by Revesz

(1997), and Lin and Mendelzon (1999) are particular cases using Hamming distance
and aggregation functions Σ and max. In (Konieczny and Pino Pérez 2002a), it is
proved that the properties of these operators are true regardless of the distance used.
Furthermore, if the aggregation function f has some desirable properties, as the
usual functions (maximum, sum, leximax, nth power sum, leximin), the obtained
operators are constrained merging operators regardless of the distance and we have
(Konieczny et al. 2004):

Theorem 11 Let d be a distance between interpretations and f be an aggregation
function, the operatorΔd, f satisfies the properties (IC0), (IC1), (IC2), (IC3), (IC7)
and (IC8).

Theorem 12 Let d be a distance between interpretations and f be an aggregation
function, the operator Δd, f satisfies the properties (IC0)–(IC8) if and only if the
aggregation function f satisfies the following properties:

• For all permutation of the indexes σ , fn(x1, . . . , xn) = fn(xσ(1), . . . , xσ(n)) (sym-
metry)

• If fn(x1, . . . , xn) ≤ fn(y1, . . . , yn), then fn(x1, . . . , xn, z) ≤ fn+1(y1, . . . , yn, z).
(composition)

• If fn+1(x1, . . . , xn, z) ≤ fn(y1, . . . , yn, z), then fn(x1, . . . , xn) ≤ fn(y1, . . . , yn).
(decomposition)

Instead of using numerical distance between interpretations, the set of conflicting
variables can be used. This leads to a more general family of operators studied in
(Everaere et al. 2008).

Alternatively, a new family of merging operators, parametrized by a distance and
two aggregation functions and called DA2 merging operators (for a Distance and
2 Aggregation functions) has been introduced in (Konieczny et al. 2004). Consider
a distance d between interpretations and two aggregation operators f and g. The
pre-order ≤E over interpretations is defined by ω ≤E ω′ if and only if d(ω, E) ≤
d(ω′, E) with d(ω, E) = fn(d(ω, K1), . . . , d(ω, Kn)), where E = {K1, . . . , Kn}
and d(ω, Ki ) = gmi (d(ω, α1), . . . , d(ω, αmi )), where Ki = {α1, . . . , αmi }. The
merging operator DA2 Δ

d, f,g
μ is such that Mod(Δ

d, f,g
μ (E)) = min(Mod(μ),≤E ).

The first aggregation function g is used to extract consistent information from any
base Ki even if it is inconsistent.13 The second function f aggregates the sources.
These operators are a generalization of usual semanticmerging operators, and recover
some formula-based merging operators.

13So this approach is no longer typically semantic: every base Ki could be seen as a (sub-)profile.
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4.2.2 Formula-Based Operators

For such operators, the result of the merging process depends on the syntactical
representation of the sources involved in the process. When the bases are finite sets
of formulas, the usual syntactical merging operators select some subbases maximal
(for inclusion) from the union of the bases. The combination operators proposed in
(Baral et al. 1991, 1992; Benferhat et al. 1997) use inference techniques from incon-
sistent bases (see chapter “Argumentation and Inconsistency-Tolerant Reasoning”
of this volume). These merging methods forget the origin of information, and, as a
consequence, they do not take the distribution of information among the sources into
account. Some natural requirements, like majority for example, cannot be consid-
ered. In (Konieczny 2000), some selection functions inspired from the transitively
relational selection functions in revision are used. These operators have better logi-
cal properties, hence a better behavior. In (Konieczny 2000), three particular criteria
have been studied. The first one (Δd) selects the maximal subbases (for inclusion)
consistent with the maximal number of bases in a profile; it satisfies the postulates
(IC0)–(IC2), (IC3), (IC5) and (IC7). The second one (ΔS,Σ ) selects the maximal
(for inclusion) consistent subbases that have minimal symmetric difference (for car-
dinality) with the bases in the profile; it satisfies the postulates (IC0)–(IC2), (IC3),
(IC7) and (IC8). The third one (Δ∩,Σ ) selects all maximal (for inclusion) subbases
consistentwithmaximal overlap (for cardinality)with the bases in a profile, it satisfies
the postulates (IC0)–(IC2), (IC5)–(IC8). From a dual point of view, the Removed
Sets Revision approach, based on subsets of formulas to remove in order to restore
consistency, has been extended to merging. The merging strategies Σ , Card, Max ,
GMax can be seen as total pre-orders on Removed Sets (Hué et al. 2007, 2008)
and the results are equivalent to the ones obtained with methods relying on maximal
consistent subbases (for cardinality).

The main drawback of usual semantic merging operators is that they do not con-
sider inconsistent bases. However, in certain cases, it may be necessary or simply
useful to take this information into account. Besides, the syntactical operators pre-
sented above allow for taking inconsistent bases into account but they do not consider
the distribution of pieces of information among sources. The merging operators DA2

avoid these two pitfalls. In particular, from a computational perpective, the compu-
tational complexity of these distance-based operators turns out to be not higher than
the usual distance-based semantic ones and they still belong to the second level of
the polynomial hierarchy. Even if, by construction, semantic merging operators are
syntax-independent, they may fail to be language-independent, just like semantic
revision or update operations, as studied in (Marquis and Schwind 2014).
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4.3 Prioritized Merging, Merging and Iterated Revision

Delgrande et al. (2006) proposed a formal framework which links iterated revision
and merging. The principle is to merge a set of formulas14 more or less prioritized,
respecting a strict priority order reflecting their importance. These authors motivate
the generality of their approach by showing that the “classical” propositionalmerging
operators (i.e., on flat bases) and the iterated merging operators (à la Darwiche and
Pearl) can be seen as two extreme cases of prioritized merging. This discussion
highlights the fact that in somepapers about iterated revision, it seems that a confusion
is made between the hypothesis of more and more reliable information and the one
of more more recent information.

Their discussion on iterated revision operators reminds Friedman and Halpern’s
warnings on the dangers of defining change operators without specifying their ontol-
ogy (Friedman and Halpern 1996). The main argument is the following. If one
makes the assumption that new pieces of information successively arriving during
a sequence of revisions, concern a static world (usual assumption), then there is no
reason, a priori, to prefer the most recent one. If these pieces of information have
different reliabilities, it is possible to take them explicitly into account in the “revi-
sion” process, even if their recency does not reflect their reliability. And the correct
way to proceed is to perform prioritized merging.

The framework proposed by Delgrande, Dubois and Lang identifies the sequence
of successive formulas received by an agent with an epistemic state. This assumption
was already proposed in the definition of iterated revision by Lehmann (1995) and in
the proposition of memory operators (Konieczny and Pino Pérez 2000; Papini 2001).
Delgrande, Dubois and Lang show that the postulates of iterated revision operators
can be obtained from the basic postulates of prioritized merging they propose. They
also show that some postulates of constrained merging can be retrieved.

4.4 Merging in Other Logical Frameworks

Merging has also been studied within frameworks other than propositional logic.
One may need to merge pieces of information that are more structured than the ones
expressed in classical logic. It creates additional problems and issues. We present
here a brief overview of these works.

Merging in First-Order Logic

Bloch and Lang (2002) have proposedmodel-basedmerging operatorsΔd,max, where
the aggregation function is the maximum, based on a dilation process. By the way, it
is worth noticing that the revision operator in the seminal Dalal paper (Dalal 1988a),
is not defined by a distance, but using such a dilation function. Gorogiannis and

14Each formula may represent a base, if we want compare with merging within the propositional
setting.
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Hunter (2008b) have extended this approach in order to define usual model-based
merging operators, i.e., not only Δd,max, but also Δd,Σ , Δd,Gmax , and Δd,Gmin , in
terms of dilations.

Contrary to the distance-based approach, this characterization can be extended
to first-order logic. Indeed, the usual definition of model-based operators requires
the computation of distances between sets of interpretations. However, as soon as
a logic more expressive than propositional logic is used, this computation is not
possible anymore. The interest of the definition in terms of dilation is that it possible
to compute it in these logics. This only requires to select a suitable dilation function.
See Gorogiannis and Hunter (2008b) for a discussion and some examples on dilation
functions within the first order logic framework.

Default-Based Operators

Delgrande and Schaub (2007) have introduced two default-based merging operators.
The idea is to use a specific language for each base, in order to ensure the consistency
of the union of these bases and to then add as many default rules as necessary in order
to identify the corresponding variables in the different languages (which reminds of
Besnard and Schaub 1996’s approach to inference in the presence of inconsistency).

This approachmay be criticized since, like formula-based operators, these default-
based operators do not take the distribution of pieces of information among sources
into account. In particular, they are not majoritarian, and one piece of information
believed by all sources but onemay fail to appear in the result of the merging process.
Nevertheless, exactly like for the formula-based operators, it seems possible to define
additional policies in order to take these arguments into account, using some selection
functions on equivalent maximal subsets.

Besnard et al. (2009) have also proposed an approach for merging of default
theories. It relies on the notion of Minimally Unsatisfiable Subformulas (MUSes).
The MUSes are computed and each formula in a MUS is replaced by a supernormal
default, leading to several extensions.When the set of defaults is empty, this approach
corresponds to the merging of propositional bases.

Merging Logic Programs

Someauthors have studiedmergingoperators for bases representedby logic programs
and the semantic of stablemodels (Answer SetProgramming).15 This question is quite
natural, because numerous works on the revision and update of logic programs exist
(see for example Zhang and Foo 1998; Alves et al. 1998; Alferes et al. 2000; Eiter
et al. 2002), but not for merging until recently. Delgrande et al. (2008, 2009, 2013)
proposed a semantic approach in terms of Strong Equivalence (SE)-models (Turner
2003). Model-based revision and merging stemming from a distance between inter-
pretations have been extended to logic programs. Besides, formula-based revision
(or base revision) has also been extended to ASP. Krümpelmann and Kern-Isberner
(2012) proposed an extension of the “remainder set” approachwhile Hué et al. (2009)

15For a more precise presentation of logic programs and the semantics of stable models, see chapter
“Logic Programming” of Volume 2.
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extended the “removed sets” one to ASP. These two approaches rely on the removal
of rules. More recently, Zhuang et al. (2016a, b) taking advantage of the nonmono-
tonicity of ASP proposed another approach, called SLP revision, stemming from the
removal or the addition of rules.

Similarity-Based Merging Operators

Schockaert and Prade (2009) have proposed merging operators based on a qualita-
tive similarity relation on propositional variables: for each propositional variable, a
partial pre-order on variables is provided, in which this variable is the only mini-
mum. Two variables may obviously not be in relation, so the pre-order is necessarily
partial. This relation can be deduced from a graph on propositional variables, where
the similarity between two variables is computed as a function of the number of edges
in a path between them. Schockaert and Prade use this similarity relation to try to
find the best compromises for merging. The justification comes from the assumption
that the conflict does not come from divergent opinions (that is, from a real conflict)
but from the choice of an ontology or due to approximation issues, for example,
an agent that makes no distinction between two similar concepts, like single and
divorced. The use of such similarity relation allows one to use finest techniques, for
conflict solving, which share common points with those used for merging systems
of constraints.

Merging of Qualitative Constraint Networks

Condotta et al. (2009a, b) have proposed methods for merging qualitative constraint
networks. These methods may be very useful when the networks represent spatial
regions. For example, in geographical information systems (GIS), itmay be necessary
to merge spatial information issued from various sources. The conflicts that occur
are more subtle than the ones coming from problems represented in propositional
logic. In the latter the conflicts could be of type true/false while in the case of
constraint networks there might be several types of more or less serious conflicts.
This “granularity” between the different conflicts allows one to imagine a wider
range of merging policies than in the propositional case.

Merging of Argumentation Systems

A lot of works are devoted to argumentation as a way to reason from contradictory
information. Basically, a set of arguments and an attack relation among arguments
are used. A general framework for argumentation has been proposed by Dung (1995)
see chapter “Argumentation and Inconsistency-Tolerant Reasoning” of this volume.
But these works on argumentation are limited to one agent. In (Coste-Marquis et al.
2007; Delobelle et al. 2015) and (Delobelle et al. 2016), it has been studied how to
generalize these frameworks in order to take into account the fact that the arguments
are distributed among a set of agents. One problem is that different agents may have
argumentation systems constructed from different arguments. It is then necessary to
represent these argumentation systems to be able to compare and merge them, in
order to find the acceptable arguments for the group. A semantic approach has been
recently proposed for merging argumentation systems in (Delobelle et al. 2016).



466 D. Dubois et al.

Merging Within Fragments of Propositional Logic

More recently, belief change within the framework of fragments of propositional
logic has gained increasing attention. Indeed, when initial beliefs are expressed in a
fragment of propositional logic, it may be the case that the result of the change oper-
ation does not remain inside the fragment. Several approaches have been proposed
to adapt existing model-based change operators such that the result of these opera-
tors remains in the fragment under consideration. Belief change operations within
the framework of fragments of classical logic constitute a vivid research branch,
in particular for contraction (Booth et al. 2011; Delgrande and Wassermann 2013;
Zhuang and Pagnucco 2014), revision (Delgrande and Peppas 2015; van de Putte
2013; Zhuang et al. 2013) and merging (Haret et al. 2015; Creignou et al. 2016).

Merging Within Description Logics

In the last decades, there has been an increasing use of ontologies in many appli-
cation domains like for example in the semantic Web. Description Logics, which
are tractable fragments of first order logic, have been recognized as a powerful
formalism for representing and reasoning with ontologies (Baader et al. 2010).
A DL knowledge base consists of two distinct components: a terminological base
(TBox), representing generic knowledge about the application domain, and an
assertional base (ABox), containing extensional knowledge (i.e., facts, individu-
als or constants) that instantiate terminological knowledge (For more details see
chapter “ReasoningwithOntologies” of this volume). Originally, Description Logics
have been introduced to represent the static aspects of a domain of interest
(Baader et al. 2003). However, for some applications, knowledge may not be static
and evolves fromone situation to another in order to copewith changes that occur over
time. Thus belief change within the framework of Description Logics has become
a very active direction of research, see for example (Qi et al. 2006a; Ribeiro and
Wassermann 2007; Qi and Yang 2008; Calvanese et al. 2010; Wang et al. 2010;
Kharlamov et al. 2013; Zhuang et al. 2016c; Benferhat et al. 2017).

5 Non-Boolean Approaches to Information Revision
and Fusion

There are also graded approaches to information revision and fusion developed in the
framework of uncertainty theories, like probability or possibility theories (Dubois
et al. 1998). The oldest revision and fusion techniques actually appeared first in the
setting of probability theory. They consider a set of exhaustive andmutually exclusive
possible worlds ω ∈ W , which can stand for interpretations of a logical language as
used in preceding sections. In both probabilistic and possibilistic settings, a value
in some totally ordered scale is assigned to each possible world that represents the
extent to which it can be considered as the real world. Such distributions model
epistemic states in a more refined way than in the pure Boolean setting. Values may



Main Issues in Belief Revision, Belief Merging and Information Fusion 467

range in the unit interval [0, 1] as in the probabilistic setting, but one may use the set
of integers, or even just an ordinal scale that is possibly finite. More precisely:

• In probability theory, the sum of the weights p(ω) is 1 so that p(ω) = 1 means
that ω is the real state of the world. Indeed it implies that p(ω′) = 0, ∀ω′ �= ω for
other worlds ω′ considered as impossible.

• In possibility theory (Dubois et al. 1994), π(ω) = 0 also means that ω is an
impossible world, that cannot be the real one. In contrast with probability
theory, π(ω) = 1 only means that nothing prevents ω from being the real world,
and consistency imposes the condition ∃ω, π(ω) = 1. Here, π(ω) = 1 represents
complete plausibility or total lack of surprize if ω were the case. In the qualitative
setting, function π only reflects a plausibility ordering.

• In the theory of ranking functions16 by Spohn (1988, 2012), κ(ω) is a natural
integer (more generally, an ordinal) that represents a degree of impossibility. The
plausibility scale is reversed with respect to probabilistic and possibilistic settings:
κ(ω) = 0 reflects a total lack of surprize if ω were the real world, while plain
impossibility is encoded by κ(ω) = +∞.

There three formal representations are closely related to each other in the numerical
setting. Spohn (1990) interprets κ(ω) as the exponent of an infinitesimal probability
of the form p(ω) = εκ(ω), while letting π(ω) = k−κ(ω) for any real number k > 1
leads to the setting of possibility theory (Dubois and Prade 1991). The additive law
of probability theory P(A ∪ B) = P(A) + P(B) if A, B ⊆ W , A ∩ B = ∅ reduces
to the basic property of ranking functions κ(A ∪ B) = min(κ(A), κ(B)),∀A, B,
and in particular, κ(A) = minω∈A κ(ω). In possibility theory, this basic property
reads Π(A ∪ B) = max(Π(A),Π(B)), where Π(A) = maxω∈A π(ω). The dual set
function N (A) = 1 − Π(A) where A is the complement of set A, represents the
degree of certainty of A.

Under a very different framework, probability and numerical possibility theories
are special cases of the theory of belief functions, and more generally of the one of
imprecise probabilities presented in chapter “Representations of Uncertainty in AI:
Beyond Probability and Possibility” of this volume. In that framework, a possibility
distribution encodes a convex set of probability measures, or yet a consonant belief
function.

5.1 Valued Revision

In the above non-Boolean settings, belief change via the arrival of a new piece of
information EI ⊂ W , stating that the real world lies in set EI comes down down to
a modification of the distribution pl (= p, π or κ) into another one pl ′. Generally
distribution pl ′ results from a conditioning operation pl ′(ω) = pl(ω | EI ). In the
following, index I indicates a new piece of information. A change operation must

16Originally called ordinal conditional functions (OCF).
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respect the three principles underlying the idea of revision already presented in
Sect. 2:

• Consistency: pl ′ is a normalized distribution of the same nature as pl (preservation
of the representation),

• Success: the input information is considered as certainly true after revision, i.e.,
∀ω /∈ EI , pl ′(ω) = 0,

• Minimal change principle: the distribution after revision pl ′ should differ as little
as possible from the prior distribution pl; for instance some distance between them
should be minimal.

These approaches allow one tomodel what it means to revise an epistemic state by an
uncertain piece of information. For instance we can specify the degree of certainty
with which the new information must be held in the posterior epistemic state, in
other words, how much more plausible should the possible worlds in EI compared
to those outside it. For a detailed comparative survey of valued revision methods in
the XXth century, see (Dubois et al. 1998). Let us mention here the main approaches
to non-Boolean revision. In contrast to theory revision in the style of AGM, they
naturally lend themselves to iteration.

5.1.1 The Bayesian Approach

Among probabilistic approaches to revision, the oldest one is the Bayesian approach
(Pearl 1988) in which the modification of the prior probability distribution upon
the arrival of a new piece of sure information relies on Bayes rule of condition-
ing: P(A|E) = P(A∩E)

P(E)
if P(E) > 0. In this case, minimal change can be expressed

in terms of minimizing relative entropy. Besides, one may also notice that when
going from a probability distribution to a conditional probability, probabilities do
not change in relative value inside E since all probability values of elements of E
are divided by P(E). More generally, one may revise a probability measure P by
another probability measure PI defined on a partition of W using the same mini-
mal change principles. It can be done by means of Jeffrey (1983)’s rule, probably
the oldest revision rule in the literature: if the new piece of information is of the
form PI (E) = a > 0 (on the partition {E, Ec}), the revision operation is defined by:
P ′(A) = aP(A|E) + (1 − a)P(A|Ec). This method is completely determined by
the three above principles, and it also minimizes relative entropy (Fraassen 1981).

5.1.2 Qualitative Possibilistic Revision

Revision in the possibilistic setting, as proposed byDubois and Prade (1992), consid-
ers a possibility distributionπ taking values on an ordinal scale ([0, 1], for simplicity)
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and a new piece of information μ (we let E be the set of models of μ) that is totally
certain (N (μ) = 1).17

Distribution π can be extended to formulas via the possibility measure Π , that
gives a preorder that is the dual of an epistemic entrenchment: α ≤EE β if and
only if Π(¬α) ≥ Π(¬β) (Dubois and Prade 1991). The set of beliefs Bel(π) =
{φ : Π(φ) > Π(¬φ)} induced by a possibility measure π is deductively closed, and
its models form the set Mod(Bel(π)) = {ω ∈ W | π(ω) = 1}. In such a
framework, possibilistic revision relies on an ordinal counterpart of conditioning:

π(ω |min μ) =
⎧
⎨

⎩

1 if π(ω) = Π(μ) and ω ∈ Mod(μ);
π(ω) if π(ω) < Π(μ) and ω ∈ Mod(μ);
0 if ω /∈ Mod(μ).

This possibilistic revision is in agreement with the AGM axioms, but since it
considers the new piece of information as fully certain, countermodels of μ are
considered impossible, while the possibilistic ordering among the models of μ is
preserved. This operator satisfies revision properties R*1–R*6, C1, C3, C4 but it
violates C2. Extensions of this approach to when the input information is uncer-
tain (i.e., of the form 0 < ΠI (¬μ) = a < ΠI (μ) = 1) are proposed in Dubois and
Prade (1997), Benferhat et al. (2010b), adapting Jeffrey (1983)’s rule to the quali-
tative setting. This possibilistic counterpart of Jeffrey’s rule can subsume numerous
techniques of iterated revision (Benferhat et al. 2010b).

5.1.3 Spohn-Style Revision

In this approach initiated by Spohn (1988), and presented in a more extensive mono-
graph (Spohn 2012), an epistemic state is represented by a ranking function denoted
by κ . From the links existing between this representation and the one based on pos-
sibility theory, it is clear that the set of accepted beliefs Bel(κ) induced by κ is
Mod(Bel(κ)) = {ω ∈ W | κ(ω) = 0}.

Conditioning by some uncertain piece of information (μ,m) (understood as a
constraint κI (¬μ) = m > 0) is defined by:

κ(μ,m)(ω) =
{

κ(ω) − κ(μ), if ω ∈ Mod(μ);
κ(ω) − κ(¬μ) + m, if ω /∈ Mod(μ).

This operation can be viewed as an infinitesimal version of Jeffrey’s revision
rule, if one interprets, as done by Spohn (1990), κI (¬μ) = m as the infinitesimal
probability PI (¬μ) = εm . Spohn conditioning (for m = ∞) is thus the infinitesi-
mal counterpart of Bayesian conditioning and also the counterpart of possibilistic
conditioning based on product:

17It stands for N (Mod(μ)) = 1 where Mod(μ) is the set of models of formula μ.
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κ(ω|μ) = κ(ω) − κ(μ),

which becomes π(ω)

Π(μ)
in possibility theory, after suitable rescaling.

Another revision operator called “ordinal” proposed bySpohn (1988) comes down
to defining a new ranking function κN

μ as follows:

κN
μ (ω) =

{
κ(ω) − κ(μ), if ω ∈ Mod(μ);

κ(ω) + 1, if ω /∈ Mod(μ).

This operator is of the form κ(μ,m), with m = κ(¬μ) + 1. It satisfies properties
R*1–R*6, C1–C4. In possibility theory language it would write π N

μ (ω) = π(ω)

k for
ω /∈ Mod(μ) letting π(ω) = k−κ(ω).

Williams (1994) systematized these ranking function revision operations by
proposing a more general operation called transmutation, of which Spohn condi-
tioning is a particular case, and other specific change operators were proposed on
this basis (Williams 1994; Williams et al. 1995; Nayak 1994; Papini 2001). Possi-
bilistic variants of all Spohnian revision operations have been described in (Dubois
and Prade 1997; Dubois et al. 1998; Benferhat et al. 2010b). More recently, a general
discussion comparing Spohn theory and possibility theory can be found in (Dubois
and Prade 2016).

5.1.4 Revision in the Theory of Evidence

In the theory of evidence, an epistemic state is defined by a mass function: 2W →
[0, 1], such that

∑
∅�=E⊆W m(E) = 1, that can be seen as a family of consistent

logical theories, each encoded by a formula φi weighted by m(Mod[φi ]) > 0. The
revision by a new input μ proposed by Shafer (1976), and called Dempster’s rule of
conditioning is constructed as follows:

1. For each formula φi consistent with μ, transfer the mass m(Mod[φi ]) to the
conjunction φi ∧ μ, then sum all masses thus assigned to formulas equivalent to
the latter.

2. Delete all formulas φi inconsistent with μ.
3. Renormalize the new mass function, so that the sum of the masses still be 1.

It should be obvious to the reader that this change rule combines Bayes rule (the
renormalisation step) with an AGM-style expansion operation (in the case when
μ is consistent with φi ). It generally verifies the success postulate, but it is not
defined ifμ is inconsistent with all φi ’s having positive mass. It is more conveniently
expressed by means of the plausibility function Pl(A) = ∑

B∩A �=∅ m(B) in the form
of a generalized Bayesian conditioning:

Pl(A|E) = Pl(A ∩ E)

Pl(E)
if E = Mod[μ]
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The extension Jeffrey’s rule of revision to belief functions has been studied by
Smets (1993) and Halpern (2003). See (Ma et al. 2011) for a unified view of the
AGM revision and the revision of belief functions by belief functions.

5.2 Information Fusion

In this section, only existing approaches to uncertain information fusion are reviewed.
Indeed, it does not cover the issue of preference merging, which is the topic of a large
literature pertaining to multicriteria evaluation and voting theory, already accounted
for in chapters “Multicriteria Decision Making” and “Collective Decision Making”
of this volume. The oldest information fusion methods are once more probabilistic
and date back to the 1960’s. There are basically two approaches, a Bayesian one and
a non-Bayesian one. Ten years later, the theory of evidence has proposed an original
fusion rule. It actually adapts one proposed by Dempster in 1967, and has its origin
in older works by Bernoulli and Lambert in the XVIIIth century. Finally, possibility
theory offers a set-theoretic view and a panoply of fusion operations, one of which
is to some extent compatible with the setting of evidence theory.

The idea that there can be a unique ideal information fusionmethod looks delusive.
The way to merge information depends of the level of conflict between information
sources, and of assumptions pertaining to their reliability. Three fusion modes can
be envisaged (Dubois and Prade 1987, 1995):

• A conjunctive mode consisting in focusing on the possible worlds common to
all information pieces. It makes sense only if all sources are consistent with one
another and considered reliable.

• A disjunctive mode that does not take sides and is tolerant to conflict while incur-
ring a possible loss in informativeness.

• A counting-based mode that is akin to a majority-style voting process, that favors
pieces of information proposed by the largest number of sources. It presupposes
sources are independent. This is the prevailing approach in statistics.

It is clear that in the cases where information sources are numerous, there is a good
chance that the two first approaches, if taken stricto sensu, fail. The conjunctive
approach due to inconsistency, and the disjunctive approach due to a lack of infor-
mativeness. In that case, the third approach looks like a decent compromise.However,
the conjunctive and disjunctive approaches can be generalized by looking for max-
imal subgroups of consistent sources, yielding consistent pieces of information to
be combined disjunctively. The latter approach is inspired by a method to exploit
inconsistent sets of logical formulas due to Rescher and Manor (1970). In the case
of two sources providing incomplete information items of the form ω ∈ E1 and
ω ∈ E2 it comes down to the fusion rule that yields ω ∈ E1 ∩ E2 if E1 ∩ E2 �= ∅
and ω ∈ E1 ∪ E2 otherwise. See (Dubois 2011) for a postulate-based justification
of this scheme: it is the only one that preserves symmetry, optimism and minimal
commitment.
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In contrast with the Boolean framework of merging Boolean theories in the previ-
ous section, there was no consensual axiomatic approach to numerical fusion.Walley
(1982) discussesmany natural properties a fusion operation should satisfy, in the very
general setting of imprecise probabilities. Oussalah (2000) does the same in the set-
ting of possibility theory and Smets (2007) discusses the well-foundedness of many
belief function fusion rules.

An attempt to provide a unified principled approach to information fusion can be
found in the recent paper (Dubois et al. 2016), which proposes the maximal con-
sistent subset approach as verifying the proposed postulates. They have proposed
eight properties that any fusion rule should obey, namely unanimity (preserve what
all sources find possible, delete what all sources find impossible), information mono-
tonicity (the more imprecise a set of consistent sources, the less precise the result of
the fusion), consistency enforcement (justifying renormalisation), optimism (assume
as many sources as possible are reliable), fairness (the result should retain a trace
of the information supplied by each source), insensitivity to vacuous information,
symmetry (all sources of equal reliability should play the same role), and minimal
commitment (the result of the fusion cannot be arbitrarily precise). They also propose
a formal framework for a general representation of information items covering logic
and numerical approaches. The proposed postulates essentially justify fusion rules
relying on maximal consistent subsets of sources.

In the following we essentially survey the main fusion rules proposed in the
various uncertainty theories.

5.2.1 Probabilistic Methods

The Bayesian approach to probabilistic fusion (Genest and Zidek 1986) assumes that
each source i is characterized by a likelihood function Pi (μi |ω) equals to the prob-
ability that the source declares μi when the real state of the world is ω.18 Moreover,
one more piece of information must be available, namely a prior probability p(ω)

on each possible state of the world. In the simplest case, it is also assumed that the
k sources are independent and provide observations μ1, . . . , μk . The result of the
fusion is a posterior probability of each world ω obtained by means of Bayes rule:

p(ω|μ1, . . . , μk) = (
∏k

i=1 Pi (μi |ω)) · p(ω)
∑

ω′∈W (
∏k

i=1 Pi (μi |ω′)) · p(ω′)

This approach, which is actually a revision operation of a prior information based
on several inputs, can be generalized to dependent sources using Bayesian networks
(chapter “Belief Graphical Models for Uncertainty Representation and Reasoning”
of Volume 2). It is often used when information sources are sensing devices.

In the alternative approach to probabilistic fusion, developed for the merging of
expert opinions by Cooke (1991), each source provides a probability distribution

18Notice that such probabilities are attached to sources.
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pi (ω) on possible worlds, and it is assumed that the relative weight αi of each source
has been estimated prior to merging (based on experimental tests). The proposed
fusion is based on counting (interpreting αi as a number of independent replications
of source i). It comes down to computing a consensus probability distribution in the
form of a weighted average:

p+(ω) =
n∑

i=1

αi pi (w).

This merging rule is the only one that is stable via projection when the probability
distributions pi are multidimensional, because the set-function

∑n
i=1 αi Pi is still a

probability measure.

5.2.2 Possibilistic Fusion Rules

In the possibility theory framework, it is supposed that each of the k sources provides
a possibility distribution πi on possible worlds. Any of the three fusion modes can
be used (Dubois and Prade 1987; Dubois et al. 1999):

• Under the conjunctive mode, it is possible to merge the possibility distributions
using a t-norm t that generalises a logical conjunction πt (ω) = t (π1(ω), . . . ,

πk(ω)) (these operations are associative and have 1 as an identity). The presence
of a conflict requires a normalization step so as to recover a possibility distribution
of the form:

π̂t (ω) = t (π1(ω), . . . , πk(ω))

maxw′∈W t (π1(ω′), . . . , πk(ω′))

Note that this form of fusion is idempotent, if the t-norm t = min is chosen (thus
it does not presuppose the independence of sources), but associativity is then lost
due to the renormalization factor. In contrast if the product t-norm is chosen,
there is a reinforcement effect due to the fusion rule and associativity is preserved
by renormalisation. The latter product-based fusion rule was the one used in the
MYCIN expert system in the 1970’s, and it is very close to the Bayesian fusion
rule, interpreting possibility distributions as likelihood functions, and replacing
the prior probability by a uniform possibility distribution.

• If the conflict between sources is too strong (the denominator maxw′∈W
t (π1(ω

′), . . . , πk(ω
′)) is too small), the fusion rule becomes numerically instable,

and one may use a multivalued extension of a disjunction (a t-conorm), such as the
maximum: πmax(ω) = max(π1(ω), . . . , πk(ω)), which presupposes that at least
one source is reliable without knowing which one is.

• The counting mode comes down to computing a (possibly weighted) arithmetic
mean between the πi (ω)’s (like its probabilistic variant), followed by a renormal-
isation. However the weighted average of possibility measures Πi yields a belief
function.
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Possibilistic fusion applies to the case when the sources supply tolerance intervals
for an ill-known deterministic value. More refined approaches exist, based on an
assumption on the number of reliable sources (Dubois and Prade 1995), or perform-
ing the disjunction of partial results after conjunctive merging of information items
supplied by maximal consistent subsets of sources (Destercke et al. 2009).

5.2.3 Information Fusion in the Theory of Evidence

Suppose now that information items supplied by sources take the form of mass func-
tionsmi onW , each corresponding to a belief function.Dempster rule of combination
is a conjunctive method which in some sense extends the Bayesian fusion rule and
proceeds as follows. We give it for two sources only as it is associative:

• For each pair of focal sets E ofm1 and F ofm2 (such thatm1(E) > 0,m2(F) > 0),
we perform an intersection E ∩ F , if not empty, and the mass m1(E)m2(F) is
assigned to this intersection.

• We normalize the mass function so that the sum of the resulting masses is 1.

This method corresponds to the formula, for C �= ∅:

m̂(C) =
∑

E∩F=C m1(E)m2(F)
∑

E∩F �=∅ m1(E)m2(F)

The Bayesian fusion rule is retrieved on two sources if we combine three mass func-
tions mi , i = 1, 2, 3, one of which is a probability measure (m3({ω}) = p(ω),∀ω ∈
W , and m3(E) = 0 if E is not a singleton). In this case, m̂ coincides with the prob-
ability measure obtained by Bayes rule, letting P(μi |ω) = ∑

ω∈E mi (E) = Pli (ω).
Besides the conditioning rule of Dempster is retrieved if m2(E) = 1 in the expres-
sion of Dempster combination rule above, which points out the fact that revision
can be viewed as a weighted fusion between an uncertain piece of information and
a certainly true one. Like all renormalized conjunctive fusion rules, Dempster com-
bination becomes questionable if the renormalization factor

∑
E∩F �=∅ m1(E)m2(F)

is too small. This fusion rule is not defined if it is 0. Then other, non-conjunctive,
fusion rules must be used, especially by changing the renormalization method (one
may assign the complement to 1 of the renormalisation factor to the tautologyW ) or
replacing the conjunction in Dempster rule of combination by a disjunction (Dubois
and Prade 1986). Many alternative fusion rules can be found in (Dubois and Prade
1988; Smets 2007).

5.3 Semantic Fusion of Weighted Knowledge Bases

Weighted fusion applies when formulas in logical bases do not have the same impor-
tance. The most qualitative view is to consider for each source or agent a totally
preordered set of formulas, from the most to the least certain ones. This situation is
often encoded by means of possibilistic logic (Dubois et al. 1994) or using ranking
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functions (Spohn 1988; Konieczny 2009). In the possibilistic logic setting a profile
E = {B1, . . . Bn} is a set of n possibilistic knowledge bases, each of which being
made of a finite set of weighted formulas of the form (ϕ j , a j ) with a j ∈ [0, 1]. The
formula (ϕ j , a j ) expresses the idea that the degree of certainty (or priority) associ-
ated to the belief (or constraint) represented by ϕ j is at least a j . Each base Bi induces
a possibility distribution πi on interpretations as follows (see the chapter “Represen-
tations of Uncertainty in Artificial Intelligence: Probability and Possibility” in this
volume):

πi (ω) =
{

1 if ∀(ϕ j , a j ) ∈ Bi , ω |= ϕ j ;
1 − max{a j | (ϕ j , a j ) ∈ Bi and ω �|= ϕ j } otherwise

The idea captured by this equation is that an interpretation is all the less plausible
as it violates at least one more certain formula. To each interpretation ω is assigned
a vector collecting possibility degrees assigned to ω by each profile base, denoted
by νE (ω) = (π1(ω), . . . , πn(ω)).

The intuition behind the semantic approaches proposed for the fusion of possi-
bilistic bases is to merge the component of this vector in order to obtain a unique
possibility distribution, denoted by πE . Considering the possibility distribution as
encoding a faithful assignment, it is easy to express in this setting the properties of
syncretic assignments described in Sect. 4, for instance:

∀ω ∈ W , if ∀Bi ∈ E, πi (ω) = 1 then πE (ω) = 1 (property (1));
∀ω,ω′ ∈ W , if ∀Bi ∈ E, πi (ω) ≥ πi (ω

′) then πE (ω) ≥ πE (ω′) (property (5)).

Other properties can be requested, for instance associativity, often found in numer-
ical fusion rules. One may also use the classification by fusion operation modes
recalled above. In particular conjunctive operators consider as plausible only inter-
pretations that are plausible for all sources (assumed to be reliable), and disjunctive
operators consider plausible any interpretation that is plausible in the sense of at least
one source (again supposed reliable). Kaci et al. (2000) and Benferhat et al. (2002)
studied several merging operators of this type. They also studied the extension of the
logical postulates for merging knowledge bases to possibilistic logic (Benferhat and
Kaci 2003).

The main issue is how to encode a possibility distribution aggregation opera-
tion, defined on interpretations, by means of a syntactic aggregation of ordered or
weighted bases. For instance, merging the possibility distributions associated to two
possibilistic knowledge bases using the minimum operator comes down to perform-
ing a simple set union of the bases. See (Benferhat et al. 2002) for the syntactic
encoding of other possibilistic fusion operations.

Note that the aggregation of possibility distributions and the aggregation of dis-
tance functions are two very similar approaches. One may argue that the logical
approach to fusion of Sect. 4 implicitly relies on an ordered knowledge base (as
induced by faithful and syncretic assignments), and in practice it uses a numerical
aggregation function on distances that can be expressed by means of a possibilistic
fusion rule. Generally this distance is language-dependent (e.g., based on Hamming
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distance between interpretations). KP and possibilistic fusion methods are thus com-
patible. The main differences are that no formula is considered impossible in the
sense of faithful assignments and that the result of the fusion operation in the KP
method is a classical knowledge base, namely the layer of most certain formulas in
the weighted base resulting from the numerical aggregation. The problem is that even
if the aggregation function used is associative, this associativity is lost by selecting
the most certain classical knowledge base at each step (Benferhat et al. 2002). This
is because the syncretic assignment obtained by merging knowledge bases K1 and
K2 does not coincide with the faithful assignment one constructs from the merged
classical base K12 extracted from the syncretic assignment, prior to merging it with
a third knowledge base.

Other approaches to the merging of weighted knowledge bases in the possibility
theory setting were proposed (Qi et al. 2006b) and the reader can consult the survey
of possibilistic fusion operations by Qi et al. (2010). In the setting of Spohn ranking
functions, Meyer (2001) also defined a number of fusion operations. Some of them,
unsurprisingly are the translation in terms of ranking functions of usual semantic
fusion operations that can be expressed on models. But some of them look remote
from what is expected from a fusion operation. Finally, one property that may be
useful to have is reversibility, that is the capacity to retrieve pieces of information
prior to merging. This is possible through a suitable encoding of weights using
polynomials (Seinturier et al. 2006).

All the works mentioned above, that rely on a numerical encoding of weights
come down to aggregating distance values, integers or possibility degrees (numer-
ical or ordinal). They implicitly assume a common value scale. This assumption is
problematic as it presupposes that the value scale used by one source is the same or
has the same meaning for any other source. This is the so-called commensurateness
assumption. This assumption is very natural, if for instance sources are sensors of the
same kind. But if sources are autonomous agents, commensurateness is somewhat
questionable.

In particular if weighted bases express preferences rather than relative certainty,
we get closer to the setting of social choice and votingmethods,where the commensu-
rateness assumption is not taken for granted (Arrow 1963). The standard assumption
in voting theory is that only a total order is supplied by each agent, that is, only
ordering matters. The problem of merging ordered bases can then take advantage
of results and methods in voting theory and the literature on social choice (Arrow
1963; Arrow et al. 2002). Maynard-Zhang and Lehmann (2003) studied the fusion
of conflicting partially ordered belief bases. More recently, Benferhat et al. (2007,
2009) proposed merging methods for logical bases that do not appeal to majority
voting, not to the commensurateness assumption. Of course, it leads to fusion meth-
ods that are much less committing than those obtained under the commensurateness
assumption. One interesting issue would be to check whether fusion methods that
drop commensurateness come close to known voting methods or not. See (Dubois
et al. 2016) for a comparison of axioms for information fusion and voting.
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6 Conclusion

Belief change is a very active topic in artificial intelligence. Most research works on
revision andmerging have been developed in propositional logic, in possibilistic logic
or in probability theory. Some approaches have been proposed in other numerical
frameworks, like belief functions. In fact, revision and merging problems arise in
numerous fields that do not require a logical framework, like image processing,
fusion of expert opinions in reliability, robotics, radar detection, relational databases,
etc. (see (Appriou et al. 2001) for a survey of such applications). The extension of
revision and merging to a wide range of contexts seems to be a very promising topic
of research, as presented in Sect. 4.4.

Dropping the assumption of commensurability is certainly an interesting issue to
explore following the works on the merging of partially pre-ordered beliefs bases
(Benferhat et al. 2007, 2009). At amore fundamental level, there are several attempts
to axiomatize revision andmerging operators, in addition of those detailed in Sects. 2
and 4 (for instance, for revision, the axioms justifying the Jeffrey’s probabilistic rule,
and for merging, the properties listed a long time ago by Walley (1982) for impre-
cise probabilities, a framework covering propositional logic as well as uncertainty
theories). An effort to unify the characterization of revision and merging rules is
necessary (see (Dubois et al. 2016) for the latter).

Despite the increasing interest in artificial intelligence for this topic, very few
implementations exist for the logic approach. One partial explanation is the algo-
rithmic complexity of decision problems linked to belief change in logic, generally
at least at the second level of polynomial hierarchy and beyond (Liberatore 1997;
Eiter and Gottlob 1992; Konieczny et al. 2004). Nevertheless, in certain situations,
the use of heuristics and of appropriate data structures gives an average practical
complexity reasonable for problems that are theoretically untractable. For the imple-
mentation of revision operators, some examples are (Williams 1995) for transmuta-
tions, (Benferhat et al. 2001) for possibilistic revision, (Wurbel et al. 2000; Benferhat
et al. 2010a) for removed sets revision. For the implementation of merging opera-
tors, some examples are the merging operators defined by Bloch and Lang (2002)
with an implementation based on binary decision diagrams (Gorogiannis and Hunter
2008a), the CoBA platform for default basedmerging (Delgrande et al. 2007), for the
removed sets merging (Hué et al. 2007) an implementation based on logic programs
with a semantics stemming from stable models (Hué et al. 2008) and more recently a
SAT based implementation of revision and merging (Konieczny et al. 2017a, b). All
these implementations remain difficult to compare in the absence of benchmarks. So
the construction of sets of benchmarks for belief change, in the same spirit as the
benchmarks used for the SAT problem, might be helpful in the future.
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Reasoning About Action and Change

Florence Dupin de Saint-Cyr, Andreas Herzig, Jérôme Lang
and Pierre Marquis

Abstract This chapter presents the state of research concerning the formalisation
of an agent reasoning about a dynamic system which can be partially observed
and acted upon. We first define the basic concepts of the area: system states, ontic
and epistemic actions, observations; then the basic reasoning processes: prediction,
progression, regression, postdiction, filtering, abduction, and extrapolation. We then
recall the classical action representation problems and show how these problems are
solved in some standard frameworks. For space reasons, we focus on these major
settings: the situation calculus, STRIPS and some propositional action languages,
dynamic logic, and dynamic Bayesian networks. We finally address a special case
of progression, namely belief update.

1 Introduction

In this chapter, we are interested in formalizing the reasoning of a single agent who
can make observations on a dynamic system and considers actions to perform on
it. Reasoning about action and change is among the first issues addressed within
Artificial Intelligence (AI); especially, it was the subject of the seminal article by
McCarthy and Hayes (1969). Research in this area has been very productive until
the late 1990s. Among other things, solutions to the various problems to be faced
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when dealing with action representation were put forward and a classification of
action languages according to their expressive power was undertaken. Moreover,
much progress towards the automatization of reasoning about action and change was
made, for example through the design and the evaluation of algorithms implementing
the reasoning processes of the main action languages and the investigation of the
computational complexity of such processes.

The reasons why an agent may wish to act in order to modify the current state of
a dynamic system or to learn more about it are numerous. For example, the goal can
be to change the system into a configuration that the agent prefers over the actual
one (such as moving a robot from a location to another one), or even into an optimal
configuration. Alternatively, the objective can be to ensure that a certain property
of the dynamic system is maintained, or that its successive states do not deviate too
much from a normal path. The latter is for example the case when one wants to
supervise and control a physical system, such as a furnace or that of a patient in an
intensive care unit. Such scenarios involve concepts (state, action, observation, etc.)
and processes connecting them (planning, prediction, explanation, etc.).

By ‘formalizing’, we first mean modeling the concepts and processes that are
considered in such scenarios (the purpose is to define them rigorously from a mathe-
matical point of view) and then representing them (that is, specifying how the infor-
mation are encoded) and automating (designing algorithms suited to the processes
under consideration). Note that there are typically two main reasons for modeling a
dynamic system: controlling it (see chapter “Planning in Artificial Intelligence” of
Volume 2 about planning), and obtaining more information about it, for diagnosing it
or supervising it (see chapter “Diagnosis andSupervision:Model-basedApproaches”
of Volume 1). Once modeled, the same concept can be associated with several repre-
sentations. If the choice of a specific model typically depends on the available pieces
of information and what one wants to do with them, the choice of a representation
(suited to a given model) is based on other criteria, such as computational efficiency
and succinctness.

2 Reasoning About Action: Models

2.1 Basic Concepts and the Corresponding Models

In this section, we define some mathematical notions corresponding to the key con-
cepts considered in reasoning about action and change.

Themodel of a reasoning process on a dynamic system can be divided in two parts:
themodel of the system (with its owndynamics) and themodel of the agent (including
her knowledge about the system). Sandewall (1995) has developed a taxonomy of
reasoning problems on dynamic systems, and the remainder of this chapter elaborates
on it.
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Throughout the chapter, we assume that time is discrete (which is a common
assumption in Artificial Intelligence). The horizon of the process is the set H of
relevant steps for controlling and observing it. It can be finite (H = {0, . . . , N }with
N ∈ IN) or infinite (H = IN); a degenerate case of a finite horizon is when there is
only one change step (H = {0, 1}).

A state is the description of the system at a given time point. Unless stated other-
wise, the set of all states, denoted byS , will be assumed finite. A state trajectory is
a sequence of elements of S , indexed by elements of H . The system states at the
different time points of H may only be partially known by the agent.

The specification of a reasoning process on a dynamic system requires first the
beliefs of the agent about the state of the system at different time points (including
the initial time point) and about the general laws that govern the evolution of the
system. Thus, we first have to choose a model for uncertain belief states. For space
reasons, we will focus only on two uncertainty models in the following: the binary
model, where belief states b are non-empty subsets of S and the Bayesian model,
where belief states b are probability distributions onS .1

Transitions from one state to another are triggered by events. These events gen-
erally change not only the state of the system, but also the beliefs of the agent. An
action is a special event triggered by an agent. The agent has a model of each action
available to her. The set of actions available to the agent is denoted by A , and is
supposed to be finite. The agent can also have a model for exogenous events, which
are phenomena whose dynamics are similar to actions but which are not triggered by
the agent. They are triggered by nature or possibly by other agents more or less well-
identified (i.e., whose identity may be imperfectly known), and their occurrences are
a priori not known by the agent. We distinguish between the action type α (defined
very generally) from the action occurrence(s) at one or more time point(s): a given
action may have no occurrence in an instance of a problem, or may have one or
several occurrences. Actions have two types of effects: ontic (physical) effects, on
the world, and epistemic effects, on the beliefs of the agent. Epistemic effects can
either be caused by her projection of the physical effects of the performed action (for
instance, if I know that the action “delete file F” has the effect that file F no longer
appears on my computer, then, when I execute this action, the resulting belief state
is such that I know that F no longer is on my computer) or from observations or
any form of feedback (for instance, if after trying to turn the light on by flipping the
switch, I observe that the light is off, then, in my new state of belief, I know that the
bulb is broken or that the power is off).

Actions have generally two types of effects at once (as in the case of the “switch”
action above). Some actions, referred to as purely epistemic actions, have only epis-
temic effects, and no effect on the state of the world; for example, measuring a tem-
perature, or querying a database. Other actions, referred to as purely ontic actions

1There aremany other uncertaintymodels that should bementioned butwill not be, for space reasons
- they include ordinal models, where belief states and action effects are modeled as pre-orders over
S , possibilisticmodels that are similar in spirit to them, non-Bayesian probabilisticmodels, where a
belief state is a family of probability distributions, etc. (see chapter “Representations of Uncertainty
in Artificial Intelligence: Probability and Possibility” of this volume).
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have epistemic effects (it is hard to imagine actions without any epistemic effect,
apart from the action “do nothing”), but these epistemic effects are the simple pro-
jection, by the agent, of what she knows about the ontic effects of the action (as
for the action “delete file F” above). In other words, a purely ontic action gives no
feedback to the agent: her belief state after the execution of such an action coincides
with the belief state she could foresee before executing the action (“what you foresee
is what you get”). Every action can be decomposed in a unique way into a purely
ontic action and a purely epistemic action; without loss of generality, we can thus
assume that each available action is either purely ontic or purely epistemic (and we
will make such an assumption in the rest of the chapter, unless stated otherwise).

Let us start by describing purely ontic actions. The effects of a purely ontic action
α are defined by a transition system between the states of the world, modeled as a
binary relation Rα over S .

The simplest case is when actions are deterministic and always executable. In
this case, the transition system of α is a mapping Rα from S to S . An action
has conditional effects if the resulting state after its execution depends on the state
before its execution. For example, the action “switch off the light” may be regarded
as deterministic and unconditional (if we assume that it always has the effect that the
lamp is off after its execution). “Toggle the switch” canbe considered as deterministic,
and with conditional effects since its effects depend on the state (“on” or “off”) of
the light before the execution of the action.

More generally, actions are not always executable: there can be states s such
that Rα(s) = ∅; actions can also be non-deterministic: there are states s such that
Rα(s) contains more than one element. For example, the action “delete file F” is not
executable if the file does not exist; in this case, the modeler will define the effect
of the action only for states where the file exists, and executing the action will be
forbidden in the other cases. Another model would make advantage of an action
with conditional effects, where the transition associated with the action would be
associated with the identity relation in situations where file F does not exist, and
would lead to states where the file is deleted otherwise.

In the non-deterministic case, the transitionmodel chosen depends on the nature of
the uncertainty onewants to dealwith;with each initial state is associated a belief state
on the subsequent states. Note that choosing a deterministic or a non-deterministic
model for a system may depend on the knowledge and the goals of the modeler:
the action “turn the computer off” can be considered as non-deterministic for an
agent who is not a computer scientist (since it may happen that after the execution of
the action the computer is still on) but as deterministic, with conditional effects, for
an expert in computer science (since this expert will be able to determine the cases
where the computer stays on after being turned off). Modeling a dynamic system as a
transition system between states amounts to making the implicit assumption that the
system isMarkovian.2 Such an assumption can bemade without loss of generality by
consideringmore complex states (encoding state trajectories). For the sake of brevity,

2A system isMarkovian if the transition of the system to any given state depends only on the current
state and not on the previous ones.
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we will stick to the following two models: the binary non-deterministic model and
the stochastic model.

In the binary non-deterministic model, the transition system of an action α is
a mapping Rα from S to 2S (or to 2S \ {∅}, when α is always executable). For
example, if the system states are S = {c_on, c_stand_by, c_of f } (representing
the activity of a computer: “on”, “stand-by” or “off”) then the action of “shut-
ting down the computer” may be modeled as Rshut_down(c_on) = {c_on, c_of f },
Rshut_down(c_stand_by) = Rshut_down(c_of f ) = ∅ (meaning that one can “turn off
the computer” only if it is “on”, and in this case, it is not sure that the “shut down”
action succeeds). Note that if α is a purely epistemic action, then Rα(s) = {s} for
all s.

In the stochasticmodel (here, theBayesianmodel for uncertainty), Rα is a stochas-
tic matrix, i.e., a family of probability distributions p(.|s,α) for s ∈ S , where
p(s ′|s,α) is the probability to obtain the state s ′ after the execution of α in s. In
this model, it is possible to specify howmuch the “shut down” action succeeds; thus,
Rshut_down could be represented by p(c_on | c_on, shut_down) = 0.1, p(c_of f |
c_on, shut_down) = 0.9, p(c_stand_by | c_on, shut_down) = 0.

Epistemic effects of actions are expressed in terms of feedback. The actions that
the agent decides to execute do not depend directly on the system state (whichmay be
unknown to the agent) but on the agent’s beliefs (and in particular, on what has been
observed earlier). Ideally, the current state and what the agent may observe coincide.
In this case, the belief state of the agent is perfect, but this hypothesis reflects an ideal
case and does not often hold. In order to define the epistemic effects of actions, an
observation space Ω can be introduced in the model. This space, unless otherwise
indicated, is supposed finite. The observations are the feedback given by the system
and each observation at a given time point from the horizon is a projection of a
state (not necessarily totally observed) of the system. The observations are called
reliable if this projection corresponds to the actual state of the system (unreliable
observations can arise from faulty sensors, for example).

Taking observations into account concerns two distinct stages: the off-line stage
when the decision policy is generated, and the on-line stage when it is exploited
(i.e., when the plan is executed). During the off-line stage, the agent who generates
the policy takes advantage of her knowledge about the observations which could be
made at the on-line stage. During the on-line phase, the actions which are triggered
by the agent typically depend on the observations which are effectively made. Note
that nothing prevents from having two distinct agents (one who computes a decision
policy and another one who executes it).

Two assumptions corresponding to two extreme cases are commonly made: when
the system is fully observable, the observation space is identical to the state space:
when she generates a decision policy, the agent knows that at the on-line stage, the
actual state of the system will be known exactly at each time point; when the system
is non-observable, the observation space is a singleton {o∗}, where o∗ is a fictitious
observation (the empty observation): the system gives no feedback.

When none of these two extreme assumptions hold, one faces themore general sit-
uation of partial observability, where observations and system states are constrained
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by an observation-state correlation structure, the definition of which varies with the
uncertainty model under consideration. In general, each state s and each epistemic
action α correspond to a belief state Oα(s) over the space of observations, repre-
senting the prior beliefs about the observations obtained when action α is performed
in state s. In the binary model for uncertainty, a family of sets Oα(s) for s ∈ S is
thus considered, where Oα(s) is a non-empty set of Ω; so o ∈ Oα(s) reflects the fact
that s is a state compatible with the observation o which results from the execution
of α. If α is purely ontic, then Oα(s) = {o∗} for all s. In the Bayesian model for
uncertainty, the feedback is modeled by a probability distribution p(.|s,α) on Ω

where p(o|s,α) is the probability to observe o when α is executed in s.
In this section, we assumed that only one action at a time can be executed. In

some problems, it is natural to perform several actions in a concurrent way. This
requires to be able to define the effects of combinations of actions; for reaching this
goal, the same models as previously considered can be used, viewing every possible
combination of actions as a specific action. A typical example (Thielscher 1995) is
the one of a table that can be lifted by the right side or by the left side: the two actions
performed in sequence and independently do not have the same effect as when they
are executed simultaneously, especially when a glass of water is on the table!

2.2 Types of Reasoning and Their Implementations

Reasoning on a dynamic system requires to take account of a time horizon, the
prior beliefs on the system (general laws of the domain and action effects), the
occurrences of actions at some time points, and the observations at given time points
(it is a simplified model – see (Sandewall 1995) for a more general one, where, in
particular, the actions can have a duration). We are now going to approach some
specific types of reasoning implying reasoning on a dynamic system, as well as their
implementation by means of algorithms.

2.2.1 Prediction and Postdiction with Ontic Actions

Prediction (also called projection) consists in determining, according to one initial
state of belief b and the description of a purely ontic action α, the new state of belief
b′ resulting from the application of α in b. The transformation of a state of belief into
another one by an action is called progression; noted b′ = prog(b,α). Of course,
the formal definition of prog depends on the nature of the space of the beliefs (static
and dynamic), thus it depends on the chosen representation of uncertainty. In the
simplest case (that of classical planning) where belief states are perfect, actions are
deterministic and always achievable, each prog(.,α) is a total function mapping a
state to another one. In the binary nondeterministic model, a state s ′ is possible after
the execution of α in the state of belief b ⊆ S if there exists a possible state s in the
whole set of states corresponding to the initial belief b, such as s ′ is a possible result of
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α in s, i.e. prog(b,α) = ⋃
s∈b Rα(s). In the probabilistic model, the obvious choice

is obtained by identifying the model of the process to a Markov chain: prog(b,α) is
the probability distribution b′ onS defined by b′(s ′) = ∑

s∈S b(s)p(s ′|s,α) (where
p(.|s,α) is the probability distribution associated with Rα).

The second type of reasoning is postdiction. It consists in determining, accord-
ing to one final state of belief b′ and the description of a purely ontic action α
which has just been carried out, the state of belief b before the action was done.
This transformation of a state of belief into another, is sometimes also called
regression or weak regression; noted b = regw(b′,α). The weak regression cor-
responds to the progression by the reverse action of α (noted α−1), which tran-
sition system Rα−1 is the reciprocal relation of the relation Rα; thus it holds that
regw(b′,α) = prog(b′,α−1) = {s|Rα(s) ∩ b′ �= ∅}.

Postdiction must be distinguished from goal regression, also called strong regres-
sion, which is the reverse transformation of progression. It is defined only for the
binary model 3: given a belief state b′ ⊆ S and a purely ontic action α, the aim is to
find the belief state b = regS(b′,α) such that prog(b,α) ⊆ b′ and b is maximum
for set inclusion; this belief state is the least informative state of belief (thus the least
conjectural) which guarantees that the execution of α in it led to the goal b′.

Let us notice that regS(b′,α) ⊆ regw(b′,α)with theparticular case regS(b′,α) =
regw(b′,α) when α is deterministic.

Progression and regression are two key processes of reasoning for planning (see
chapter “Planning in Artificial Intelligence” of Volume 2), which consists in deter-
mining the actions to carry out to make evolve the system as the agent wishes it
(for example, get as close as possible to a reference trajectory in the case of the
supervision, or to reach a goal state in the case of classical planning). On the other
hand, postdiction has little interest for planning itself (because if b is obtained as a
possible postdiction from b′ with action α, it is not guaranteed that by carrying out
the action α one would again obtain the state b′, while strong regression guarantees
it by definition).

2.2.2 Prediction and Postdiction with Epistemic Actions

The progression of a belief state by an epistemic action depends on the nature of
the reasoning process. In the case of a supervision process or a diagnosis, the agent
reasons online and thus has access to all the observations coming from the actions
feedback during its reasoning; thus it is enough to define the progression of a belief
state by an observation, which is related to belief revision (see chapter “Main Issues
in Belief Revision, Belief Merging and Information Fusion” of this volume). In the
binary model, the progression of one belief state b ⊆ S by an observation o after
having carried out the action α is b ∩ S(o), where S(o) = {s|o ∈ Oα(s)}; while in
the Bayesian model, the revision of b by o is the probability distribution b(.|S(O)).

3In the probabilistic model, there may not exist a unique probability distribution b onS satisfying
b′(s′) = ∑

s∈S b(s).p(s′|s,α), b′(s′) with p(s′|s,α) being known for all s, s′ and α.
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The filtering process consists in determining the new state of belief b′, given an
initial belief state b, an action α, and an observation o resulting from the execution
of α. In the binary model, this new belief state is simply prog(b,α) ∩ S(o). In the
Bayesianmodel, the probability distributionb′ obtained after having carried outα and
observing o is b′(s ′) = p(o|s ′,α).

∑
s∈S b(s).p(s ′ |s,α)

∑
s′′∈S(p(o|s ′′,α).

∑
s∈S b(s).p(s ′′ |s,α))

; it is the formula expressing the
revision of the beliefs by the feedback in the partially observable Markov decision
processes (see chapter “Planning in Artificial Intelligence” of Volume 2).

In the case of a planning process, where the aim is to build an off line plan and
to reason on its effects, the progression of a belief state by an epistemic action is
in general not a unique belief state, but a set of such states (one for each possible
observation, since the actual observation cannot be known off line). In the binary
model, prog(b,α) is the set of belief states {b ∩ S(o) | b ∩ S(o) �= ∅} for o varying
inΩ . For sake of shortness, we do not give details on regression by epistemic actions.

2.2.3 Event Abduction

The third type of reasoning is event abduction. It concerns reasoning on the event
which took place between two successive time points t and t + 1, starting from the
description of the possible events and from the description of the belief states at time t
and t + 1.4 If the event in question is exogenous, this reasoning is called explanation.

As for planning, progression and goal regression are two key processes for event
abduction: in planning, one must choose the actions to be carried out to make the
system evolve as desired starting from its current state; in event abduction, the objec-
tive is to determine which event α led the system to evolve as it did between t and
t + 1 (even if this evolution was not desirable). In the binary model, to compute such
α consists in searching among the possible events those satisfying b′ ⊆ prog(b,α)

(or equivalently b ⊇ regF (b′,α)).

2.2.4 Scenario Extrapolation

More generally, these types of reasoning, that we defined in a context where there is
only one change stage (thus two time points), take place in situations where the hori-
zon is unspecified, and where the input information is a complex scenario describing
a partial trajectory of the system (at each time point, some information may be avail-
able about the occurrence of an action and/or an observation). In the typical case
where no action was carried out and where the user wants to find the events (or more
simply, the elementary changes) which occurred at each time point, the process is
called extrapolation.

4A more complex abduction problem consists in reasoning not only on the event which took place,
but also on the system states at time points t and t + 1, on which one wishes to obtain more precise
beliefs.
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Another situation is when one seeks to recognize some trajectories among a set
of reference trajectories in order to predict the events that will occur and/or the states
that the system will reach; this process is called scenario monitoring or scenario
recognition.

The sequence of observations can also contain action occurrences (Dupin deSaint-
Cyr 2008; Delgrande and Levesque 2012; Hunter and Delgrande 2015) (scenarios
are also called narratives or histories) and the two previous tasks of completing
or recognizing some trajectories can be done in this more complex context. These
tasks involve both prediction, postdiction and event abduction in situation that can
be pervaded with uncertainty (fallible knowledge, erroneous perception, exogenous
actions, and failed actions).

A crucial aspect of the reasoning about change approaches in Artificial Intelli-
gence is that they assign a prominent role to inertia: by default, the system tends to
remain static, and the changes other than those which are directly caused by action
occurrences are rare, this is why one seeks to minimize them. This assumption is
crucial if one wants to reason about action in presence of uncertainty without losing
too much information. Very often, reasoning about change amounts to minimizing
change; we will come back on this subject when we will approach the languages
for reasoning about action. Indeed, according to the way actions are represented,
there exist numerous ways of carrying out the progression of a state or the regres-
sion of a formula (encoding a set of states) by an action. Concerning the temporal
or dynamic logic representations, progression and regression can be computed via
some formula transformations (in particular, conjunction and forgetting). The use
of change minimization principles is often proposed as a means to solve the frame
problem (cf. Sect. 3.1), but it seems henceforth admitted that it is rather necessary
to set up processes which remove the solutions containing abnormal changes (not
caused by actions) than processes which minimize them.

This idea to focus on abnormal changes rather than on maximising inertia is well
in accordance with the approaches that reason on a world under continuous change
where the agent should adapt its action model when a surprise occurs (discrepancy
between what is observed and what was expected). This kind of research is more
related to the domain of planning in a dynamic word and particularly in the context
of goal driven autonomy agents (GDA) that must reason about partially observable
domains with a partial knowledge about available actions (Molineaux and Aha 2014;
Dannenhauer et al. 2016; Dannenhauer and Cox 2017).
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3 Reasoning About Action: Languages

3.1 Problems Related to the Representation of Actions

In the majority of real problems, the system is naturally described by some variables,
called state variables, that represent some features about some objects, etc. In this
case, a state of the system corresponds to the description of a value for each one
of the state variables, these values being able to change with the course of time.
State variables are usually called fluents, a fluent describes a dynamic property of
the system. Obviously, the number of possible states is exponential in the number
of variables. The explicit description of the effects of the actions, which consists in
specifying in extenso the functions Rα, becomes then unfeasible in practice, and is
somewhat unnatural, because the user is obliged to describe the actions state by state.
Similar considerations apply to the description of the correlations between states and
observations and with the computation of the operations of progression, regression,
etc.

However, there often exist much more economic and natural ways to represent
the effects of the actions. For example, let us consider the action to “flip a switch”
which causes the alternative “lighting on” or “off” of a bulb. If the representation
of the problem requires to take into account the “on”/“off” states of 10 bulbs, then
1024 states of the system will have to be considered (all possible configurations of
the 10 bulbs) in order to describe one flip action, whereas this action only causes the
change of state of one particular bulb. To describe such action, one rather wants to be
limited to indicate that it changes the state of this bulb and, implicitly, that it leaves
the other bulbs in their current state.

Action languageswere built precisely to this aim: obtaining representations of the
effects of the actions which are both more economic (or more compact) and more
natural. The problem of preventing the user from explicitly describing the fluents
that are not modified by an action in the various possible contexts is known as the
frame problem (McCarthy and Hayes 1969). It is indeed a problem involved in the
choice of a representation of the actions (and not of a modeling problem, i.e. the
problem does not rely on the choices of the fluents used to model the system but on
the coding of actions in general).

In the same vein, one may face a problem that is the dual of the frame problem,
known as ramification problem (Finger 1987) which is solved when the action lan-
guage makes it possible to avoid describing explicitly all the fluents that an action
modifies, directly or indirectly, in the various possible contexts. Following up on the
previous example, each flip of the switch causes the lighting on/off of the associated
bulb, then the roomwhere the bulb is located becomes enlightened and consequently
one can settle there for reading. This derived fact is a consequence of the execution
of the action but it is not natural, when the action is described, to specify it directly:
it results rather from a (static) law which expresses that when a room is lit, one can
practice the reading there.
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When one deals with action representation, the qualification problem (McCarthy
1977) is also often evoked; this problem expresses the incapacity to describe all
the pre-conditions that guarantee to obtain the “normal” effect of an action. To deal
with this problem, it is first necessary to circumscribe the world with the individuals
and the properties explicitly present in the representation; for example, flipping the
switch when the associated bulb is off will cause the lighting of this one only if the
conflict between Bordures and Syldaves did not cause the destruction of the electric
line feeding the house. From our point of view, this problem is not intrinsic within
the action representation, it occurs more primarily as soon as the modeling phase
starts and simply reflects the difference existing between a situation of the physical
world and a representation of this one, which necessarily abstracts it. However, in
order to give the pre-conditions of an action, this restriction to the situations that
have a representation in the language does not remove the need for reviewing all
the situations in which the action is carried out normally. Solving the qualification
problem means being able to state the “natural” pre-conditions of an action without
having to describe explicitly the list of all the values of the fluents which allow the
action to normally take place.

Once actions are represented, it is necessary to build algorithms allowing the
computation of the basic operations (progression, regression, etc). The choice of an
action language thus depends, on the one hand, of its more or less natural aspect,
on the other hand, of its compactness (or space efficiency), and finally, of the com-
plexity of the basic operations when the actions are represented in this language (its
computational efficiency).

There exist many action languages which were developed and studied by the
community. They can be gathered in several families, according to the nature of the
mathematical objects that they use (propositional or first order logic formulas, tem-
poral or dynamic logic formulas, Bayesian networks, state automata, etc.). Giving an
exhaustive panorama would be too long and little digest. We will thus only sketchily
present the languages which received the most attention from the community, and
which are sufficiently representative of the range of the existing languages. Each
following sub-section approaches a particular language, or a family of languages, by
briefly giving its specificities.

3.2 The Situation Calculus

From an historic perspective the situation calculus introduced by McCarthy and
Hayes (1969) is thefirst formalismdevoted to reasoning about actions. Thedefinitions
given by these authors enabled them to set the basic concepts (presented higher) on
reasoning about change and action. The situation calculus is a typed first order logic
language with equality, whose types are fluents, states (called situations), actions and
objects. In order to simplify the presentation, here we only consider propositional
fluents, which have one situation as single argument; we do not mention the objects
of the world. Thus, ¬P(S0) express that the fluent P is false in the situation S0. S0
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denotes the state of the system at the initial time point of the horizon. For situations
and actions we need both variables (denoted respectively s, . . . and x, . . .) and con-
stants (denoted respectively S, . . . and A, . . .). The function do applies to a situation
and an action and returns a situation. Thus, the formula ¬P(S0) ∧ P(do(A1, S0))
expresses that P is false in S0 and true in do(A1, S0), i.e. in the situation obtained
by applying the action A1 in S0. The formula ∀s¬P(s) expresses that P is always
false. The formula ∀s((∀x¬P(do(x, s)) ↔ x = A0) expresses that A0 is the single
action which guarantees to make P false in any state where it is applied.

McCarthy and Hayes set a general representation framework enabling them to
represent actions by their pre-conditions and their effects (represented by logical
formulas). Many approaches were then proposed in order to characterize the “good”
consequences of these formulas. Initially, all the authors bet on change minimization
in order to restrict the set of models so that the properties resulting from the iner-
tia principle can be deduced without having to mention them explicitly. This was
accomplished thanks to a second order logic formula, and various circumscription
policies were studied for this purpose (the reader can refer to (Moinard 2000) for
a review). McCarthy (1986) and then Hanks and McDermott (1986) used the cir-
cumscription of abnormality predicates (by considering that a fluent must persist
unless otherwise explicitly indicated) within the framework of the situation calculus.
However, there are some examples where circumscription does not give the expected
result. One of most famous is the Yale Shooting Problem proposed by Hanks and
McDermott: someone is alive in the initial situation, and one carry out successively
the three actions “Load”, “Wait” then “Shoot”. The action “Shoot” is described by
the formula: ∀s, (loaded (s) → (Abnormal (Alive, Shoot, s) ∧ ¬Alive (do(Shoot,
s)))).5 The fact that, by default, the fluents are persisting is described by the second
order logic formula ∀ f , s, a, (( f (s) ∧ ¬Abnormal ( f , a, s) → f (do(a, s)).6 The
circumscription of the predicate Abnormal makes it possible to obtain a logical
model in which the person is alive at the initial time point and dead (non alive)
after the action “Shoot”. However, another model is possible: the one where the rifle
unloaded itself during “Waiting” and the person is still alive after “Shoot”. Circum-
scribing the Abnormal predicate does not allow for preferring the first model to the
second one because the two models have incomparable sets of abnormalities w.r.t.
set inclusion (in the first model, it is “Alive” which is abnormal in the presence of the
action “Shoot”; in the second one, it is “Loaded” which is abnormal w.r.t. “Wait”).
Chronological ignorance, proposed by Shoham (1988) and consisting in preferring
models where the changes occur the latest, allows one to obtain a satisfactory answer
for this example. But this last ad hoc approach was challenged by other examples
that it handles badly (Sandewall 1995; Friedman and Halpern 1994).

5If the rifle is loaded in the situation s then the fluent “Alive” is abnormal (i.e., non persistent)
when the action “Shoot” takes place in s and the person will not be alive any more in the resulting
situation.
6If the fluent is not abnormal with respect to an action then it keeps its value after the execution of
this action.
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Another solution suggested by Lifschitz and Rabinov (1989) is to impose that
all the fluents that are modified by an action are systematically non inert when this
action is carried out. This idea is close to the solution, proposed by Castilho et al.
(1999), to use a dependence relation between an action and the atoms on which it
may act. The reader can refer to Sandewall (1995) for an excellent synthesis of all
these works.

In short, approaches based on change minimization are based on non-monotonic
logics and are very complex; they are not able to deduce all the intuitive consequences
that are expected from a description of a set of actions and an initial situation.

The situation changed with the publication of what was called Reiter’s solution
to the frame problem (Reiter 1991). Reiter suggests a monotonic solution based
on successor state axioms (SSA). These axioms must be given for each fluent P
(which is equivalent to an assumption of complete information about the conditions
of change of truth value of a fluent) and they have the following form:

∀s, x (P(do(x, s)) ↔ γP(x, s))

where γP(x, s) is a formula which does not contain the function symbol do and
which can only contain S0 as situation constant. Thus, the SSA for P describes the
conditions under which P is true after an action has been performed, in function of
what was true before.

Let us consider the Toggle-switch example (Lifschitz 1990):
In a room, the light is on only if both switches are up or both down. Initially, the
switch a is up and the switch b in down, the light is thus off, someone toggles the
switch a.

a

b

The fluents are Ua (“the switch a is up”) and Ub (“the switch b is up”). In this
example, the SSA for fluent Ua can be written:

∀s, x Ua(do(x, s)) ↔ ((¬Ua(s) ∧ x = Ta) ∨ (Ua(s) ∧ x �= Ta))

where Ta is the action to toggle the switch a, i.e., flip its position.
Reiter explains that using Successor State Axioms is a solution to the frame

problem because one can reasonably expect the size of the set of SSA to be in the
order of the number of fluents (which contrastswith the size of the explicit description
of the frame axioms that would be in the order of the number of fluents set multiplied
by the number of actions).
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According to Reiter, quantification over actions is the key solution to the frame
problem. As wewill show in Sect. 3.4, the assumption of complete information about
the conditions under which fluents change their truth value (translated by the ↔ in
the SSA) allows Reiter to deal with the frame problem in a satisfactory way.

The presence of an SSA for each fluent allows for regressing formulas: atoms of
the form P(do(α,σ)) (where α and σ are terms built with variables, constants and
the function do) are replaced by the right member of the SSA for P , by applying
first the suitable substitution; this process is reiterated until complete elimination of
the function do. By construction, the formula thus obtained only relates on the initial
state S0.

For example, the formula

Ua(do(Ta, do(Ta, S0)))

is first replaced by:

(¬Ua(do(Ta, S0)) ∧ Ta=Ta) ∨ (Ua(do(Ta, S0)) ∧ Ta �=Ta)

which can be simplified into ¬Ua(do(Ta, S0)). In a second step, this last formula is
replaced by¬(¬Ua(S0) ∧ Ta=Ta) ∨ (Ua(S0) ∧ Ta �=Ta)which can be simplified into
Ua(S0). We have thus proven by regression that the switch is up after two executions
of Ta if and only if it is up in the initial state S0.

In order to decide whether the application of the action α in the state S0 leads to a
state in which ψ holds, it is enough to decide if the formula φ(S0) → ψ(do(α, S0))
is valid. The regression of ψ(do(α, S0)) results in a formula ψ′(S0). If the argument
S0 is eliminated, we obtain the propositional formula φ → ψ′, whose validity can be
checked by using a suitable prover.

This solution was combined with epistemic logic (Scherl and Levesque 2003),
which gives a formalism close to dynamic logic, described in Sect. 3.4. Moreover the
framework of the situation calculus with Successor State Axioms has been recently
used by Batusov and Soutchanski (2018) for causal ascription.

3.3 Propositional Action Languages

A weak point of the approaches based on the situation calculus is the difficulty of
their algorithmic implementation. For this reason, researchers have also developed
approaches based on propositional logic, which can benefit from off-the-shelf ASP or
SAT solvers (see chapters “Logic Programming” and “Reasoning with Propositional
Logic: from SAT Solvers to Knowledge Compilation” of Volume 2).

In action languages based on propositional logic, action effects are represented
by local rules specifying only the fluents that change, possibly together with the
conditions under which they change. Let F be a finite set of fluents. The states ofS
are the propositional interpretations over F , that is,S = 2F .
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The most basic action language is arguably STRIPS (Fikes and Nilsson 1971),
where an action is represented by a precondition and its effects (see chapter “Planning
in Artificial Intelligence” of Volume 2), a precondition being a conjunction of literals
and an effect being a consistent set of literals.

To encode the light switch example, one may take as set of fluents F = {Ua,Ub},
where Ua (resp. Ub) is true (resp. false) when switch a (resp. b) is on (resp. off). An
action with conditional effects such as Ta (‘switch a’) can be written as

(Ua �→ ¬Ua) ∧ (¬Ua �→ Ua).

The right member l of each rule of form c �→ l is a direct action effect, which applies
if and only if the corresponding condition is satisfied in the state in which the action
is performed. Thus, applying c �→ l in state s leaves s unchanged if s does not satisfy
c and enforces the truth of l otherwise, leaving other fluents unchanged. This applies
to each rule.7 Thus, applying Ta in state s leads to change the truth value of Ua in s,
as we expect. Importantly, such an action description rule is not a classical logical
formula, and in particular, �→ is not material implication. Indeed, a STRIPS action
α can be seen as a constraint linking the state of the world before it is performed
and the state of the world after it has been performed. In particular, c �→ l is not
equivalent to ¬l �→ ¬c.8

One of the limits of the STRIPS language is the impossibility to express static
laws. These laws are however needed for the ramification problem to be dealt with.
For instance, in the previous example, one may want to introduce a new fluent L
expressing that “the light is on”. With standard STRIPS, integrating this new fluent
would require to modify all actions by specifying what happens to L . This solution
is not reasonable when the number of fluents is large. A way to cope with this lack
of expressiveness consists in encoding actions with a set of basic fluents on which
the available actions act directly (Ua and Ub in the example); the fluents that are not
basic are called derived fluents. Progression is first computed as in classical STRIPS,
and then there is one additional step so as to take the static laws into account and
make some inferences on derived fluents. Thus, to compute the progression of state
s by an action, one starts by projecting s on the basic fluents; then one performs the
progression of this projection, and finally the obtained state is completed using the
static laws. In the switch example, one may take as static law

((Ua ∧Ub) ∨ (¬Ua ∧ ¬Ub)) ↔ L

7A pathological case is when the conditions of rules leading to complementary literals are conjointly
satisfied in s; in such a case, the progression is undefined; this can reflect an error when specifying
the representation of the action, or the fact that s is impossible (and in this case corresponds to an
implicit static law).
8If they were equivalent, then the encoding of action “Shoot” by Loaded �→ ¬ Alive in the Yale
Shooting Problem would be equivalent to Alive �→ ¬ Loaded, meaning that shooting on a living
person results on the gun being magically unloaded (and the person staying alive...).
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whereUa andUb are basic and L is derived. The progression of state {Ua,¬Ub,¬L}
by action Ta is thus {¬Ua,¬Ub, L}.

There are four main problems with STRIPS: it does not allow for representing
(a) non-determinism, (b) static causal relations between fluents (as discussed in the
previous paragraph), (c) concurrent actions, and (d) epistemic actions. To cope with
this lackof expressiveness,more sophisticated action languages havebeendeveloped,
both in the planning community (with ADL (Pednault 1989) and PDDL (Ghallab
et al. 1998)) and in the knowledge representation community. We will now focus on
the languages stemming from the latter community.

In the 70s and 80s, the knowledge representation community used to think of
actions as simple rules linking action preconditions and action effects. Subsequently,
some researchers suggested that prediction could be computed usingminimization of
change, so as to impose that, by default, fluents that are not concerned by the action
should persist (these fluents, of course, do not need to be specified in action effects, so
as to cope with the frame problem). Then, since the 90s, minimization of change was
progressively replaced by the use of propositional languages based on causal impli-
cation. The solutions of Reiter (1991), Lifschitz and Rabinov (1989) and Castilho
et al. (1999) for solving problems occurring with minimization of change consist
in expressing dependencies between an action and its effects. This very principle
has been implemented in works using causal implication (see chapter “A Glance at
Causality Theories for Artificial Intelligence” of this volume), which is distinct from
material implication since it is meant to express these dependencies.

Some approaches using causal implication make use of the situation calcu-
lus (Stein and Morgenstern 1994; Lin 1995). Others use the modality C (Geffner
1990; Giordano et al. 1998; Turner 1999) or equivalently, define a new connective
⇒ (Giunchiglia et al. 2004) Yet others define influence relations between fluents
(Thielscher 1997). The main feature of these approaches is that they distinguish the
fact of being true from the reason for being true, and use this distinction for computing
the expected effect of actions for prediction or planning.

We give now some details about the action languageA proposed by Gelfond and
Lifschitz (1993). In this language, an action is expressed by means of conditional
causal rules of the form

if c thenα causes l,

where α is an action name, c a conjunction of literals (omitted when it is equivalent
to �), and l a literal. A set of causal rules defines a deterministic transition system
between states. Thus, the action α defined by the causal rules

if p ∧ q thenα causes¬p, if¬p ∧ q thenα cause p andα cause q

corresponds to the transition system Rα defined by Rα(pq) = Rα( p̄q̄) = p̄q and
Rα( p̄q) = Rα(pq̄) = pq. An action α described by such causal rules corresponds
to a propositional action theoryΣα, expressingα bymeans of propositional symbols
Ft and Ft+1, with Ft = { ft | f ∈ F} and Ft+1 = { ft+1| f ∈ F}, where ft represents
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fluent f at time t , that is, before action α has been performed, and ft+1 represents f
at time t + 1, after action α has been performed. The causal rules are translated into
Σα according to the following principle: fluent f is true at t + 1 if and only if one
of these two conditions holds: (a) it was true at t and the state at t does not satisfy
any precondition of a causal rule whose conclusion is ¬ f , or (b) it was false at t and
the state at t satisfies the precondition of a causal rule whose conclusion is f . One
finds here the principle at work in the situation calculus, which we called ‘Reiter’s
solution’ in Sect. 3.2.

Formally, let Γ ( f ) (respectively Γ (¬ f )) the disjunction of all preconditions of
rules whose conclusion is f (respectively ¬ f ); then Σα is the conjunction of all the
formulas

ft+1 ↔ Γ ( f )t ∨ ( ft ∧ ¬Γ (¬ f )t )

for f ∈ F . Thus, the action theory Σα corresponding to the action α previously
described by its causal rules is

Σα = (pt+1 ↔ ((¬pt ∧ qt ) ∨ (pt ∧ ¬(pt ∧ qt )))) ∧ (qt+1 ↔ �),

which simplifies into

Σα = qt+1 ∧ (pt+1 ↔ (pt ↔ ¬qt )).

An extension of language A is language C (Giunchiglia and Lifschitz 1998),
which allows for expressing executability conditions and static rules, independently
of any action, such as

Outside ∧ ¬Umbrella ∧ Umbrella causes¬Dry,

that are also taken into account in the corresponding action theory. For instance,
consider action Go-out with a unique causal rule

Go-out causesOutside;

the corresponding action theory, taking into account the previous static rule, is

ΣGo-out =Outsidet+1 ∧ (Umbrellat+1 ↔ Umbrellat ) ∧ (Raint+1 ↔ Raint )

∧ (Dryt+1 ↔ Dryt ∧ (Umbrellat ∨ ¬Raint )).

Non-determinism can be expressed in several different ways, explored indepen-
dently in different papers:

• by complex effects, such as

α causes(p ↔ q),
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a choice that is at the heart of belief update, cf. Sect. 4;
• by disjunction of effects, which are similar to nondeterministic union in dynamic
logic, cf. Sect. 3.4), such as

Toss causesHeads or causes¬Heads;

• by recursive causal rules,which is amore technical solution thatwewill not discuss
here.

Some action languages (such as language C ) also have concurrency, whereas others
have epistemic actions, thus enabling the distinction between facts and knowledge;
thus, the action of testing whether the fluent f is true or false is represented by the
causal rule

α causesK f or causesK¬ f,

whereK is the knowledge modality of epistemic logic S5 (see in particular (Herzig
et al. 2003)).

Progression and regression can be applied directly in these languages. A belief
state, in the binary uncertainty model, is a nonempty set of states, and can thus be
represented by a consistent propositional formula. Progression and regression map
a consistent formula and an action to a formula (which is always consistent in the
case of progression and weak regression). The progression of formula ϕ by action
α consists first in taking the conjunction of ϕt (expressing that ϕ is true before the
action) and Σα, and then in forgetting in ϕt ∧ Σα all variables ft , i.e., in deriving
the strongest logical consequence of ϕt ∧ Σα independent of the variables ft (see
for instance (Lang et al. 2003)). Weak regression is computed similarly: the weak
regression of ψ by α is the result of forgetting the variables ft+1 in ψt+1 ∧ Σα.
The strong regression of ψ by α is obtained by computing the minimal conditions
guaranteeing that the application of α will lead to a state satisfying ψ. Thus, in the
previous example, the progression of Dry ∧ Umbrella by Go-out is (up to logical
equivalence)

Outside ∧ Umbrella ∧ Dry,

and the progression of ¬Umbrella by Go-out is

Outside ∧ ¬Umbrella ∧ (Rain → ¬Dry),

whereas the weak regression of Dry ∧ Rain by Go-out is

Umbrella ∧ Rain ∧ Dry.
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3.4 Dynamic Logic

There are other possible ways of representing actions and dealing with the cor-
responding problems. Dynamic logic is a formalism initially known in theoretical
computer science for reasoning about program execution. In addition to Boolean
operators, its language contains modal operators of the form [α], where α is a pro-
gram. The combination of such an operator with a formula results in a formula of the
form [α]φ, read ‘φ is true after every execution of α’. Instead of a program, one may
assume that α is an event or an action. For instance, the action of toggling switch a
can be described by the two effect laws (¬Ua → [Ta]Ua) and (Ua → [Ta]¬Ua).

In the context of dynamic logic, an important aspect of reasoning about actions
that was dealt with first in (Herzig and Varzinczak 2007) concerns the consistency of
a domain description. It has been shown that for expressive action languages, beyond
logical consistency, a good domain description should be modular, in the sense that
effect laws describing the actions should not allow for deriving new static laws. For
instance, the static laws P1 → [A]Q, P2 → [A]¬Q and ¬[A]⊥ together imply the
static law ¬(P1 ∧ P2); if this law is not deductible from the other static laws and
only them, then these effect laws should be considered problematic.

Unlike in situation calculus, states are not explicit in dynamic logic. Although
dynamic logic does not allow either for quantifying over actions, which is a key
feature of Reiter’s solution for the frame problem, it has been shown that this solution
can be implemented in dynamic logic for the rather general case of explicit SSAs (van
Ditmarsch et al. 2011). In such SSAs, x must be the only action variable of γP(x, s)
and if an action constant A does not appear in γP(x, s) then γP(A, s) should not
be equivalent to P(s). These conditions are natural for a system satisfying inertia.
An example of SSA not satisfying them would be ∀s(∀x P(do(x, s))) ↔ ¬P(s)),
which means that P is changed in every state (thus P is a non-inert fluent). Note
that the formula γUa (x, s) in our example from Sect. 3.2 satisfies these conditions. In
order to translate these SSAs in dynamic logic, one introduces assignment actions
of the form P := φ; such an assignment describes an action where P takes the truth
value that φ had in the previous state. This allows for associating with each action
constant A the following set of assignments:

σSSA(A) = {P := simp(γP(A)) | P appears in γP(x)}

where simp(γP(A)) is obtained from γP(x) by eliminating argument s, substituting
x by A and simplifying the equalities. In our example fromSect. 3.2, after substituting
x by Ta we obtain:

σSSA(Ta) = {Ua := (¬Ua ∧ Ta=Ta) ∨ (Ua ∧ Ta �=Ta)}

which can then be simplified into

σSSA(Ta) = {Ua := ¬Ua}.
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Each occurrence of an abstract action symbol A is replaced by the corresponding
assignment. As shown in (van Ditmarsch et al. 2011), this constitutes a solution
(in Reiter’s sense) to the frame problem. Thus Reiter’s solution is transferred to
dynamic logic,without any need to quantify over actions. It is also shown that Reiter’s
solution can be combined with epistemic logic, thus bridging it with epistemico-
dynamic logics (see chapter “Knowledge Representation: Modalities, Conditionals,
and Nonmonotonic Reasoning” of this volume).

A recent work in dynamic logic is to investigate epistemic extensions that are
suitable for conformant planning (Li et al. 2017) and more generally for multiagent
epistemic planning (Aucher and Bolander 2013; Bolander et al. 2015; Cooper et al.
2016). An overview paper about combinations of logics of action with logics of
knowledge and belief is (Herzig 2015).

3.5 Dynamic Bayesian Networks

A dynamic Bayesian network (Dean and Kanazawa 1989) is a Bayesian network (see
chapter “Belief Graphical Models for Uncertainty Representation and Reasoning”
of Volume 2) in which the variables exist in as many copies as there are time points:
for any fluent f and time step t there is a fluent ft . For each time step t , there exists a
Bayesian network linking the variables corresponding to t . Moreover, between these
‘instantaneous’ networks, the only allowed edges are those that are directed from
past to future. The temporal directed acyclic graph (DAG) given on Fig. 1, equipped
with probabilities for each variable, at each time step, conditionally on the values
of the parents of the variable, constitutes a dynamic Bayesian network.

X(t−1)

t+1t

Y(t) Y(t+1)

X(t+1)X(t)

Y(t−1)

t−1

Fig. 1 The DAG of a dynamic Bayesian network

If the system is Markovian, in order to determine completely the behavior of the
system it is enough to know the probability distribution for xt and the conditional
probability distribution for xt+1 given xt . TheMarkovian assumption can reasonably
be made for many classes of systems. A Markovian temporal DAG cannot admit
an arc linking variables distant from more than one time step: by deleting the edge
between xt−1 and xt+1 the diagram on the example below becomes Markovian, and
a description restricted to time steps t and t + 1 suffices.
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The truth value of a fluent f at a given time step can depend on its value at earlier
time steps t − Δ, which translates in probabilistic terms into the following “survival
equation”:

Pr( ft ) = Pr( ft | ft−Δ).Pr( ft−Δ) + Pr( ft | ¬ ft−Δ).Pr(¬ ft−Δ).

The conditional probability Pr( ft | ft−Δ) is called survival function. The survival
function represents the tendency of propositions to persist given all events that can
make them false. A classical survival function is: Pr( ft | ft−Δ) = exp−λ.Δ, which
indicates that the probability that f persists decreases, from the last time step where
f was observed to hold, at an exponential speed determined by λ.
If one has some information about events that can affect the truth value of the

fluent, then the survival equation no longer fits. Generally, the probability that a
proposition f is true in t is a function of:

• the probability Pr( ft−Δ) that it is true at t − Δ

• the probability Pr(do( ft )) of the occurrence of an event that makes f true at t
• and the probability Pr(do(¬ ft )) of the occurrence of an event that makes f false
at t .

From the standpoint of expressiveness, the interest of this class of proba-
bilistic approaches for reasoning about change is that it allows for expressing
numerical uncertainty on beliefs, observations, and causal laws (see also (Hanks
and McDermott 1994) and by (Pearl 1988)). On the other hand, a problem is that it
requires the specification of many prior probabilities, even if it is not always nec-
essary to ‘solve’ the whole probabilistic network to determine the probability of a
proposition: one can instead focus on a few key time steps (and key propositions).
Note that the use of a dynamic possibilistic network allows one to reason without
knowing precisely these probabilities (Heni et al. 2007).

4 Reasoning About Change: Update

Update is a research domain at the intersection of reasoning about actions (whence
its presence in this chapter) and belief change (see chapter “Main Issues in Belief
Revision, Belief Merging and Information Fusion” of this volume). It is a process for
integrating into a belief base a modification of the state of the system that is explicitly
specified by a propositional formula. More precisely, given a belief base K and a
propositional formulaα, the update of K byα is the progression of K by an action, or
alternatively by an exogenous event whose occurrence is known and whose effect is
α. Belief update is opposed to belief revision where a new piece of information about
the system is integrated into a belief base about that system, under the hypothesis that
the latter did not evolve. The distinction was clarified by Katsuno and Mendelzon
(1991) andWinslett (1988), although update was studied before (Keller andWinslett
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1985), partially by scholars from the database community (see chapter “Databases
and Artificial Intelligence” of Volume 3).

The distinction between revision and update deserves to be clarified a bit more
here. If the new piece of information (‘the input’) completes our beliefs about the
world then it is not the world that has evolved, but only the agent’s beliefs about
the world. (This may be due to the questioning of an erroneous information about
the world or a new piece of information about the characteristics of the world.) In that
case we have to perform a revision.9 Such a revision amounts to a simple addition
(also called expansion) when the input is consistent with the beliefs; however, in
case of inconsistency revision selects some beliefs that have to be rejected in order to
restore consistency (see chapter “Main Issues in Belief Revision, BeliefMerging and
Information Fusion” of this volume). If the input characterizes an explicit evolution
of the world (i.e., is the effect of an action or an exogenous event) then we speak
of an update. The updated belief base describes the world after its evolution. The
update therefore corresponds to a progression.

The difference can be illustrated by the following example (Morreau 1992). Sup-
pose there is a basket containing either an apple or a banana. If we learn that in fact
it does not contain bananas then our beliefs have to be revised and we deduce that
the basket contains an apple. However, if we learn that the world has evolved in a
way such that there is no banana in the basket any more (e.g. because somebody has
performed the action of taking the banana out of the basket if it was there) then we
have to update our beliefs, i.e., that now the basket is either empty or contains an
apple.

Just as for revision, there does not exist a unique update operator that would
suit all applications. It is therefore interesting to define criteria which determine
which of these operators are ‘rational’, these criteria can be written under the form
of rationality postulates. Paralleling Alchourrón, Gärdenfors and Makinson’s pos-
tulates characterizing ‘rational’ revision operators (the so-called AGM postulates)
(Alchourrón et al. 1985), Winslett (1990) was the first to define postulates for update
operators. These postulates inspired Katsuno and Mendelzon (1991) who defined a
new set of postulates. Similarly to the AGM postulates (see chapter “Main Issues in
Belief Revision, Belief Merging and Information Fusion” of this volume), they are
related to the existence of a set of preorder relations about the states of the system,
where with each state there is associated a preorder. In (Katsuno and Mendelzon
1991), the authors implement an idea that had been put forward byWinslett: in order
to update a belief base one may update each of the models of the base independently.
Katsuno and Mendelzon’s contribution is the idea that each model has to be updated
towards the ‘closest’ models (in the sense of the preorder associated with the origi-
nal model). According to Katsuno and Mendelzon, an update operator is a function

9As shown in (Friedman and Halpern 1999), revision remains relevant even if the initial belief state
and the new formula do not refer to the same time point, as long as there is a syntactical distinction
(via some time-stamping) between a fluent at a time point and the same fluent at another time
point: what matters for revision is not that the world is static, but that the propositions that are used
to describe the world are static. This also explains that belief extrapolation also corresponds to a
revision process (Dupin de Saint-Cyr and Lang 2011).
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� which given a formula K representing beliefs about the world and a formula φ
representing the information about the evolution of the world, returns a new formula
K � φ. The postulates they propose in order to characterize the ‘rational’ operators
� are the following:

U1K � ϕ implies ϕ.
U2 IfK implies ϕ then (K � ϕ) is equivalent toK .
U3 IfK and ϕ are satisfiable then K � ϕ is satisfiable.
U4 If K1 is equivalent to K2 and ϕ1 is equivalent to ϕ2 then K1 � ϕ1 is equivalent
toK2 � ϕ2.
U5 (K � ϕ) ∧ ψ implies K � (ϕ ∧ ψ).
U6 If K � ϕ1 implies ϕ2 and K � ϕ2 implies ϕ1 then K � ϕ1 is equivalent to
K � ϕ2.
U7 IfK is complete then (K � ϕ1) ∧ (K � ϕ2) implies K � (ϕ1 ∨ ϕ2).
U8 (K1 ∨ K2) � ϕ is equivalent to (K1 � ϕ) ∨ (K2 � ϕ).
U9 IfK is complete and (K � ϕ1) ∧ ϕ2 is satisfiable thenK � (ϕ1 ∧ ϕ2) implies
(K � ϕ1) ∧ ϕ2.

U1 stipulates that φ is a piece of information describing the world after its evo-
lution (this is one of Winslett’s postulates). U2 says that if φ was already true in all
states of the system before the update then the system does not evolve. This is the
postulate requiring that inertia has always to be preferred to spontaneous evolution. It
is however not always desirable because it forbids the existence of transitory states,
i.e., states within which the system may not stay because it immediately evolves
towards other states. U3 expresses that a consistent representation of the system and
of its evolution can always be updated in a consistent way (which was also one
of Winslett’s postulates). However, systems may exist where there is no transition
between two states: for example, when ϕ = dead and α = alive then one may wish
the update to fail. So this postulate is not always desirable. U8 (also one ofWinslett’s
postulates) means that the update is defined as a progression operator. U9 is a restric-
tion of the converse of U5. We refer to (Dubois et al. 1995; Herzig and Rifi 1999)
for more detailed critiques of these postulates.

The following representation theorem relates these postulates to the existence of
a set of preorder relations between states of the world:

Theorem 1 (Katsuno, Mendelzon) � satisfies U1, U2, U3, U4, U5, U8, U910 if and
only if for every ω ∈ Ω there is a total preorder ≤ω such that

(1) ∀ω′ ∈ Ω, ω <ω ω′ (≤ω is “faithful”);
(2) Mod(K � ϕ) = ⋃

ω|=K {ω′ |= ϕ such that ∀ω′′ |= ϕ,ω′ ≤ω ω′′}.
Item (1) means that for each model ω ofK , the models of the update of ω by ϕ are
the models of ϕ that are closest to ω w.r.t. ≤ω , and (2) means that the set of models
of the update ofK by ϕ is the union of the sets of models resulting from the update
of each model of K by ϕ (which follows directly from postulate U8).

10If U6 and U7 are used instead of U9 then the theorem gives us a faithful preorder that is only
partial.
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Numerous update operators were proposed in the literature. Thanks to the above
theorem they can be defined by associating with each state a faithful total preorder
relation between states. In practice, such a set of preorders is a way of minimiz-
ing change. For example, Winslett defined a relation ≤PMA

ω between states that she
called ‘Possible Models Approach’, abbreviated PMA. It is based on the function
diffPMA(ω1,ω2) (the set of variables whose value differs between the two states ω1

and ω2): ω1 ≤PMA
ω ω2 ⇔de f diffPMA(ω1,ω) ⊆ diffPMA(ω2,ω). This relation is faith-

ful and therefore defines an update operator. The corresponding update operator
can also be characterized in terms of independence (the logical consequences of
K that are independent of ϕ persist) (Marquis 1994). In the examples of Morreau
(1992), the initial beliefs areK = (banana ∧ ¬apple) ∨ (apple ∧ ¬banana), so
there are two models ω1 = {¬apple, banana} and ω2 = {apple,¬banana}. When
the agent then learns (ϕ) that somebody took the banana if it was there (update
by ¬banana), the states of the system representing the information ϕ are ω2 and
ω3 = {¬apple,¬banana}. The updated baseK �PMA ϕ can be computed by taking
the union, for all models ω ofK , of the models of ϕ that are closest to ω. Here, the
model of ϕ that is closest to ω1 for the relation ≤PMA

ω is ω3; the model of ϕ closest
to ω2 is ω2 itself (because ≤PMA

ω is faithful). So the set of models of K �PMA A is
{ω2,ω3}. This means that after the update there is either an apple in the basket or the
basket is empty.

ThePMArelationhas been refinedbyassigningpriorities to somefluents (Winslett
1988), which allows for handling fluents that do not persist in the same way. Other
update operators go for increased expressiveness, e.g. the one proposed by Cordier
and Siegel (1995) which allows for more or less prioritary transition constraints.
These constraints take the form of pairs of formulas (ϕ,ψ) and are satisfied by a
pair of models (ω,ω′) when ω satisfies ϕ and ω′ satisfies ψ. Then ω′ is considered
closer to ω than ω′′ if the transition (ω,ω′) violates less prioritary constraints than
the transition (ω,ω′′).

Updates à laKatsuno andMendelzon (and in particularWinslett’s PMA (Winslett
1988) but also Forbus’ operator (Forbus 1989)) are built on minimization of change.
However, minimization of change is not always desirable for updates. In particular,
Herzig and Rifi (1999) have shown that the approaches building on minimization
of change do not allow updates by disjunctions; more formally, an update operator
satisfying the Katsuno-Mendelzon postulates cannot handle disjunctions correctly,
the culprit being postulate U5.

For that reason, several scholars studied update operators that are not built on
minimization. They in particular studied a family of update operators that is based
on the concept of dependence. Such updates of a belief base β by a formulaα consists
in first forgetting in β “all information concerning α” (leaving the truth values of the
variables that are not concerned by the update unchanged), and then adding α to the
result. It remains to work out what “all information concerning α” means. Such a
kind of relevance is induced by a dependence relation between formulas: α concerns
β if and only if β depends on α. This approach is general because the notion of
dependence between formulas can vary.
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Most of the dependence-based approaches to update consider that the dependence
relation is expressed first between formulas and propositional variables, and can then
be extended to a dependence relation between formulas: α and β are dependent if
and only if there is at least one variable on which α and β are dependent. Examples
of such update operators can be found in (Herzig 1996; Doherty et al. 1998), (Herzig
and Rifi 1999). This principle allows for remediating several counterintuitive aspects
of minimization-based approaches andmoreover is generally of lower computational
complexity. A slight drawback is however that it is too little conservative: too much
information of the initial base is forgotten. This can be counterbalanced by replacing
the dependence relation between formulas and variables by a dependence relation
between formulas and literals (Herzig et al. 2013).

As an update by a formula α can be viewed as a progression by a particular action
whose effect is α (“to make α true”) (see a discussion in (Lang 2007)), it makes
sense to situate update w.r.t. propositional action languages. We start by observing
that STRIPS is a particular case of both formalisms, corresponding to an update
by conjunctions of literals. Axiom U8—which requires that the update of a set of
models is the union of the update of the individual models—is exactly the definition
of the progression of a belief state by an action. The two paradigms however differ
in the variety of available actions: on the one hand, update offers the possibility of
taking into account disjunctive effects (representing a unique but imperfectly known
effect) and more generally effects consisting of arbitrary propositional formulas. On
the other hand, action languages allow for conditional effects such as

(ifHeads then flip-coin causes¬Tails, if¬Heads then flip-coin causesTails),

nondeterministic effects such as

Toss-coin causesHeads or causes¬Heads,

concurrent effects such as

ifG and D are actions consisting in lifting the left and the right side of a table and

if a glass of water is on the table then

G causes Spilled, D causes Spilled, G concurrently with D cause�

as well as static causal rules allowing for ramifications. Approaches aiming at
unifying the potentialities of various approaches are not numerous. Some update
approaches take ramification into account by resorting to integrity constraints
(Doherty et al. 1998) or allow for nondeterministic updates (Brewka and Hertzberg
1993), or conditional or concurrent updates (Herzig et al. 2001). However, an embed-
ding of Winslett’s and Forbus’ update operator and of Dalal’s revision operator into
dynamic logic was recently provided in (Herzig 2014).

Update corresponding to the progression of an action, there exists a generalization
(rightly called generalized update) that enables both revision and event abduction
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(Boutilier 1998). Generalized update allows for example for handling the following
scenario: an agent wakes up in the morning and believes that the lawn is dry just
as it was when she went to sleep. She subsequently observes that the lawn is wet,
which first of all leads to a revision of her beliefs, then to the abduction of an event (it
rained), and finally to an update by the effects of the event (the road iswet, too). Belief
extrapolation (Dupin de Saint-Cyr and Lang 2011) and other related formalisms such
as (Berger et al. 1999) only handle the abduction of events. Finally, update can be
viewed as an ordinal form of Lewis’s imaging operator (Dubois and Prade 1993) as
well as the predictive phase of the Kalman filter (Cossart and Tessier 1999; Benferhat
et al. 2000).

Goldszmidt and Pearl (1992) were also interested by accounting for revision and
update at the same time. They reason about a set of default rules that are of the causal
kind, from which they deduce an order on the pairs of states of the world that they
are filtering according to the input. If the last operator is a revision by ϕ then the
pairs of states where the final state satisfies ϕ see their plausibility increased. In the
case of an update by ϕ, one has to perform a revision by the dummy action do(ϕ).

The contributions of Winslett, and of Katsuno and Mendelzon, are important for
two reasons. First of all, they established a clear distinction between revising and
updating a belief base. Second, they elaborated a set of postulates guaranteeing that
a rational update is related to the existence of a set of preorders between the possible
states of the system. Katsuno and Mendelzon, and Winslett, implicitly opted for the
particular case where the fluents are by default inertial (they only change if an action
or an event occurs that changes them). There is a further implicit hypothesis embodied
by postulate U3 (Winslett’sMB4): asserting that any update can be performedmeans
that the input is always consistent with the possible evolution of the world.

Recently, belief change (including belief update) within the framework of frag-
ments of propositional logic has gained attention. A propositional fragment simply is
a subset of a propositional language which has some valuable properties (typically,
from the computational side) but is not fully expressive w.r.t. propositional logic
(some propositional formulas do not have any equivalent representation in the frag-
ment). For instance, the Horn CNF fragment is the set of CNF formulas where each
clause is Horn, i.e., it contains at most one positive literal. It is well-known that the
satisfiability of any Horn CNF formula can be decided in linear time but that some
propositional formulas (e.g. the clause a ∨ b) cannot be turned into equivalent Horn
CNF ones. Other fragments which are often considered are the Krom one (the set of
all CNF formulas where each clause is binary) and the affine fragment (the set of all
conjunctions of exclusive-or clauses), and each of them offers the same tractability
property as the Horn one w.r.t. the satisfiability issue and the same limitations as to
expressiveness. In order to preserve the tractability benefits, when a belief base from
a given fragment has to be updated, it is expected that the updated base belongs to
the same fragment. However, update operators satisfying all the Katsuno-Mendelzon
postulates (especiallyWinslett’s PMA and Forbus’ operator) do not ensure this prop-
erty. This calls for a notion of refinement of an update operator for a given fragment,
which warrants that the result of any update is in the fragment when the initial base is
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in the fragment as well. Any refined operator is required to approximate the behavior
of the operator considered at start (especially, leading to the same updated base as
it when this base fits in the fragment), the price to be paid being the loss of some
rationality postulates. A constructive approach to such refinements of update oper-
ators has been introduced in (Creignou et al. 2015), and the Katsuno-Mendelzon
postulates satisfied by the refined operators identified as well.

Several tentatives were also made to extend update to more expressive frame-
works:

• ASP: Slota and Leite (2010) adapt Katsuno & Mendelzon’s postulates to logic
programs. They also define update operators for hybrid belief bases (Slota et al.
2011; Slota 2012). Such hybrid bases are made up of an ontology component,
expressed in the language of the description logic ALCIO (ALC with inverse
and nominals), and a rule component, expressed in the language of answer-set
programming under the stable semantics (see chapter “Logic Programming” of
Volume 2). Update operators are studied in particular for the strong equivalence
semantics for ASP as well as for hybrid belief bases (Motik and Rosati 2010).

• Belief states: Lang et al. (2001) define update operators over epistemic states. In
addition to beliefs, such epistemic states, represented by orders on worlds, allow
for expressing the relative plausibility of beliefs. The authors extend the class of
dependence-based update operators to epistemic states. Baral and Zhang (2005)
generalize update so as to distinguish between facts and knowledge, as in the
epistemic logic S5. Their process is called knowledge update and allows one to
account for the effects of epistemic actions by updating the epistemic formulas
describing the agent’s beliefs. Such a framework takes the viewpoint of a modeler
agent O who reasons about the belief state of another agent ag. For example, the
update of an S5 model by Kagϕ means that O updates her beliefs about ag’s
beliefs; the mental state of ag is seen by O as part of the external world, and the
update by Kagϕ corresponds to an action whose effect is to make Kagϕ true (for
example, the action of telling ag that ϕ is true).

• Description logics (see chapter “Reasoning with Ontologies” of this volume):
Liu et al. (2011) update assertions of an “ABox” (that is, the factual component
of the belief base). They highlight an expressiveness problem that arises in that
framework: sometimes the expected result of an update cannot be encoded by an
assertion of the basic description logic ALC. For example, the assertion

mary : Person � ∃child_of.Person � ∀child_of.(Person � Happy)

expresses that every child ofMary is happy. If one updates theABox containing this
information by the fact that Peter becomes unhappy, i.e., by the assertion peter :
Person � ¬Happy, then one has to take two possible cases into account: the case
where Peter is among Mary’s children and the case where he is not. Intuitively,
the principle of minimal change requires that the result of the update is on the one
hand the new piece of information (Peter is unhappy) and on the other hand the
fact that every child of Mary either has the property of being happy or has the
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property of being Peter. The latter assertion (i.e., Mary’s children are either happy
or called Peter) cannot be expressed in ALC: it requires an extension by object
names. The extended logic (called ALCO) allows for writing

mary : Person � ∃child_of.Person � ∀child_of.(Person � (Happy � {pierre}).

It turns out that almost all description logics have similar expressiveness prob-
lems. If we allow for object names as concepts as done in ALCO, this wipes out
the distinction between ABox assertions (which are about particular objects) and
TBox concept inclusions which should not be about particular objects. This is
unsatisfactory because the distinction is one of the very basic ideas of description
logics.

• Action descriptions: Eiter et al. (2010) define a framework for minimal change of
action descriptions that they call “action description updates”.

• Abstract argumentation: researchers in that domain (see chapter “Argumenta-
tion and Inconsistency-Tolerant Reasoning” of this volume) are also interested
by update and more generally change operators. An abstract argumentation sys-
tem is represented by a graph whose vertices are arguments and whose arcs are
attacks between arguments. Some authors including Boella et al. (2009), Cayrol
et al. (2010), Liao et al. (2011), Booth et al. (2013), Coste-Marquis et al. (2014)
are interested in the impact of a change (by adding / withdrawing arguments or
attacks) on such systems. Baumann and Brewka (2010), Baumann (2012) intro-
duced the notion of enforcement, which is very similar to the notion of update (cf.
(Bisquert et al. 2013; Dupin de Saint-Cyr et al. 2016)) because the idea is to min-
imally modify an argumentation system in a way such that it satisfies a given goal
(usually expressed in terms of arguments that should be accepted). They define a
preference relation between argumentation systems, which is similar to preference
relations between models in classical update.

5 Conclusion

Reasoning about action andchange is oneof theoldest topics inArtificial Intelligence.
Since 1995, the topic is the subject of a biennial workshop International Workshop
on Nonmonotonic Reasoning, Action and Change (NRAC) held in conjunction with
the IJCAI (International Joint Conference on Artificial Intelligence) conference.

Several periods followed, during which the researchers were interested in con-
ceiving several formal settings for modeling the important tasks related to reasoning
about action: STRIPS first, then approaches based on minimal change, and then
approaches based on successor state axioms. To this variety of formal settings cor-
responds a variety of languages for representing and reasoning about action: propo-
sitional logic, situation calculus, dynamic logic, graphical models (among others).
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Reasoning about action and change has close connections with other areas of
Artificial Intelligence, including non-monotonic reasoning, belief change, reasoning
under uncertainty, planning (and in particular Markov Decision Processes); it also
has links with control theory (more precisely, Kalman filtering and discrete event
systems).
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Multicriteria Decision Making

Christophe Gonzales and Patrice Perny

Abstract This chapter aims to present the main models used for preference
aggregation and decision support in a unified framework.After recalling the defini-
tion of a multicriteria decision making problem, we distinguish two approaches for
preference aggregation:the compare then aggregate approach (denoted CA) and the
aggregate then compare approach (denoted AC). We first present some procedures
allowing the construction of an overall preference relation (e.g., a dominance or con-
cordance relation) from several binary relations. Then we consider the AC approach
and present some scalarizing functions allowing the definition of an overall score
from partial numerical evaluations. In particular we review the min, Tchebycheff,
OWA, WOWA aggregators and Choquet and Sugeno integrals.

1 Introduction

Taking into account multiple and conflicting points of view in the analysis of pref-
erences and studying the properties of preference aggregation procedures is quite
old. Long before the birth of multicriteria optimization, collective decision-making
problems and aggregation of preferences were addressed through the theory of vot-
ing, as can be seen in the writings of Borda (1781) and Condorcet (1785); these
topics remained active until today, giving birth to the theory of social choice (Arrow
1951; Sen 1986a). In economics, the account of multiple criteria to explain rational
behaviors dates back to the 1900s, notably with the works of Pareto (1906). The
consideration of multiple objectives in mathematical programming was introduced
in the middle of the 20th century with the goal-programming (Charnes et al. 1955).
This work was then developed in the 1970s under the impetus of Geoffrion (see
for example Geoffrion et al. 1973). The first international conference dedicated to
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multicriteria decision-making took place in 1973 in South Carolina. This activity
continued in Europe with the first Euro Working Group on multi-criteria decision-
making led by Bernard Roy who appeared in 1975. The work on multiobjective
combinatorial optimization followed a few years later and the first international con-
ference on the subject (MOPGP) was established in 1994. In Artificial intelligence,
taking into account multiple objectives in problem solving also appears in the same
period, in particular in multiobjective state-space search (Stewart and White III
1991; Laumanns et al. 2002), multicriteria planning problems (White 1982; Gbor
et al. 1998), and problems of satisfaction of flexible constraints (Schiex et al. 1995).
Concerningmodeling and aggregation of preferences, the work inAI is distinguished
by the emphasis on qualitative models and, more recently, on the aspects of repre-
sentation and automatic learning of preferences. The latter two aspects go beyond
the scope of this chapter, which focuses on the main models used for preference
aggregation.

2 Multicriteria Decision Problems

A multicriteria decision problem is characterized by the explicit consideration of
several objectives to be optimized simultaneously in the analysis of preferences, the
comparison of solutions and the determination of the optimal solution(s). To formally
introduce a multicriteria decision problem, we first define a set A of alternatives
(potential actions, feasible solutions, candidates) that can be given explicitly (for
example by listing the solutions considered) or implicitly (for example by specifying
a set of constraints or properties that the solutions must satisfy). In all cases, the A
set defines the solutions on which one wishes to make the decision analysis, that
is to say that they are the only ones available, the only ones realizable or the only
ones admissible. We then introduce a finite set of criteria N = {1, . . . , n} taking
the form of functions fi , i ∈ N , modeling the objectives of the decision maker. For
every x ∈ A and every i ∈ N , we call performance of x on criterion i the quantity
fi (x) reflecting the value of a with respect to criterion i . This formalism also applies
to problems of collective decision-making. In such problems, N represents a set of
agents and the performance fi (x) then represents the utility of the solution x from
the point of view of agent i . The criteria fi are defined on A and respectively valued
in an ordered set Xi , i ∈ N .

The set X = X1 × · · · × Xn which constitutes a new description space of the
alternatives, is called the space of criteria. To simplify the notations, we will set
xi = fi (x) for all x ∈ A and all i ∈ N . Any solution x is therefore represented in
X by a vector (x1, . . . , xn). We will assume that Xi ⊆ R for all i ∈ N and therefore
that X ⊆ R

n . To simplify the presentation, it will also be assumed that functions
fi are to be maximized (this is not restrictive because we can change the sign of
evaluations to pass from minimization to maximization). Sometimes performances
have no cardinal meaning and only their order matters to state preferences. In other
cases they may represent a cardinal utility (uniquely defined up to a positive affine
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transformation) or even an absolute evaluation reflecting the intrinsic attractiveness
of a solution on each of the criteria considered.

Multicriteria decision problems vary depending on the question asked. We can
distinguish choice problems where we try to determine the best solutions, ranking
problems where the aim is to order, at least partially, the solutions according to
their relative merit, or sorting problems where one seeks to assign the solutions to
predefined categories according to their intrinsic value. To summarize, amulticriteria
decision problem can always be formally characterized by a triple of the form:

(A, { f1, . . . , fn}, Q)

where Q ∈ {choice, ranking, sorting} is the question formulated. The choice problem
is the one most often encountered in the theory and practice of multicriteria analysis.
It aims to find a solution that optimizes the different criteria as well as possible,
or to find a subset of solutions, as small as possible, containing the best solutions.
Formulated in this way, multicriteria optimization is an ill-posed problem. Indeed,
due to the potentially conflicting nature of the criteria, there is generally no solution
optimizing all the criteria simultaneously. The only natural preference weak-order
that can be built on A without adding preferential information to the description of
the problem is in fact the so-called weak Pareto dominance relation denoted �P and
is defined as follows:

x �P y iff [∀i ∈ N , xi ≥ yi ]

Relation �P is a weak partial order on A (i.e. a reflexive and antisymmetric binary
relation, transitive but not complete) and it generally leaves many pairs of solutions
incomparable. It is enough that a solution x is better than a solution y on one criterion
and that it is the opposite on another criterion so that we can no longer compare
them. To circumvent this difficulty, one generally seeks to construct a richer and
more discriminating preference relation on the set of alternatives. This relation will
be denoted here � with the convention that x � y means that x is judged at least as
good as y given the performance vectors (x1, . . . , xn) and (y1, . . . , yn). Obviously
onewill generally be interested in constructing a transitive preference relation� such
that x �P y ⇒ x � y for all x, y ∈ A, thus refining the weak Pareto dominance.

We can also define a strict preference relation � as the asymmetric part of �.
We obtain x � y iff [x � y and not(y � x)]. For example, the asymmetric part of
relation �P is the so-called Pareto dominance denoted �P . We have:

x �P y iff

{∀i ∈ N , xi ≥ yi
∃k ∈ N , xk > yk

Given a strict preference relation � defined on A, the non-dominated solutions of A
are formally defined as follows: ND(A,�) = {x ∈ A : ∀y ∈ A, non(y � x)}. This
set is non-empty as soon as � is transitive. For example, the set ND(A,�P) is
never empty; this is the set of Pareto-optimal solutions also known as the Pareto set.
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If, as suggested above, we work with a preference relation�which refines the Pareto
dominance �P , the set ND(A,�) will therefore be a subset of the Pareto set.

The overall weak preference relation � must be constructed from the n criteria
representing the different points of view considered relevant in the analysis, taking
into account how the decision-maker wants to define the resultant of potentially
conflicting criteria. This is the multicriteria aggregation phase that we present in the
next section.

3 Preference Aggregation

The preference aggregation problem consists of synthesizing information that
reflects different aspects or points of view (e.g., performance indices, utilities, prefer-
ences), sometimes conflicting, on a same set of alternatives. It is critically important
in many procedures used for assessment, comparison or classification in multicri-
teria decision support. Whether it is a problem of choice, ranking or sorting, the
central question is always a problem of comparison. Thus, in a problem of choice,
the identification of the best candidate needs to be able to compare it to all others; in
a ranking problem, we need to compare any pair of alternatives; in sorting problems,
assigning a solution to a category is often done by comparing the solution to a refer-
ence vector. In a multicriteria decision problem, the comparison of two solutions is
performed on the basis of their respective performance vectors. For this purpose, one
necessarily resorts to an aggregation rule to construct the overall preference relation
�. Aggregation rules can formally be introduced as follows:

Definition 1 An aggregation rule is a function that defines the preference x � y for
any pair of alternatives (x, y) in A × A from performance vectors (x1, . . . , xn) and
(y1, . . . , yn) as follows:

x � y iff h(x1, . . . , xn, y1, . . . , yn) ≥ 0 (1)

where h is a real-valued function defined on R2n , non-decreasing in the n first argu-
ments and non-increasing in the n last arguments such that h(x, x) ≥ 0 for all x ∈ R

n

(which enforces the reflexivity of � and the compatibility with the weak Pareto-
dominance).

The h function which tests the preference of x over y performs on the one hand
the aggregation of performances xi and yi , i = 1, . . . , N and, on the other hand,
the comparison of solutions x and y through their performance vectors. Generally,
these two steps (aggregation and comparison) are clearly distinguished and h is then
defined as the combination of an aggregation function (also known as a scalarizing
function) ψ : Rn → R allowing the synthesis of a vector of n performances in one
scalar, and a performance comparison function φ : R2 → R which compares two
performances. We can thus distinguish two different modes of operation giving rise
to two distinct approaches to multicriteria aggregation.
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The “Aggregate Then Compare” Approach (AC)

It consists of summarizing the value of any solution x by an overall score ψ(x)
calculated from its performance vector. This score is intended to summarize the
overall value of the action and serves as a basis for the multicriteria comparison of
solutions. Thiswayof evaluating and comparing vectors of grades is verywidespread,
for example in the academic world where the comparison of two students is based
on the average of their marks. The general form of the decision rules under the AC
approach is as follows:

x � y iff φ(ψ(x1, . . . , xn), ψ(y1, . . . , yn)) ≥ 0 (2)

whereψ is a non-decreasing function of its arguments. On the other hand, function φ

allows the comparison of x and y on the basis of ψ(x) and ψ(y). The most common
choice for φ is φ(x, y) = x − y. In this case, x � y holds when ψ(x) ≥ ψ(y).

Example 1 The Nash product often used in Game Theory is an aggregation function
leading to the following preference relation:

x � y iff
n∏

i=1

xi ≥
n∏

i=1

yi

This is clearly an instance of the AC approach where ψ is the product function and
φ(x, y) = x − y.

The “Compare Then Aggregate” Approach (CA)

It consists of comparing, criterion by criterion, the performances of the alternatives
and then to aggregate these comparisons. Thus, for each pair (x, y) and each criterion
i , one can define a binary index of partial preferenceφi (x, y)whereφi is an increasing
function of xi , decreasing of yi . The preference x � y is then defined by aggregating
partial preference indices. Formally, we have:

x � y iff ψ(φ1(x, y), . . . , φn(x, y)) ≥ 0 (3)

Generally in this approach, each φi function is used to compare the performances
of two alternatives on the same criterion (criterion i). There are however a few
exceptions in the case of criteria sharing the same valuation scale (e.g., the Lorenz
dominance relation introduced later in the chapter). In this latter case, φi is used to
compare two performances associated with different criteria. In the CA approach,
one can use the same aggregation functions ψ as for the AC approach but it is used
for the aggregation of partial preference indices φi (x, y) and not for aggregating
the performances themselves. It must therefore be assumed that one can compare
quantities of typeφi (x, y) andφk(x, y) for i 
= k but it is not necessary to assume that
we can compare the performances of an alternative on different criteria. If φi (x, y)
depends only on xi and yi , then it defines a preference relation on A restricted to
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criterion i . For example, we can consider preorders constructed from performances
by setting x �i y if and only if φi (x, y) ≥ 0 with:

φi (x, y) =
⎧⎨
⎩

1 if xi > yi
0 if xi = yi

−1 if xi < yi
(4)

It is also possible to use, for φi , functions with thresholds such as φi (x, y) =
x − y + qi where qi is a positive quantity representing an indifference threshold,
i.e., the biggest difference that is not significant of a preference. In this case, if we set
x � y iff φi (x, y) ≥ 0, we obtain a semi-order structure1 well known in preference
modeling.Other choices are possible forφi , leading tomore general ordinal structures
defined from numerical evaluations, see Roubens and Vincke (1985), Pirlot and
Vincke (1997). Alternatively, the φi (x, y) indices can be used to represent preference
intensities, monotonically increasing with differences of type xi − yi ; this amounts
to defining a fuzzy preference relation �i for every criterion i ∈ N (Perny and Roy
1992; Fodor and Roubens 1994). In all these cases, we see that the CA approach
amounts to construct n preference relations (one per criterion) and then to aggregate
these relations. By way of illustration, let us give the following example:

Example 2 The lexicographic aggregation is characterized by the following defini-
tion of the overall preference:

x � y iff ∃k ∈ N ,

{
xk > yk
∀i < k, xi = yi

this is clearly an instance of the CA approach withψ(z1, . . . , zn) = ∑n
i=1 2

n−i zi and
φi defined as in Eq. (4).

Comparison of AC and CA

Both approaches AC and CA are represented in the following diagram showing the
two possible paths to decidewhether x is preferred to y from two performance vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn):

(x1, . . . , xn), (y1, . . . , yn)
ψ−−−−→ ψ(x), ψ(y)

φi

⏐⏐	 ⏐⏐	φ

φ1(x, y), . . . , φn(x, y)
ψ−−−−→ x � y?

The fundamental difference between AC and CA lies in the fact that the aggrega-
tion does not involve the same objects due to the inversion of the order of execution

1We recall that a semi-order is a complete, Ferrers and semi-transitive binary relation (see Pirlot
and Vincke 1997). In a semi-order �i defined with threshold qi , we have x �i y if xi − yi > qi
and x ∼i y if |xi − yi | ≤ qi .
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of the aggregation and comparison operations. In AC, function ψ aggregates the
performances xi on the one hand and the performances yi on the other hand whereas
in CA we aggregate the preference indices φi (x, y). It should be emphasized that
this distinction concerns the process of computing h in Eq. (1) and thus remains
essentially formal. There are indeed some aggregation rules whose function h can
be written either in one or the other of the two forms distinguished. For example,
this is the case of preferences defined from linear aggregations of performances as
follows:

x � y iff
n∑

i=1

xi ≥
n∑

i=1

yi (5)

In this case, one naturally recognizes an instance of the AC approach:

h(x1, . . . , xn, y1, . . . , yn) = φ(ψ(x1, . . . , xn), ψ(y1, . . . , yn))

ψ(z1, . . . , zn) =
n∑
j=1

z j

φ(u, v) = u − v

Nevertheless, using the same ψ function, one may also consider that it is an
instance of the CA approach by setting:

h(x1, . . . , xn, y1, . . . , yn) = ψ(φ1(x, y), . . . , φn(x, y))

φi (x, y) = xi − yi

Despite this non-empty intersection due to some singular cases, the distinction
between the AC and CA approaches is important for structuring the field of mul-
ticriteria aggregation rules (but also for transposing them into the field of decision
under uncertainty) and to differentiate between the main benefits and disadvantages
of each of these approaches.

The choice of the AC approach based on the construction of a “scalarizing” func-
tion ψ often seduces by its operational simplicity and its intuitive appearance. When
the preferential information is sufficiently rich to enable the construction of the over-
all evaluation function ψ , the multicriteria decision problem reduces to the problem
of optimizing function ψ . However, it should be stressed that the AC approach
requires a particularly rich information. We need to know how to commensurate
partial evaluations on different criteria, what is the importance of every criteria and
group of criteria, and how they interact in the definition of preferences. Moreover,
the preference x � y is often defined using φ(ψ(x), ψ(y)) = ψ(x) − ψ(y) which
simply amounts to comparing the two values ψ(x) and ψ(y). This mode of compar-
ison therefore presupposes a priori that all solutions are reducible to scalar values
and are comparable, and that preferences are transitive. From a descriptive point of
view, this hypothesis is often debatable, given the necessarily imperfect informa-
tion available, the heterogeneity of the performances and also the existence possible
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conflicts between the criteria considered, making it difficult to compare certain pairs
of solutions.

TheCAapproach, on the other hand, is particularly suited tomulticriteria aggrega-
tion when there is insufficient information to compare the performances issued from
distinct criteria and/orwhen certain criteria are quantitative and others are qualitative,
or when we want to relax the assumption that all the alternatives are comparable.
A binary relation �i is constructed using φi for every i ∈ N and then we have to
aggregate the (�1, . . . ,�n). This ordinal aggregation problem is generally quite dif-
ficult to solve and a number of negative results have shown the prescriptive limits of
decision rules based on an ordinal aggregation (for a compilation of the main results
see Sen 1986b). In particular, a method of aggregation defined by Eqs. (3) and (4)
does not guarantee any transitivity property for � except in some very restrictive
particular cases such as the lexicographic preferences introduced in Example 2. If
we consider, for example, the majority rule that appears naturally as an instance of
the CA approach obtained by setting ψ(z1, . . . , zn) = ∑n

i=1 zi and φi (x, y) defined
as in Eq. (4), a non-transitive preference is easily obtained as shown in the following
example:

Example 3 Let us consider a problem with three criteria to be maximized and
three alternatives x = (3, 1, 2), y = (2, 3, 1) and z = (1, 2, 3). We have: φ1(x, y) =
φ3(x, y) = 1, φ2(x, y) = −1 and therefore x � y. On the other hand we have:
φ1(y, z) = φ2(y, z) = 1, φ3(y, z) = −1 and therefore y � z. Finally we have:
φ2(z, x) = φ3(z, x) = 1, φ1(z, x) = −1 and therefore z � x . This intransitivity of
the strict majority rule is well known in voting theory under the name of Condorcet
paradox.

Despite the descriptive appeal of themajority rule, this lack of transitivity is rather
problematic for determining a ranking of solutions or even a choice and an additional
exploitation phase is then necessary. For this reason, the CA approach is mainly used
for decision problems involving only a finite and small set of alternatives. The next
section is intended to introduce some standard decision models falling in the CA
approach and, when necessary, some techniques for making a choice or ranking
from a non-transitive relation constructed with this approach. We will review the
main models of the AC approach in the following section.

4 Decision Models in the CA Approach

Below, we introduce different binary relations � to compare the solutions of A on
the basis of their performance vectors. Let us first introduce dominance relations and
then outranking relations resulting from a concordance rule.
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4.1 Dominance Relations

We have previously introduced the notions of weak Pareto dominance which is a
basic preference relation. It is not very discriminating but can be enriched in various
ways.We now present some richer dominance relations often used in decision theory.
Most of these dominance relations are obvious instances of the CA approach. We
will therefore not specify the functions ψ and φi characteristic of the CA approach,
except in the few cases where membership to CA is less straightforward.

Oligarchic Dominance

An Oligarchic weak-dominance is a transitive preference relation that concentrates
the decisive power on a subset of criteria O ⊆ N , namely theOligarchy. It is formally
defined as follows:

x � y iff ∀i ∈ O, xi ≥ yi (6)

When O = N we obtain the weak Pareto dominance introduced before. When O
only contains some of the criteria, the dominance defined by Eq. (6) is all the more
discriminating than the cardinal of O is reduced. When O is reduced to a singleton
we obtain a dictatorial aggregation rule. A refinement of this dictatorial procedure
is given by the lexicographic procedure introduced in Example 2.

ε-Dominance

An interesting weakening of the weak Pareto dominance is the ε-dominance defined
as follows:

x �ε y iff ∀i ∈ N , (1 + ε)xi ≥ yi

for some arbitrarily small ε > 0. This relation is not transitive but it enables to “cover”
the entire set of feasible alternatives with fewer solutions than needed for the weak
Pareto dominance, as shown in the following example:

Example 4 Consider a tri-criteria problemwith4 feasible solutions x = (10, 10, 10),
y = (11, 5, 10), z = (10, 2, 11),w = (4, 10, 3). In this example, the solutions x, y, z
are Pareto-optimal whilew is Pareto-dominated by x . If we consider ε = 0.1 then we
can check that x �ε y, x �ε z and x �ε w. We thus observe that x is at least as good
as all the other solutions and covers by itself all the solutions under consideration.
This can be an argument for choosing this solution. One can even check here that
x strictly ε-dominates the solutions y, z,w, i.e., none of the following preferences
y �ε x , z �ε x and w �ε x holds.

More generally, the notion of covering can be introduced as follows:

Definition 2 For all ε > 0 a subset B ⊆ A of solutions is said to be a ε-covering of
A when: ∀x ∈ A, ∃y ∈ B, y �ε x .

In general, for a given ε, several ε-coverings exist of different cardinalities, the
most interesting being those that are minimal w.r.t. inclusion. The interest of this
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concept is particularly evident in multicriteria decision problems with a large num-
ber of potential solutions. For example, let us consider the multicriteria shortest path
problem; in this problem the set of Pareto-optimal solutions can grow exponentially
with the number of vertices of the graph. This is well illustrated by the family of
bi-criteria graphs introduced in Hansen (1980). In this family, the graph admitting
2n + 1 vertices includes 2n Pareto-optimal solution-paths with distinct cost vec-
tors of the form (c, 2n − 1 − c), c ∈ {0, . . . , 2n − 1}. It then becomes impossible
and useless to propose them all to the decision-maker. Instead, we can perform a
selection of solutions that ε-covers the entire Pareto set. Under the assumption that
the criteria values are positive integers and bounded by a quantity K , Papadim-
itriou and Yannakakis (2000) have indeed shown that for any number of criteria
n ≥ 2 and every set of alternatives A, there exists a ε-covering of A whose size is
bounded from above by log K/ log(1 + ε)�n−1. This quantity remains polynomial
in the size of the problem, when the number of criteria is fixed. For example, in
the family of graphs considered by Hansen in (1980) the instance with 33 nodes
(n = 16) leads to 216 = 65536 Pareto-optimal paths with distinct cost vectors of the
form (c, 216 − 1 − c), c ∈ {0, . . . , 216 − 1}. If we choose ε = 0.1 a covering of the
Pareto-optimal cost vectors exists with at most 117 elements; this number decreases
to 61 if ε = 0.2. For more details on the potential use of the ε-dominance and the
associated covering concepts see Papadimitriou and Yannakakis (2000), Diakoniko-
las and Yannakakis (2008), Perny and Spanjaard (2008), Bazgan et al. (2009).

Lorenz Dominance

Among the Pareto-optimal solutions, not all are of equal interest to the decision-
maker. Some are fairly balanced and show comparable levels of performance on
each of the criteria while others alternate excellent performance and very bad points.
In multicriteria analysis, the decision-maker often prefers a balanced solution, which
does not favor a criterion at the expense of others.A similar principle appears inmulti-
agent decision problems found with the notion of equity; in this case the criteria mea-
sure individual utilities (see chapter “Collective Decision Making” of this volume).
Formally, the idea of equity in the aggregation of preferences can be described by the
following axiom, known as the “transfer principle” based on Pigou-Dalton transfers
reducing inequalities (Shorrocks 1983; Moulin 1988):

Transfer principle. Let x ∈ R
n+ such that xi > x j for i, j ∈ N . Then, for any ε such

that 0 < ε ≤ xi − x j , x − εei + εe j � x where ei (resp. e j ) is the vector whose i th
(resp. j th) component equals 1, all the other components being equal to 0.

This axiom captures the notion of equity as follows: if xi > x j , a mean-preserving
shift of performance improving x j at the expense of performance xi produces a better
distribution of criteria satisfaction indices and therefore a better solution. Thus the
vector x = (10, 10) is preferred to the vector y = (14, 6) because there is a size 4
transfer from y to x . Note that if the transfer was too large, for example ε = 9, the
inequality would be increased rather than decreased. This is the reason why the ε

amplitude of the transfer should remain lower than xi − x j .
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The transfer principle is a mean-preserving operation since one quantity is
removed from one component and added to another. It does not exist between two
vectors whose average performances are not the same. However, it becomes more
powerful when combined with the Pareto principle requiring that we strictly prefer
a solution x to a solution y when x �P y. For example, if one wishes to compare
vectors (11, 11) and (12, 9), one can notice that (11, 11) Pareto-dominates (11, 10)
and that (11, 10) is deduced from the vector (12, 9) by a Pigou-Dalton transfer of
amplitude 1. Due to the Pareto principle and to the transfer principle, one has on the
one hand (11, 11) � (11, 10) and, on the other hand, (11, 10) � (12, 9), whence,
by transitivity, (11, 11) � (12, 9). The vectors that can be compared by combining
the Pareto principle and the transfer principle can be characterized using generalized
Lorenz vectors and the notion of generalized Lorenz dominance (see Marshall and
Olkin 1979; Shorrocks 1983):

Definition 3 For all x ∈ R
n+, the generalized Lorenz vector associated to x is

defined by: L(x) = (xσ(1), xσ(1) + xσ(2), . . . , xσ(1) + xσ(2) + · · · + xσ(n)) where σ

represents the permutation which sorts the components of x by increasing order.
Thus xσ(i) represents the i th smallest component of x .

Definition 4 The generalized Lorenz dominance is a binary relation defined on Rn+
by: ∀x, y ∈ R

n+, x �L y iff L(x) �P L(y). The asymmetric part of this relation is
defined by x �L y iff L(x) �P L(y).

The x vector Lorenz-dominates the y vector if L(x) Pareto-dominates L(y). To show
that �L is indeed an instance of the CA approach, it is sufficient to consider that:

φi (x,y) =
{
1 if

∑i
j=1 xσ( j) ≥ ∑i

j=1 yσ( j)

0 otherwise

and ψ(z1, . . . , zn) = ∑n
i=1 zi − n. The notion of Lorenz dominance was initially

introduced to compare vectors with the same average (e.g., for comparing various
income distributions over a population). The generalized version introduced above
is more adapted to the context of multicriteria optimization because it makes it
possible to compare vectors of performances that do not have the same average. The
link between generalized Lorenz dominance and the transfer principle appears with
the following result (Chong 1976):

Theorem 1 For all pairs of vectors x, y ∈ R
n+, if x �P y, or if x is obtained from y

using a Pigou-Dalton transfer, the x �L y. Conversely, if x �L y, then there exists
a sequence of Pigou-Dalton transfers and/or Pareto improvements allowing to pass
from y to x.

This result establishes the generalized Lorenz dominance as the minimal rela-
tion w.r.t. inclusion which simultaneously satisfies the Pareto principle and the
principle of transfer. This dominance is transitive. To illustrate the use of Lorenz dom-
inance to compare the vectors considered above, one can observe that L(11, 10) =
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(10, 21) while L(12, 9) = (9, 21). We thus have (11, 10) �L (12, 9) since (10, 21)
�P (9, 21).

A consequence of the preceding theorem is that if x �P y then x �L y, which
shows that the Lorenz dominance is potentially more discriminating than the Pareto
dominance. It follows that ND(X ,�L) ⊆ ND(X ,�P), that is to say that the
non-dominated solutions in Lorenz’s sense are Pareto-optimal solutions. Apart from
a few specific cases, there are generally significantly fewer Lorenz-optimal than
Pareto-optimal solutions. The Lorenz dominance thus appears as a natural refinement
of the Pareto dominance allowing to remove unfair elements in the Pareto set.

Weighted Lorenz Dominance

The Lorenz dominance deals symmetrically with all components of the vectors that
are compared. The L(x) vector indeed remains invariant by permutation of the com-
ponents of x and consequently the preference x �L y is not affected by a permutation
of the components of x or y . This characteristic seems natural when one wishes to
assign the same importance to all criteria or agents. On the other hand, if we want to
give more weight to some of the criteria, we should consider a weighted extension
of the Lorenz dominance. A first idea that naturally comes to mind to assign differ-
ent weights to components is to duplicate them in proportion to the weights of the
criteria (we assume here that the weights are rational numbers). Thus, if we want to
compare the vectors x = (10, 5, 15) and y = (10, 12, 8) given that the criteria have
weights defined by the vector p = (3/6, 1/6, 2/6) we can consider the extended
vectors x̃ = (10, 10, 10, 5, 15, 15) and ỹ = (10, 10, 10, 12, 8, 8) and test if x̃ �L ỹ
or ỹ �L x̃ . This is not the case here since the Lorenz vectors (5, 15, 25, 35, 50, 65)
and (8, 16, 26, 36, 46, 68) are incomparable in terms of Pareto dominance. Here, the
fact that criterion 3 is twice more important than criterion 1 did not allow us to prefer
y although y distributes performance more equally than x .

Amore elaborateway of proposing aweighted extension of the Lorenz dominance
without having to duplicate the components (nor assuming that weights are rational
numbers) is to associate to each vector x a cumulative function Fx (z)which indicates
the weight of the coalition formed by the criteria whose performance does not exceed
threshold z. Denoting v the function which gives the weight of a subset of criteria, we
have: Fx (z) = v({i ∈ N , xi ≤ z}).We also consider the left inverse of Fx , denoted F̌x

which reads F̌x (p) = inf{z inR|Fx (z) ≥ p} for p ∈ [0, 1]. This quantity represents
a kind of quantile function; it represents the minimum level z fromwhich there exists
a coalition of criteria satisfied at level z or more and which is of weight greater than
or equal to p. Both Fx and F̌x are stepwise functions. We then define from Fx , Fy

or F̌x , F̌y the second order stochastic dominance by one of the following formulas
which are known to be equivalent:

x �2 y iff ∀z ∈ R, F2
x (z) ≤ F2

y (z) with F2
x (z) =

∫ z

−∞
Fx(t)dt (7)

x �2 y iff ∀p ∈ [0, 1], F̌2
x (p) ≥ F̌2

y (p) with F̌2
x (p) =

∫ p

0
F̌x (t)dt (8)
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This dominance is transitive and coincides with the second order stochastic domi-
nance that will be introduced in chapter “Decision under Uncertainty” of this volume
(just reinterpreting the v function as a probability measure and using Eq. (7)). In the
casewhere the criteria are equallyweighted, this dominance�2 reduces to the Lorenz
dominance. In fact, when functions Fx , Fy (resp. F̌x , F̌y) are piecewise linear, testing
�2 amounts to comparing the curves at break points in terms of weak Pareto domi-
nance. Note that in the case of equally weighted components, the n break points are
in k/n for k = 1, . . . , n. We can then show that nF̌2

x (k/n) = Lk(x) (see Shorrocks
1983; Muliere and Scarsini 1989). This explains why �2 is equivalent to comparing
the components of the Lorenz vectors Lk(x) and Lk(y) for all k ∈ N and therefore,
in this case, �2 is nothing else but the Lorenz dominance �L . For this reason �2 can
be seen as a generalization of Lorenz dominance in the case of weighted criteria.

4.2 Concordance Relations

The concordance relations are preference relations that are not necessarily transi-
tive, resulting from aggregation rules inspired by the majority voting rules (rules of
concordance). In such rules, for each pair of solutions (x, y), we count the number
of criteria in favor of x and y respectively, and it is based on this count to decide
whether x is better than y. If the criteria do not all have the sameweight, we canmore
generally evaluate the weight of the coalition of criteria in favor of x and against
y. This so-called “concordant” coalition is a widely used notion in ELECTRE type
methods (see Roy 1985; Roy and Bouyssou 1993; Vincke 1992). There are many
variants of these rules, of which we give here some typical examples by assuming
that the indices φi (x, y) are constructed as in Eq. (4):

Absolute Concordance

∀(x, y) ∈ A × A, c(x, y) = v({i ∈ N : φi (x, y) > 0}) (9)

x � y iff c(x, y) ≥ s (10)

where v is a set function defined on 2N and valued in [0, 1] and s ∈]0, 1] is an
acceptance threshold named concordance threshold. The most standard instance of
this family of rules is the absolute majority rule obtained for s = (n + 1)/2 and
v(E) = |E | for all E ⊆ N . When we wish to weight the criteria, we can define
v(E) = ∑

i∈E wi wherewi represents the weight of criterion i . We may also resort to
more general definitions such as v(E) = ψ(w1, . . . ,wn) where ψ is an aggregation
function.

Relative Concordance

x � y iff c(x, y) ≥ c(y, x) (11)
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where c(x, y) is defined by Eq. (9). This relation is generally not transitive. However,
some instances of this rule are transitive on any set of alternatives. In fact, the transi-
tivity appears for very specific definitions of the notion of importance of criteria. This
point has been widely studied in the literature on decision theory, see e.g., Dubois
et al. (2003) for a reference in AI.

Absolute Concordance with Veto

x � y iff

{
c(x, y) ≥ s
∀i ∈ N , yi − xi ≤ vi

(12)

where vi is the veto threshold that can be defined as the biggest difference of perfor-
mance yi − xi that can be imagined on criterion i and which is still compatible with
the preference of x over y. If yi − xi exceeds the veto threshold on some criterion
i , x cannot be preferred nor be indifferent to y. This condition aims to prevent any
compensation phenomenon when comparing two alternatives with very contrasted
profiles. It also prevents to compensate a strong weakness with multiple weakly pos-
itive points. This principle of non-veto is presented in an absolute concordance rule
but could also be inserted in the relative concordance rule. The reader may refer to
Roy and Bouyssou (1993), Perny (1998) for more details on this point.

Concordance Rules with Reference Points

Let p ∈ R
n be a performance vector used as a reference point to assess and compare

the alternatives. A concordance relation with reference point is defined by:

x � y iff c(x, p) ≥ c(y, p) (13)

where c(x, y) is defined by Eq. (9). Using the same notations, we can also introduce
the following relation:

x � y iff c(p, y) ≥ c(p, x). (14)

Note that, contrary to the standard concordance relations introduced before (see
Eqs. 10–12), the concordance relations with reference point are naturally transitive,
which facilitates their use for choice and ranking problems. One can find in Perny
and Rolland (2006), Rolland (2013), Bouyssou and Marchant (2013) other exam-
ples of concordance rules with reference points, as well as some axiomatic analysis
concerning these rules.

When a non-transitive concordance relation is used, the candidates cannot be
directly ordered and it is difficult to determine an optimal choice. To overcome the
problem, many methods for determining a winner or ranking the alternatives from
a non-transitive strict preference relation � have been proposed. Here are some
examples:
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The Net Flow Rule

Rank the candidates according to the Net Flow Score defined as follows:

φ(x) = |{y ∈ X : x � y}| − |{y ∈ X : y � x}|

For a choice problem, select the alternatives maximizing the net flow.

Schwartz’s Rule

Calculate �∗ the transitive closure of relation �. Then define a new strict preference
relation �S as follows:

x �S y iff [x �∗ y and not(y �∗ x)]

By construction relation�S is transitive since it is the asymmetric part of a transitive
relation. For a choice problem, select the solutions of ND(X ,�S).

Decision Rules Based on Traces

The traces of a relation � are defined by:

x �+ y iff ∀z ∈ X \ {x, y}, (y � z ⇒ x � z)

x �− y iff ∀z ∈ X \ {x, y}, (z � x ⇒ z � y)

Both relations �+ and �− are transitive, and therefore their intersection too.
They can therefore be used to partially order the solutions or to define a set of non-
dominated elements, for example by calculating ND(X ,�+) or ND(X ,�−).

5 Decision Models in the AC Approach

5.1 The Weighted Mean

The decision model based on the weighted mean leads to the following definition of
preferences:

x � y iff
n∑

i=1

wi xi ≥
n∑

i=1

wi yi

Thismodel is probably the one that most quickly comes tomindwhen one aggregates
performances. Yet it is often unsatisfactory because it provides no control on whether
the optimal solutions are balanced or not. By way of illustration, let us consider the
following example:

Example 5 A company wants to recruit a technical sales computer. Candidates must
complete two interviews, one for the technical skills of the individual, the other
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intended to evaluate the business skills. Consider a situation with 4 candidates that
received the following grades: x = (18, 5), y = (4, 19), z = (11, 11),w = (9, 7).
Candidate w who is Pareto-dominated by candidate z is quickly disqualified. The
candidates x and y, who have a significant weakness on one of the two expected
skills (score less than or equal to 5), do not seem to be suitable either. As a result,
the z candidate seems to be the best compromise between technical and commercial
skills. However, it can easily be verified that, whatever the weight vector (w1,w2)

used, the candidate z will not be the one with the best weighted average, although he
is Pareto-optimal. This is due to the fact that (11, 11) lies within the convex hull of the
points x, y, z,w in the criterion space, whereas only the points on the boundaries of
this convex hull can be obtained by optimizing a weighted sum of the performances.

The above example shows that when a weighted sum is used, we take the risk of
eliminating some Pareto-solutions a priori, even before having chosen the weights of
the criteria, although such solutions could achieve interesting compromises between
the criteria. These well-known limits of the weighted sum justify the interest in other
aggregators. A possible generalization of weighted means is provided by quasi-
arithmetic means defined by:

ψ(x) = f −1

(
n∑

i=1

wi f (xi )

)

where f (x) is a strictly monotonic function. For instance, the weighted geomet-
ric mean is obtained for f (x) = ln(x), the weighted dual geometric mean when
f (x) = ln(1 − x), the harmonic mean when f (x) = 1/x and the weighted L p norm
for f (x) = x p, p ∈ N. The next section introduces a more powerful aggregator to
explore various types of compromise solutions in the Pareto set.

5.2 The Weighted Tchebycheff Norm

One way to define preferences by a scalarizing function is to measure the distance to
a reference point p ∈ R

n representing a target performance vector. The idea is to try
to be as close as possible to the target on each of the criteria. The quality of a solution
can then be defined as its distance to the target in the sense of the Tchebycheff norm
(a.k.a. infinite norm).

Let λ ∈ R
n+ be a weighting vector used in combination with the Tchebycheff

norm on the one hand to normalize criterion values when they are expressed on
different scales, and on the other hand, to control the importance attached to the
different criteria so as to generate compromise solutions with a bias reflecting the
value system of the decision maker:

ψ(x) = ||λ(x − p)||∞ = max
i∈N λi |xi − pi |
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A good choice for the reference point p is the ideal point α ∈ R
n defined by

αi = supx∈X xi which provides an upper bound of the set of Pareto-optimal vectors.
Then, minimizing the Tchebycheff distance amounts to projecting the ideal point on
the Pareto set, in a direction controlled by the weights λi . Usually the weights λi are
defined as follows:

λi = wi

αi − βi
with βi = inf

x∈X ∗
{xi } and X ∗ = {x ∈ X : ∃i ∈ N , xi = αi }

The components αi are obtained by single objective optimization on each compo-
nent separately; this makes it possible to computeX ∗ and then components βi . The
optimization of the parameterized functionψ guarantees that, for any Pareto-optimal
solution x , there exists a weighting vector w such that x will be part of theψ-optimal
solutions (Wierzbicki 1986) (in fact to avoid pathological cases and fully benefit
from this property, it is better not to define α as the ideal point but as a neighbor
point strictly above the ideal on every component). We thus correct the observed
defect of the weighted sum since any Pareto-optimal solution can now be obtained
by a minimization ofψ with the proper parameters. On the other hand, the optimiza-
tion of function ψ does not quite guarantee the Pareto-optimality of the solutions
obtained because of a drowning effect induced by the maximum. Assume indeed that
the reference point is p = (20, 20) and that the two feasible solutions are x = (4, 2)
and y = (18, 2) we have ψ(x) = ψ(y). Thus, x could be selected as the best choice
while it is Pareto-dominated. To avoid this problem, we introduce an additional term,
the weighted sum of the deviations from the ideal point multiplied by an arbitrarily
small quantity ε > 0; this weighted sum comes to play the role of a second crite-
rion considered lexicographically after that of Tchebycheff to discriminate between
equivalent solutions in terms of distance to the ideal point. We therefore arrive at the
following aggregation function to be minimized:

t (x) = max
i∈N

wi (αi − xi )

αi − βi
+ ε

n∑
i=1

wi (αi − xi )

αi − βi
(15)

By minimizing function t defined by Eq. (15), we make sure to generate only
Pareto-optimal solutions. Moreover, if ε is chosen to be small enough, the prac-
tical possibility of reaching any Pareto-optimal solution is preserved (Wierzbicki
1986). This dual quality justifies the use of this aggregator in optimization to explore
the Pareto-optimal solutions in various directions controlled by the w vector. It is
therefore widely used in interactive exploration methods (Steuer and Choo 1983;
Steuer 1986; Wierzbicki 1999). This aggregator can of course be used to define a
preference over the set of solutions (by proximity to the ideal point α) by setting:
x � y iff t (x) ≤ t (y). An application of this decision model to multiobjective state
space search is proposed in Galand and Perny (2006).
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5.3 The Ordered Weighted Average (OWA)

The Ordered Weighted Average (Yager 1988) in an aggregation function enabling
to weight the performances xi according to their rank, once reordered with permu-
tation σ such that xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n). Formally, the OWA aggregation is
defined by:

OW A(x) =
n∑

i=1

wi xσ(i) (16)

OWA is a symmetric function because the weights do not relate to the components of
x but to those of the reordered vector. This family includes the minimum, maximum,
median operations and all order statistics2 as special cases, by using a weighting
vector whose all but one components are zero, the remaining one being 1. It is
also widely used in fair optimization as a linear extension of the Lorenz dominance
introduced in the previous section. Indeed, noting that xσ(i) = Li (x) − Li−1(x) for
i > 1, we have:

OW A(x) =
n−1∑
i=1

(wi − wi+1)Li (x) + wnLn(x) (17)

One can see that, if coefficients wi are positive and chosen to decrease when i
increases, OWA is a linear combination with positive coefficients of the components
of the Lorenz vector. Therefore the weak order defined by:

x � y iff OW A(x) ≥ OW A(y)

is a linear extension of Lorenz dominance, that is, x �L y ⇒ OW A(x) ≥ OW A(y).
Thus OWA used with strictly decreasing weights wi is an aggregator allowing to
promote balanced solutions. Indeed, due to Eq. (17), an OWA-optimal solution is
necessarily optimal in Lorenz’s sense and there is therefore no Pigou-Dalton transfer
allowing to reduce inequalities (due to Theorem 1). Another way to present the
treatment of inequalities by an OWA is to consider Eq. (16) and note that by choosing
decreasing weights, one assigns the greatest weight to the least satisfied criterion,
then a little less importance to the second least satisfied criterion and so on. Of
course, comparing or sorting performances from several criteria only makes sense
when they are expressed on the same scale (if not, theymust first be re-encoded using
utility functions). To give an example of the use ofOWA, if onewishes to compare the
vectors x = (10, 5, 15) and y = (10, 12, 8)using anOWAwithw = (3/6, 2/6, 1/6),
we obtain OW A(x) = 50/6 = 8.33 while OW A(y) = 52/6 = 8.66, therefore y �
x . The OWA weights are used to control the attitude of the Decision Maker towards
fairness. They can be elicited from preference statements provided by the Decision
Maker (see e.g., Benabbou et al. 2015; Bourdache and Perny 2017).

2The order statistic of rank k of a sample of values is equal to the kth smallest value.
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The OWA operator is widely used in social choice theory as a measure of inequal-
ity under the name of the generalized Gini social evaluation function (Weymark
1981). It is also used to aggregate fuzzy set membership functions (see Yager 1988).
In artificial intelligence, it often appears in fair optimization problems or allocation
problems of indivisible goods (Bouveret and Lang 2005; Golden and Perny 2010;
Lesca and Perny 2010; Lesca et al. 2018), and also in voting rules
(Goldsmith et al. 2014; Elkind and Ismaili 2015; Skowron et al. 2016; García-
Lapresta and Martínez-Panero 2017). Note that, although OWA is not a linear func-
tion of criterion values, the optimization of an OWA function can be done by linear
programming (provided that the criteria and the constraints defining the admissible
solutions are linear in the decision variables), for more details see Ogryczak and
Sliwinski (2003), Chassein and Goerigk (2015).

5.4 The Weighted OWA (WOWA)

As pointed out in the previous subsection, one characteristic of the OWA is to be
a symmetric aggregation function. This property, which seems natural when the
criteria represent individual points of view in a collective decision problem, may not
be desired in multicriteria decision problems, particularly when certain criteria are
considered more important than others. We then consider now a weighted extension
of the OWA aggregator, the initial weights involved in the OWA definition being
only used to control the importance attached to good and bad performances. This
weighted OWA is know in the literature under the name of WOWA (Torra 1997); it
uses a vector p ∈ R

n of criteria weights and takes the following form:

WOW A(x) =
n∑

i=1

[
xσ(i) − xσ(i−1)

]
ϕ

(
n∑

k=i

pσ(k)

)

=
n∑

i=1

[
ϕ

(
n∑

k=i

pσ(k)

)
− ϕ

(
n∑

k=i+1

pσ(k)

)]
xσ(i)

where σ is the permutation reordering the components of x by increasing order, i.e.,
xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n); function ϕ is strictly increasing and such that ϕ(0) = 0.
The induced preference is then defined by: x � y iff WOW A(x) ≥ WOW A(y).

This formulation is known as Yaari’s model in decision under risk because it
has been initially introduced and axiomatically justified in this context (Yaari 1987)
(the weights pi being interpreted as the probabilities of the states of nature, see the
RDU model in chapter “Decision under Uncertainty” of this volume. Its importation
into a multicriteria decision-making context is more recent and due to Torra (1997)
who arrives at an identical formulation starting from an OWA. The specificity of the
construction proposed byTorra lies in the definition of theϕ function. It is constructed
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from the weights (w1, . . . ,wn) of an OWA so that ϕ(i/N ) = ∑i
k=1 wn−k+1, which

allows to weight the criteria while controlling the importance given to good and
bad performances as in an OWA. The WOWA is therefore constructed from the two
weighting vectors p and w. By way of illustration, consider the following example:

Example 6 If we want to compare vectors x = (10, 5, 15) and y = (10, 12, 8)
with a WOWA characterized by weights w = (3/6, 2/6, 1/6) and criteria weights
p = (3/6, 1/6, 2/6), we use a piecewise linearϕ function taking the following values
at the key points: ϕ(0) = 0, ϕ(1/3) = 1/6, ϕ(2/3) = 1/2, ϕ(1) = 1. These values
can be completed by linear interpolation to obtain:

x 0 1/6 2/6 3/6 4/6 5/6 1
ϕ(x) 0 1/12 1/6 2/6 1/2 3/4 1

Then we get:

WOW A(x) = 5 + (10 − 5)ϕ(5/6) + (15 − 10)ϕ(2/6) = 9.58

WOW A(y) = 8 + (10 − 8)ϕ(4/6) + (12 − 10)ϕ(1/6) = 9.16

Therefore x is preferred to y. Here the fact that the third criterion is more important
than the second gives an advantage to x which is sufficient to compensate the inegal-
itarian side of this solution.We can verify that it would suffice to be more demanding
on the equity requirement by choosing the weighting vector w = (0.8, 0.25, 0.05)
so that the preference is reversed in favor of y. In this case, we would indeed have:

ϕ(0) = 0, ϕ(1/3) = 0.05, ϕ(2/3) = 0.3, ϕ(1) = 1

and, by completing using linear interpolation:

x 0 1/6 2/6 3/6 4/6 5/6 1
ϕ(x) 0 0.025 0.05 0.175 0.3 0.65 1

In this case we obtain:

WOW A(x) = 5 + (10 − 5)ϕ(5/6) + (15 − 10)ϕ(2/6) = 8.5

WOW A(y) = 8 + (10 − 8)ϕ(4/6) + (12 − 10)ϕ(1/6) = 8.65

and this time we get y is preferred to x .

This example clearly shows how the two vectors of weights interact, one to con-
trol the weights of the criteria and the other to control the fairness requirement.
It may also be noted that if weights wi decrease when i increases (to favor solu-
tions that equitably share performance among criteria) then the ϕ function is convex
and the function WOWA is concave. In this case, it can be proven that WOWA is
monotone increasing with dominance �2 introduced in Eq. (7), which means that:
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x �2 y ⇒ WOW A(x) ≥ WOW A(y). Thus, we obtain a weighted version of the
result concerning the monotony of OWA with respect to Lorenz dominance.

In practice, nothing prohibits the use of non-decreasingweights andwe then obtain
an aggregator that offers a diversity of behaviors in the aggregation. For example, if
we use weights wi increasing with i , we will have a concave ϕ and a convexWOWA.
In maximization, we give a premium to the solutions with an imbalanced profile
alternating good and bad performances. We will return to the control of WOWA
in the more general framework of the Choquet integral. We can also notice that
if φ(x) = x then WOWA reduces to a simple weighted average with weights pi .
Moreover, if pi = 1/n then WOWA reduces to an OWA, which is quite natural.
Finally, it should be noted that WOWAs are very useful for equitable optimization
when we want to associate weights with agents (exogenous rights), especially since
when the wi weights are decreasing when i increases, the optimization of WOWA
can be done easily by linear programming using reformulations close to those needed
to linearize an OWA (see Ogryczak and Sliwinski 2007 for more details).

Note that function ϕ does not necessarily have to be constructed from vectors p
andw, it can be directly defined as a convex function to convey an idea of fairness (in
maximization, the more function ϕ is convex the greater the requirement of fairness).
On the contrary a concave ϕ function would exhibit a preference for contrasted
profiles. In minimization problems, this is just the opposite and fairness is modeled
by a concave ϕ function. The elicitation of ϕ can be performed incrementally using
preference queries on specific pairs of alternatives, see e.g., Perny et al. (2016).

5.5 The Choquet Integral

The Choquet integral is one of the most sophisticated scalarizing function used for
multicriteria aggregation (Choquet 1953; Grabisch 1996; Marichal 2000a; Marichal
and Roubens 2000; Grabisch and Labreuche 2008; Grabisch et al. 2009). It includes
both weighted sums, OWA and WOWA as special cases. It is defined from a set
function, namely the capacity allowing to assign a weight to any subset of criteria
E ⊆ N . More precisely, a capacity is defined as follows:

Definition 5 A capacity is a set function v : N → [0, 1] such that v(∅) = 0, v(N ) =
1 and ∀A, B ⊆ N , A ⊆ B ⇒ v(A) ≤ v(B).

The capacity is said to be:

• concave or sub-modular if v(A ∪ B) + v(A ∩ B) ≤ v(A) + v(B) for all
A, B ⊆ N ,

• additive if v(A ∪ B) + v(A ∩ B) = v(A) + v(B) for all A, B ⊆ N ,
• convex or super-modular if v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) for all

A, B ⊆ N .
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For any given capacity v, the Choquet integral of a vector x ∈ R
n is defined by:

Cv(x) =
n∑

i=1

[
xσ(i) − xσ(i−1)

]
v(Xσ(i))

=
n∑

i=1

[
v(Xσ(i)) − v(Xσ(i+1))

]
xσ(i)

where σ is the permutation reordering the components of x by increasing order,
i.e., xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n), xσ(0) = 0, Xσ(i) = {σ(i), σ (i + 1), . . . , σ (n)} for
i = 1, . . . , n, and Xσ(n+1) = ∅. The preference relation associated to the Choquet
integral is therefore defined by: x � y iff Cv(x) ≥ Cv(y).

We remark that WOWA is only a special case of Choquet integral in which the
capacity v is defined by v(E) = ϕ(

∑
i∈E pi ) for a weighting vector (p1, . . . , pn).

It can be shown that v is convex (resp. concave) when ϕ is convex (resp. concave).
The Choquet integral Cv can account for various behaviors depending on the choice
of the capacity. When using an additive capacity, i.e., v(E) = ∑

i∈E pi , the Choquet
integral is reduced to the weighted sum and does not offer particular descriptive
possibilities. However, we can describe much richer classes of preferences with
concave, convex or other more general capacities. For example, if we use a convex
capacity in maximization, the well-balanced profiles will be favored, and this will be
the opposite if we choose a concave capacity, as shown by the following example:

Example 7 Let us consider an example with 3 criteria, i.e., N = 1, 2, 3 and two
capacities v1 and v2 defined in the following table:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v1 0 0.2 0.1 0.3 0.45 0.5 0.65 1
v2 0 0.35 0.5 0.55 0.7 0.9 0.8 1

One can easily check that v1 is convex and v2 is concave. Coming back to the com-
parison of vectors x = (10, 5, 15) and y = (10, 12, 8) we have:

Cv1(x) = 5 + (10 − 5)v1({1, 3}) + (15 − 10)v1({3}) = 9

Cv1(y) = 8 + (10 − 8)v1({1, 2}) + (12 − 10)v1({2}) = 9.1

Cv2(x) = 5 + (10 − 5)v2({1, 3}) + (15 − 10)v2({3}) = 12.25

Cv2(y) = 8 + (10 − 8)v2({1, 2}) + (12 − 10)v2({2}) = 10.4

One can see that with v1 solution y is preferred to x whereas with v2 solution x is
preferred to y.

More precisely, the use of a convex capacity in a Choquet integral conveys an idea
of equity due to the following property (Chateauneuf and Tallon 1999):
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Proposition 1 If v is convex then ∀x1, x2, . . . , x p ∈ R
n, ∀k ∈ {1, 2, . . . , p} and

∀i ∈ {1, 2, . . . , p}, λi > 0 such that
∑p

i=1 λi = 1 we have:

Cv(x
1) = Cv(x

2) = · · · = Cv(x
p) ⇒ Cv

(
p∑

i=1

λi x
i

)
≥ Cv(x

k).

This proposition means that if several solutions xi , i = 1, . . . , p are indifferent for
the decision maker, she we will prefer a solution whose performance vector is a
convex combination of the xi ’s to all these solutions. For example, if one is indifferent
between two performance vectors (0, 20) and (20, 0), it is expected that a solution
such as (10, 10) which corresponds to the average of the two preceding vectors is
preferable. Obviously, the reverse preference is obtained with a concave capacity.
The Choquet integral for a convex capacity is a concave function and conversely the
Choquet integral for a concave capacity is a convex function (Lovász 1983). Another
useful formulation of the Choquet integral is to express it as a function of theMöbius
masses associated with capacity v. These masses are defined in this way:

Definition 6 To any capacity v defined on 2N one can associate another set function
on 2N named Möbius inverse and defined by:

∀A ⊆ N ,m(A) =
∑
B⊆A

(−1)|A\B|v(B) (18)

Then, v can be recovered from its Möbius inverse m as follows:

∀A ⊆ N , v(A) =
∑
B⊆A

m(B) (19)

Using theMöbius inversem associated with v, the Choquet integral can be rewrit-
ten as follows:

Cv(x) =
∑
B⊆N

m(B)min
i∈B xi (20)

This highlights another interpretation of the Choquet integral as a linear aggregator
in a new multidimensional space of size 2n where n is the initial number of criteria.
The components of a vector in this space correspond to quantities mini∈B xi for all
subsets B ⊂ N . Whether we use the initial formulation of the Choquet integral or
the one that involves the Möbius masses, we may be concerned about the presence
of 2n parameters to characterize the importance of the criteria and their interaction.
Fortunately, inmany practical cases, there is no need to consider all these coefficients,
we can resort to k-additive capacities for some k < n, where k-additivity is defined
as follows (Grabisch 1996; Dubois and Prade 1997):

Definition 7 A capacity v is said to be k-additive if its Möbius inverse equals zero
for any subset A ⊆ N such that |A| > k, and if m(A) 
= 0 for some A such that
|A| = k.
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If k = 1we obtain an additive capacity. The k−additive capacities for small values of
k greater than 1 are very useful in practice because they offer sufficient expressiveness
to model positive or negative interactions between criteria while involving a fairly
small number of parameters. For example, when k = 2, the capacity is completely
characterized by only (n2 + n)/2 coefficients (a Möbius mass for each singleton
and each pair), which enables to model the following interactions between pairs of
criteria:

• positive interaction: m({i, j}) > 0 and therefore v({i, j}) > v({i}) + v({ j})
• no interaction: m({i, j}) = 0 and therefore v({i, j}) = v({i}) + v({ j})
• negative interaction: m({i, j}) < 0 and therefore v({i, j}) < v({i}) + v({ j})
Moreover, with a 2-additive capacity one obtains from Eq. (20) a very compact
expression for the Choquet integral:

Cv(x) =
∑
i

mi xi +
∑
i> j

mi j min{xi , x j }

As with OWA and WOWA, the search for a solution maximizing Cv(x) can be
performed by linear programming in the case where v is convex (Lesca and Perny
2010). In the general case, it is more delicate but some efficient linearizations exist
for some class of Möbius representations (Lesca et al. 2013). For more details on
Choquet integrals, interaction indices and set functions in multicriteria analysis,
the reader should refer to Grabisch (1996, 2016), Grabisch et al. (2009). For the
elicitation of the capacity in the Choquet integral, the reader should refer to Grabisch
et al. (1995), Marichal and Roubens (2000), Fallah Tehrani et al. (2012), Hüllermeier
and Fallah Tehrani (2013), Benabbou et al. (2017).

The Choquet integral is used in various domains of artificial intelligence. For
example, inmachine learning, the use of Choquet integrals provides higher predictive
capacities than linearmodels, while offeringmeasures for quantifying the importance
of individual predictor variables and the interaction between groups of variables
(Fallah Tehrani et al. 2012). Moreover, in recommender systems (Beliakov et al.
2015), the advantage provided by Choquet integrals is to allow positive and negative
synergies between criteria, with enhanced descriptive and prescriptive possibilities.
Similarly, in multiagent decision making (Dubus et al. 2009), the Choquet integral
is used to aggregate individual preferences using a possibly non-additive measure
of the importance of agent coalitions, which allows one to model various notions
of social welfare. In information fusion (Torra and Narukawa 2007), the use of the
Choquet integral allows one to model positive or negative reinforcements among
sets of observations. Finally, in multiobjective state-space search (Galand and Perny
2007), the use of Choquet integrals allows one to find compromise solutions that
could not be obtained using linear aggregators.
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5.6 The Sugeno Integral

The Sugeno integral (Sugeno 1974; Dubois et al. 1998;Marichal 2000b; Dubois et al.
2001a; Grabisch and Labreuche 2008; Couceiro et al. 2012) can be seen as a quali-
tative counterpart of the Choquet integral. In some cases, performance and capacity
are expressed on a common ordinal scale. In the presence of such information, one
cannot reasonably use the previous criteria which call for the cardinal properties of
performance and importance indices (weight, capacity). A natural alternative is then
to consider the Sugeno integral which reads:

Sv(x) = max
i∈N min{xσ(i), v(Xσ(i))}

where σ is the permutation reordering the components of x by increasing order, i.e.,
xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n), Xσ(i) = {σ(i), σ (i + 1), . . . , σ (n)} for i = 1, . . . , n.
The resulting overall preference relation is therefore:

x � y iff Sv(x) ≥ Sv(y).

This general aggregator has been introduced by Sugeno (1974) in fuzzy sets theory
and imported into decision theory under uncertainty where its use was axiomati-
cally justified (Dubois et al. 1998). The Sugeno integral can also be used in mul-
ticriteria decision making because the proposed axioms can easily be transposed.
When v is a measure of possibility over N defined by v(A) = max{πi , i ∈ A},
(π1, . . . , πn) playing the role of ordinal weights (positive coefficients such that
max{πi , i ∈ A} = 1), the Sugeno integral is nothing else but a weighted maximum
defined by:

wmax(x) = max
i∈N min{xi , πi }

When v is a necessity measure defined on N by v(A) = 1 − max{πi , i /∈ A},
(π1, . . . , πn) playing the role of ordinal possibilistic weights, the Sugeno integral
takes the particular form of a weighted minimum defined by:

wmin(x) = min
i∈N max{xi , 1 − πi }

The weighted max operator reflects an optimistic view which consists of valuing the
existence of at least one good performance on an important criterion. The weighted
min reflects a more pessimistic view which consists of assessing the extent to which
no important criterion exists on which the alternative under consideration performs
poorly. These two models as well as the Sugeno integral have been studied in depth
in a decision-making framework, see e.g., Dubois and Prade (1995), Dubois et al.
(2001b).
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6 Conclusion

The models presented in this chapter provide an overview of the main aggrega-
tors used to take multiple points of view into account, whether in multi-criteria
decision-making or collective decision-making (see also chapter “Collective Deci-
sionMaking” of this volume). Most of them are widely used in artificial intelligence.
In multicriteria and collective decision-making, the CA approach is very present
through ordinal methods of aggregation derived from social choice theory and vot-
ing procedures. However, the AC approach remains the most widespread, whether
in multi-criteria decision-making to determine specific trade-offs in the Pareto set
(by optimizing a scalarizing function), or in collective decision-making to determine
a fair Pareto-optimal solution. Concerning this second approach, the reader wishing
to obtain technical complements on the aggregation functions and their properties
may refer to Grabisch et al. (2009).

Whether they fall under the CA or AC approach, the models presented in this
chapter can also be used in decision-making under uncertainty, when trying to evalu-
ate and compare acts in the sense of Savage. If we consider situations in which uncer-
tainty is represented by a finite set of possible states S = {s1, . . . , sn}, it appears that
the different states act as different criteria to evaluate the possible acts. This explains
why several models introduced in this chapter may also be used for decision under
uncertainty. These criteria can even be generalized in the case of a continuous set
of states of nature. The next chapter (chapter “Decision under Uncertainty” of this
volume) is precisely intended to present in the most general case the decision models
used under uncertainty and risk.

The main theoretical axes that still need to be developed in multicriteria analysis
relate to the axiomatic justification of existing models (the results to characterize the
preferences that can be represented by a particular model do not always exist in mul-
ticriteria analysis, even if neighboring results sometimes exist for decision making
under uncertainty), the development of decision models with increased descriptive
power in the presence of rich information, and the development of ordinal or partial
aggregation methods in the presence of poor information. From a more operational
point of view, the main challenges of multicriteria decision theory are to propose
efficient methods for eliciting or learning the parameters of the models they pro-
pose (for example for recommendation systems) and, on the other hand, to develop
efficient algorithms for determining preferred solutions in combinatorial problems
(preference-based search). The combinatorial nature of the space of feasible solu-
tions precludes the use of any explicit enumeration method to compare solutions.
The search for preferred solutions necessarily involves the development of implicit
enumeration methods, but the optimization problems that need to be solved are all
the more difficult as the models are sophisticated. Decision theory, by producing
models that are always richer to account for various decision-making behaviors, is
therefore a source of permanent challenges for computer scientists. These aspects of
elicitation and computation are widely studied in artificial intelligence and are the
subject of numerous recent contributions to algorithmic decision theory.
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Decision Under Uncertainty

Christophe Gonzales and Patrice Perny

Abstract The goal of this chapter is to provide a general introduction to decision
making under uncertainty. The mathematical foundations of the most popular mod-
els used in artificial intelligence are described, notably the Expected Utility model
(EU), but also new decision making models, like Rank Dependent Utility (RDU),
which significantly extend the descriptive power of EU. Decision making under
uncertainty naturally involves risks when decisions are made. The notion of risk is
formalized as well as the attitude of agents w.r.t. risk. For this purpose, probabilities
are often exploited to model uncertainties. But there exist situations in which agents
do not have sufficient knowledge or data available to determine these probability
distributions. In this case, more general models of uncertainty are needed and this
chapter describes some of them, notably belief functions. Finally, in most artificial
intelligence problems, sequences of decisions need be made and, to get an optimal
sequence, decisions must not be considered separately but as a whole. We thus study
at the end of this chapter models of sequential decision making under uncertainty,
notably the most widely used graphical models.

1 Introduction

Uncertainty and, more generally, decision making under uncertainty are central in
artificial intelligence (AI). Indeed, even though AI addresses a wide range of prob-
lems, most of them involve to some extent uncertainties. This is the case, for instance,
in diagnosis (Franklin et al. 1991; Jensen et al. 2001), prediction (Conati et al. 1997;
Horvitz et al. 1998), robotics (Argall et al. 2009), planning (Puterman 1994),machine
learning and image processing (Doucet and Johansen 2011). Decision Theory pro-
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poses sophisticated mathematical tools to reason in such contexts. These tools can
be roughly divided into two classes: decision support systems (or decision aiding
systems) and automatic decision systems. The goal of the former is to help, to guide,
human agents to make their decisions, especially when those are very complex (e.g.,
when many conflicting “decision criteria” need be taken into account). As such, they
prove to be very useful in critical domains like, e.g., in medical decision making
(Franklin et al. 1991; Bleichrodt 1996), in space shuttle flying assistance (Horvitz
andBarry 1995) and in strategic applications like choosing the location of a future air-
port (Keeney and Raiffa 1993). As for automatic decision systems, they are designed
to enable non-human agents (robots or software) to choose the best actions to reach
their goals. They prove to be useful, for instance, in robotics (Argall et al. 2009), in
missiles or drones control (Dasgupta 2006), in serious games (Sordoni et al. 2010).

The decision theoretic tools developed in both decision aiding systems and auto-
matic decision systems rely on mathematical models for representing the agents’
preferences. Those enable, for instance, to justify why the majority of agents who
are asked which envelope they would prefer to get between two envelopes A and B
containing 100 e and 200 e respectively answer they prefer B. Actually, Decision
“choose envelope B” yields the consequence ofwinning 200e, which is often judged
more preferable than the consequence of winning only 100e. Unfortunately, in real-
world applications, decisions are not so simple especially because, when decisions
are made, their consequences are to some extent uncertain, i.e., they depend on the
occurrences of some events that are still uncertain at the time the decision is made.
For instance, when a physician must determine the best treatment to prescribe to his
patient, his diagnosis does not allow him to know for sure the exact illness of the
patient. Therefore, to take into account all the parameters involved in the decision
making, decision models under uncertainty combine two components: a “preference
model” and a “representation of uncertainties”.

Models and algorithms originating from the field of “decision theory under uncer-
tainty” arewidely used in artificial intelligence. This is essentially due to two reasons:
(i) these models have strong mathematical foundations; and (ii) their axiomatic jus-
tifications rely on rationality arguments with which everybody seems to agree. As
a consequence, the conclusions reached by these algorithms can be justified using
essentially common sense arguments. The rationality justification incited the major-
ity of the artificial intelligence community to adopt the “expected utility” (EU) cri-
terion as its decision criterion. In Sect. 2, we describe this criterion and we focus on
its axiomatic foundation. The notion of risk and how it translates in the EU model
are also investigated. Finally, this section ends with a discussion on the descriptive
limits of this model. This naturally calls for other models that can go beyond these
limits: in Sect. 4, the emphasis is made on representing uncertainties outside the
probabilistic framework while, in Sect. 3, the linear model of preferences itself is
questioned. Finally, Sect. 5, addresses sequential decision problems, especially their
representations and the issues raised by non-linear models.
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2 The Expected Utility Criterion (EU)

Let D denote the set of decisions that can be made by an agent. In the rest of
this chapter, we assume that the agents have well defined preferences on D and
we denote by �D their preference relation. Thus, d1 �D d2 means that the agent
prefers Decision d1 to Decision d2 or she is indifferent between the two decisions.
Strict preference is denoted as usual by �D . As we have seen in the introduction,
when making decisions under certainty, preferring d1 to d2 amounts to prefer the
consequence yielded by decision d1 to that yielded by d2. Let X denote the space
of all the possible consequences. Preference relation �D over D is thus induced by
preference relation�X overX as follows: d1 �D d2 if and only if x(d1) �X x(d2),
where x(d) represents the consequence of decision d.

Under uncertainty, i.e., when the consequence of a decision is not fully known
when the decision is made, the equivalence between �D and �X does not exist
anymore. However, in this case, it is reasonable to assume that preference relation
�D takes into account not only the agent’s preferences over the consequences of
the decisions but also her attitude w.r.t. the uncertainty over the fulfillment of these
consequences. As an example, when asked to choose between an envelope A con-
taining 100 e and an envelope B randomly chosen among a heap of 100 envelopes
in which 97 contain 1 e and 3 contain 1000 e, most of people prefer envelope A
because the probability of getting 1000 e with envelope B is too low. From this
simple example, we can deduce that the agent translates the uncertainty over the 100
envelopes into an uncertainty over the amount of money contained in envelope B,
i.e., on the consequence yielded by decision d2, and the decision is made taking into
account the latter. Before investigating further how agents make their decisions, we
need to define more precisely the notion of uncertainty from the agent’s perspective.
Similarly to probability theory, we need to define what are an event and an elemen-
tary event: an event is a set of possible results of a random experiment (above, the
choice of an envelope) and an elementary event, which is called a state of nature
in decision theory, corresponds to only one possible result. Thus, if the envelopes
are numbered from 1 to 100, the fact that the envelope chosen is the 3rd one is a
state of nature whereas the fact that it has an even number is a (non-elementary)
event. Let S and A = 2S denote the set of the states of natures and the set of
events respectively. The above example of the envelopes suggests that probabilities
are an attractive representation of the uncertainties with which the agent has to cope.
This is the very representation exploited in the model presented in this section. Note
however that this is not the only possible choice, as we will see later.

In the EU model, uncertainties are represented by probabilities and the decision
criterion is simply the maximum of the expectation of the satisfaction provided by
the decisions (a.k.a. a utility). Let u : X �→ R be a function such that x �X y if
and only if u(x) ≥ u(y). Such a function is called a utility function or, for short, a
utility. A utility function therefore assigns to each consequence a real number such
that the preferred the consequence, the higher the number. The utility expectation
criterion has been popularized by Daniel Bernoulli in the 18th century (Bernoulli
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1738), although a letter by Gabriel Cramer to Nicolas Bernoulli seems to establish
that Cramer proposed this criterion earlier. But its modern axiomatic foundations
are due, on one hand to von Neumann and Morgenstern (1944) and, on the other
hand, to Savage (1954). These two axiomatics differ essentially by the fact that the
former assume the existence of a probability distribution on (S ,A ) whereas the
latter derives its existence from the rationality of the agent.

2.1 von Neumann-Morgenstern’s Axiomatic Foundation

von Neumann and Morgenstern assume that (S ,A , P) is a probabilistic space. In
other words, P is a probability distribution over (S ,A ). As we have seen before,
for each decision d, this distribution induces another probability distribution Pd over
the space of consequences (X ,C ), where C = 2X . When the support of Pd is
finite, i.e., when the number of possible consequences (those with nonzero probabil-
ities) resulting from making decision d is finite, distribution Pd is called a lottery.
A lottery can therefore be represented as a tuple 〈x1, p1; . . . ; xn, pn〉, where the xi ’s
are some consequences and the pi ’s correspond to their probability of occurrence.
Note that a lottery is a representation, a summary, of what a decision really is: indeed
it only represents synthetically what can result frommaking the decision. If this sum-
mary is faithful, then we can conclude that there exists an equivalence between the
preferences of the agent over the decisions and those over their associated lotteries.
LetL be the set of all the possible lotteries and let� be the preference relation of the
agent overL . Then we can conclude that d1 �D d2 if and only if Pd1 � Pd2 , where
Pd represents the lottery associated with decision d. von Neumann and Morgenstern
(1944) show that the preferences over L (and thus over D) of any rational agent
necessarily follow the expected utility criterion:

For all P, Q ∈ L , P � Q ⇐⇒
n∑

i=1

pi u(xi ) ≥
r∑

j=1

q j u(y j ), (1)

where P = 〈x1, p1; . . . ; xn, pn〉, Q = 〈y1, q1; . . . ; yr , qr 〉, and u(x) is a utility func-
tion over the space of consequences X (this function is called the von Neumann-
Morgenstern utility function). The first axiom exploited by von Neumann and Mor-
genstern to prove this result is the following:

Axiom 1 (Complete weak order)� is a complete weak order on L . In other words,
� is reflexive (for all P ∈ L , P � P), transitive (for all P, Q, R ∈ L , (P � Q) ∧
(Q � R) =⇒ P � R) and complete (for all P, Q ∈ L , (P � Q) ∨ (Q � P)).

In addition, � is non-trivial, i.e., there exist P, Q ∈ L such that P � Q.

This axiom simply expresses the idea that, given any pair of lotteries, the agent
is always capable of determining which one she prefers (completeness) and that if
she prefers P to Q and Q to R, then, logically, she will also prefer P to R. This last
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property conveys some kind of rationality, although it is possible to find examples in
which rational decision makers have intransitive preferences (Anand 1993). Finally,
non-triviality just guarantees that we study only situations in which all the decisions
are not judged as equivalent by the agent, the decision maker (if this were not the
case, a decision making model would be useless).

For the next two axioms,we need to definemixtures of lotteries: let P and Q be two
lotteries and let λ ∈ [0, 1] be a real number, then R = λP + (1 − λ)Q, the mixture
of P and Q w.r.t. λ, represents the lottery such that, for any consequence x ∈ X ,
the probability of occurrence of x is R(x) = λP(x) + (1 − λ)Q(x). Intuitively, a
mixture essentially amounts to create R in two steps: first, a coin with a probability
λ to land on head (and therefore 1 − λ to land on tail) is flipped; second, if the coin
landed on head, then we get lottery P , else we get lottery Q. The probability of
occurrence of each consequence x is consequently λP(x) + (1 − λ)Q(x).

Axiom 2 (continuity)For all P, Q, R ∈ L such that P � Q � R, there existα, β ∈
]0, 1[ such that:

αP + (1 − α)R � Q � β P + (1 − β)R.

This axiom conveys the idea that if the agent strictly prefers P to Q, then a lottery
resulting from a very small perturbation of P should still be preferred to Q. For
instance, if P = 〈100, 1〉, i.e., P is the lottery which yields 100 e with certainty,
and if Q = 〈10, 1〉 and R = 〈5, 1〉, then an agent who likes money should have the
following preference relation: P � Q � R. If α = 1 − 10−20, lottery αP + (1 −
α)R is equal to 〈100, 1 − 10−20; 5, 10−20〉. The chance of receiving 5 e is so small
that the agent is almost assured to win 100 e, which is preferable to Q. Therefore,
it is very likely that the agent prefers αP + (1 − α)R to Q. A similar argument can
be used with β very close to 0. Here again, Axiom 2 seems quite reasonable. The
last axiom used by von Neumann and Morgenstern is the following:

Axiom 3 (independence) For every P, Q, R ∈ L and every α ∈]0, 1]:

P � Q ⇐⇒ αP + (1 − α)R � αQ + (1 − α)R.

The interpretation of this axiom follows that of mixtures. We have seen that αP +
(1 − α)R corresponds to a lottery created in two steps: first a coin is flipped, with
probabilities α and 1 − α to land on head and tail respectively and, then, depending
on the side onwhich the coin landed, the agent receives lottery P or R. Following this
principle, Axiom 3 can be interpreted as follows: if the coin lands on tail, from both
lotteries αP + (1 − α)R and αQ + (1 − α)R, the agent receives the same induced
lottery R so, logically, in this case, she should be indifferent betweenαP + (1 − α)R
and αQ + (1 − α)R. If, on the other hand, the coin lands on head, then, from αP +
(1 − α)R and αQ + (1 − α)R, she receives lotteries P and Q respectively. As she
(weakly) prefers P to Q or is indifferent between these two lotteries, she should also
prefer αP + (1 − α)R to αQ + (1 − α)R or be indifferent between them, hence the
axiom.
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The three above axioms therefore express properties that can be expected from
a rational agent. As the next theorem shows, they imply that there exists a unique
decision criterion representing the preferences of the agent, and this one is precisely
the expected utility criterion:

Theorem 1 (von Neumann-Morgenstern) The following two assertions are equiva-
lent:

1. The preference relation � over L satisfies Axioms 1, 2 and 3.
2. � is representable by a utility function U : L �→ R such that U (P) = ∑n

i=1
pi u(xi ), where u(xi ) = U (〈xi , 1〉).
Function u : X �→ R is called the von Neumann-Morgenstern utility function of

the agent and is unique up to scale and location (i.e., up to strictly positive affine
transforms).

This strong relationship between rationality and the EU criterion explains why
EU is so popular in the artificial intelligence community but also among decision
theorists and operations research scientists. Note also that the above theorem can
be generalized, notably by using more general probability measures (Fishburn 1970,
1982). There also exist other axiomatics, like, e.g., the one provided in Jensen (1967),
Herstein and Milnor (1953) or in Fishburn and Roberts (1978).

The von Neumann-Morgenstern axiomatics raises one issue: it assumes the exis-
tence of an “objective” probability distribution over the space of the states of nature
—in decision theory, this situation is called “decision under risk” (Knight 1921)—
and one may wonder whether such a hypothesis is so reasonable in practical deci-
sion theory problems and, more generally, in artificial intelligence. As we will see,
the answer to this question seems positive because the existence of a probability
distribution over the states of nature necessarily follows from the rationality of the
agent. This idea has been initially introduced in Ramsey (1931) but went largely
unnoticed until the seminal book by Savage (1954) got published. Sixty years later,
the idea that probabilities are the only “rational” representation of uncertainties is
so deeply anchored into people’s minds that, up to recently, it was very difficult
in artificial intelligence to imagine a rational decision making process outside the
EU framework.1 When the probability distribution over the states of nature results
from the rationality of the agent, this distribution is said to be “subjective” and the
decisional context is called “decision under uncertainty” instead of “decision under
risk”, which is dedicated to the case of objective probabilities.

Let us now study Savage’s axiomatics (Savage 1954), which has led to the decision
model called “Subjective Expected Utility” (SEU). Of course, since the probability
distribution over the space of the states of nature (S ,A ) results from the rationality

1Outside the EU framework, the behavior of an agent cannot be rational (w.r.t. Savage’s meaning)
and, therefore, it is thought in artificial intelligence that such a behavior must be proscribed. In the
70’s and 80’s, decision theorists, notably Kahneman, Tversky and Quiggin, suggested that Savage’s
rationality was not the only possible form of rationality and they proposed to depart from the
Savagian framework and developed their own kinds of “rationality”. This paved the way to new
decision models like, e.g., RDU, that recently attracted the attention of AI researchers.
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of the decision maker, this is no more a primitive of the decisional language. The
primitive, here, is called an “act”. Quite similarly to a lottery, this corresponds to the
representation/summary of a decision but its description ismore precise than a lottery.
An act f is a function whose domain and codomain are S and X respectively. In
other words, to each state of nature e, function f assigns the consequence that would
result from the occurrence of e if the decision represented by f were made. For
pedagogical purposes, let us first consider “simple acts”, i.e., finite-valued and A -
measurable functions. For any simple act f , there exists a finite partition {Ei , i ∈ I }
ofS such that, for all i ∈ I , { f (e) : e ∈ Ei } = {ci }, where ci ∈ X is a consequence.
To put it differently, a simple act yields a finite set of possible consequences and those
depend on the realization of some states of nature belonging to Ei . To draw a parallel
with lotteries, a simple act corresponds to a description of a lotterywith finite support,
although this description is more precise than just the lottery. Table 1 highlights their
differences: this table shows two acts, f1 and f2. In the former, when state e1 obtains,
the resulting consequence is c1. For both acts, the probabilities of getting c1 and c2
are 0.3 and 0.7 respectively. Consequently, both acts correspond to the same lottery
〈c1, 0.3; c2, 0.7〉. However, as can be seen in the table, act f1 is different from f2.
An act is therefore a description of a decision which is more precise than a lottery.
In the sequel, we will explain the interpretations of new concepts and axioms using
simple acts but those apply on general acts, not only on simple ones. Finally, let δc

denote the “constant” act yielding consequence c, i.e., the act such that δc(S ) = {c}.
To illustrate visually what acts represent and how they will be combined, we will
use figures in which the X and Y axes represent setsS andX respectively. In this
setting, a simple act is just a stepwise function, as shown in Fig. 1.

In the axiomatic theory of von Neumann-Morgenstern, one of the key ideas was
the possibility to combine by “mixture” different lotteries to produce new ones.
This was the core of their proof. Here, there exists an equivalent operation on acts,
that we will call a “splicing” to distinguish it from mixtures.2 Let f and g be two
acts and let E ⊆ S be an event. The splicing of f and g w.r.t. E , denoted by
f Eg is the act h = f Eg such that h(s) = f (s) for all s ∈ E and h(s) = g(s) for all
s ∈ EC = S \E . Figure 1 illustrates this operation. All the primitives and operations
necessary to describe the axiomatic theory of SEU are defined, we can now study
the axioms provided by Savage. The first one corresponds in essence to Axiom 1 of
von Neumann-Morgenstern.

Table 1 Comparison
between acts and lotteries

Event Probability Act f1 Act f2

e1 0.3 Cons. c1 Cons. c2
e2 0.3 Cons. c2 Cons. c1
e3 0.4 Cons. c2 Cons. c2

2In his book, Savage did not name this operation. The term “splicing” was introduced in Gilboa
(2009).
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(b) act h =  f Eg(a) two acts f and g

Fig. 1 The concept of splicing
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S

X
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S

X act f Ek
act gEk

act f Eh
act gEh

Fig. 2 Illustration of the sure thing principle

Axiom 4 (P1: Weak order on acts) The set of all the acts is closed under splicing
and there exists a complete weak order � over the set of acts.

But Savage’s key axiom is the “Sure Thing Principle”.3

Axiom 5 (P2: Sure Thing Principle) For all acts f, g, h, k ∈ X S and all E ⊆ S :

f Eh � gEh ⇐⇒ f Ek � gEk.

This axiom corresponds in spirit to the independence axiom of von Neumann-
Morgenstern. Figure 2 provides an illustration: let f Eh and gEh be two acts. They
yield the same consequences over EC . Consequently, if the state of nature that obtains
belongs to EC , the agent should be indifferent between both acts. So, if globally, she
prefers f Eh to gEh, this means that, over E , she prefers the consequences yielded
by f to those by g. Now, substitute the common part of both acts h on EC by another
act k. Then, the resulting acts are f Ek and gEk. These new acts yield precisely the
same consequences over EC , so the agent should still be indifferent between them if
the state of nature that obtains belongs to EC. And if the state that obtains belongs to
E , then both acts yield the same consequences as f Eh and gEh, so, globally, if the
agent preferred f Eh to gEh, she should also prefer f Ek to gEk. In other words, the
sure thing principle states that, when comparing two acts, the agent only compares
the acts on the events on which they differ. This axiom looks quite reasonable.

3Most authors name P2 as the “sure thing principle” but it was pointed out by Peter Wakker that,
in Savage’s book, the sure thing principle refers to axioms P2, P3 and P7.
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Fig. 3 Interpretation of
Axiom P4

Note that Axiom P2 implies the existence of a weak order �E for every event
E defined as f �E g if and only if f Eh � gEh for all h. The next axiom exploits
this new preference relation to guarantee, using constant acts, that the agent has a
well-defined preference relation �X over the space of consequences. This axiom
relies on non-null events, i.e., on events E such that there exist at least two acts f
and g such that f �E g.

Axiom 6 (P3: Preferences among consequences) For all consequences x, y ∈ X
and all non-null events E ⊆ S , δx �E δy if and only if x �X y, where δx and δy

are constant acts.

In the SEU framework, the existence of an “objective” probability distribution
over the states of nature is never assumed. Rather, the existence of a “subjective”
distribution results from the beliefs of the agent herself. The agent must therefore
have beliefs that an event A is more or less likely to occur than another event B. This
is exactly what the next axiom induces:

Axiom 7 (P4: Preferences over events) For all consequences x, x ′, y, y′ ∈ X such
that x �X y and x ′ �X y′, and for all A, B ⊆ S ,

δx Aδy � δx Bδy ⇐⇒ δx ′ Aδy′ � δx ′ Bδy′ .

Figure 3 illustrates this axiom: acts δx Aδy and δx Bδy differ only on the gray area.
On this one, δx Aδy yields consequence x and δx Bδy yields y, which is not preferred
to x . This explains why δx Aδy � δx Bδy . In this figure, the existence of the gray
area results from the fact that A contains B and, consequently, it is more “probable”
to happen than B. In general, it can be shown that, whenever the agent believes
that A is more likely to happen than B, then the preferences of the agent satisfy
Axiom P4. Axiom P5 below expresses the fact that all the consequences are not
judged as equivalent by the agent (otherwise, it would be impossible to discriminate
between acts and SEU would be useless to help the agent in her decision making
process):

Axiom 8 (P5: Non-triviality of preferences over the consequences) There exist
two outcomes x, y ∈ X such that δx � δy .

The five above axioms seem rather reasonable and do not seem too restrictive
in the sense that they tend to win unanimous support from people. Yet, as Savage
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showed, their combination necessarily induces that the agent models uncertainties
using a qualitative probability.4 To establish the existence of a subjective probability,
an additional axiom is needed, that is closely related to the continuity axiom of von
Neumann-Morgenstern: assuming that Ei is a highly unlikely event, if f and g are
two acts such that f � g and if x is an arbitrary consequence, then δx Ei f should be
very close to f and, therefore, as f � g, the agent should also prefer δx Ei f to g.
For the same reason, she should also prefer f to δx Ei g:

Axiom 9 (P6: Continuity) For all acts f, g ∈ X S such that f � g and for all
x ∈ X , there exists a finite partition {E1, . . . , En} of S such that δx Ei f � g and
f � δx Ei g for every i ∈ {1, . . . , n}.
Adding Axiom P6 to the five other axioms necessarily induces the existence of a

subjective probability distribution. In addition, all these axioms induce that the agent
is an expected utility maximizer, as shown in the following theorem:

Theorem 2 (Savage, 19545) If the preferences of an agent satisfy axioms P1 to P6,
then preference relation � over the set of acts with finite support is representable by a
utility function U ( f ) = ∑

s∈S p(s)u( f (s)), where p(s) is the subjective probability
of the agent over the state of nature s. In addition, u, the utility function over the set
of consequences, is unique up to scale and location.

Savage has also extended this theorem, notably to the case in which acts are only
constrained to be bounded (Savage 1954). Note that there also exist other axiomatics
of the EU criterion under uncertainty, notably that of Anscombe andAumann (1963).
All these axiomatics have however in common to rely on axioms that are easily
justifiable and that, to some extent, reflect a logical reasoning. In this sense, they
constitute the foundation of a rational behavior. From all these axiomatics, it could
be easily inferred that only probabilities can “rationally” model uncertainties. This
assertion has also been supported for a long time by what decision theorists call
“Dutch books”, which are situations in which using amodel of uncertainties different
from probabilities inevitably leads the agent to loose some money. As an example,
let us consider a bookmaker proposing bets on the three horses of a race. He offers
the odds shown in Table 2. Note that the sum of the induced “probabilities” estimated
by the bookmaker is equal to 0.95, not to 1. This deviation from a valid probability
distribution implies that there is a possibility for gamblers to always win money from
the bookmaker. Indeed, gamblers betting the amounts of money shown in the fourth
column of the table are guaranteed to win 200 e even though they bet only 190 e.
This type of money pump argument has also significantly contributed to establish
probabilities as the only reasonable representation of uncertainties in a decision
making context.

4Note that qualitative probabilities are slightly different from probabilities, see Kraft et al. (1959)
for a proof of this assertion.
5Savage’s theorem is somewhat more general than the theorem mentioned here: acts need not have
a finite support, it is sufficient that the set of consequencesX is finite. In this case, the summation
needs be substituted by an integral w.r.t. the subjective probability measure.
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Table 2 Example of a Dutch book

Horse Odds Induced proba. Bet price Reimbursement

1 1 against 1 1
1+1 = 0.5 100 e 100 e of bet + 100 e = 200 e

2 3 against 1 1
3+1 = 0.25 50 e 50 e of bet + 150 e = 200 e

3 4 against 1 1
4+1 = 0.2 40 e 40 e of bet + 160 e = 200 e

In the two axiomatics above, that of von Neumann-Morgenstern and that of Sav-
age, the von Neumann-Morgenstern utility function, i.e., the utility representing the
agent’s preferences over the consequences, is unique up to scale and location. But
in decision under certainty, i.e., when the consequences of each action are known
with certainty, utility functions (over outcomes) are unique only up to strictly positive
increasing transforms. Consequently, we can deduce that vonNeumann-Morgenstern
utilities must implicitly include some factor related to uncertainties. We will see now
that, in reality, this factor represents the attitude of the agent w.r.t. risk.

2.2 Risk Measures

Before defining formally the agent’s attitude w.r.t. risk, we need to define the concept
of risk, and especially how the quantity of risk involved in a decision can bemeasured.
A decision can be summarized by an act or a lottery 〈x1, p1; . . . , xn, pn〉. In a sense,
the latter correspond to a random variable x whose domain is x1, . . . , xn and the usual
risk measure of a real-valued random variable is its variance. So it is tempting to
exploit variance as the measure of risk involved in a decision. This idea is supported
by the celebrated Arrow-Pratt formula for approximating utility functions, which
contains a component related to variance (Pratt 1964; Arrow 1965). But as shows
the following example in Ingersoll (1987), this measure is not very well suited: let
L1 = 〈0, 0.5 ; 4, 0.5〉 and L2 = 〈1, 7/8 ; 9, 1/8〉 be two lotteries. Intuitively,
observing L1 and L2, lottery L1 seems more risky than L2 since its consequences are
equiprobable whereas, in L2, it is very likely that the decision yields consequence 1.
Unfortunately, the variances of both lotteries are equal.

In decision theory, the most commonly used risk measure is due to Rotschild and
Stiglitz (1970, 1971). It is much more robust than variance. It relies on the concept
of “mean-preserving risk increase” or, as stated usually, “Mean Preserving Spread”
(MPS). Let us consider the three lotteries P, Q, R of Table 3. Observe the only
difference between P and Q: Lottery P yields consequence 4 with probability 0.3
whereas, Q yields consequences 3 and 5 with probability 0.15 (hence, globally, a
probability of 0.3 to get consequence “3 or 5”). As a result, Q can be judged as
more risky than P since, with a probability of 0.3, the consequence yielded by P is
known (i.e., 4) whereas, in Q, with the same probability, we only know that 3 or 5
will be yielded, and there still exists a lottery 〈3, 0.5 ; 5, 0.5〉 to determine which
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Table 3 Mean preserving spread: Y = MPS(X), Z = MPS(Y ) and Z = MPS(X)

X P(X) Y Q(Y ) Z R(Z)

–2 0.09 –2 0.09 –2 0.09

4 0.30 3 0.15 3 0.15

5 0.15 5 0.15

10 0.40 10 0.40 10 0.40

16 0.21 16 0.21 12 0.07

18 0.14

consequence will be yielded. Remark that the expectations of random variables X
and Y of Table 3 are equal. This explains why Y is said to be a mean-preserving
(same expectation as X ) risk increase (w.r.t. X ) or, for short, a MPS of X . Similarly,
Z is a MPS of Y because their expectations are equal and Y yields consequence 16
with probability 0.21 whereas Z induces lottery 〈12, 0.07 ; 18, 0.14〉 instead.

In the rest of this subsection, we will consider that X is equal to R and, more
generally, that it is a monetary space (this will make the interpretations of the results
easier to understand).

Definition 1 (Mean preserving spread) Let X and Y be two real-valued random
variables. Y is said to be a Mean Preserving Spread of X if and only if there exists
a white noise Θ , i.e., a random variable whose expectation is equal to 0, such that
Y = X + Θ .

Let us call FX and FY the cumulative distribution functions (CDF) of random
variables X and Y respectively. In other words, if PX is the probability distribution
of X , then FX (x) = PX (z : z ≤ x) for every x ∈ X . Figure 4 displays the CDFs
of variables X and Z of Table 3. When X, Z < 3, the two CDFs are identical.
Then, when x ∈ [3, 4[, we have that FZ (x) > FX (x). Therefore, we also have that∫

x<4 FZ (x)dx >
∫

x<4 FX (x)dx . When x ∈ [4, 5[, the difference FX (x) − FZ (x) is
positive, so the gap between the two integrals decreases but the two gray regions on
the left of Fig. 4 have the same area so, overall, the integral of FZ is always greater
than or equal to that of FX . This property is general and provides an alternative
characterization of MPS:

Definition 2 (Mean preserving spread) Let X and Y be two real-valued random
variables. Y is said to be a Mean Preserving Spread of X if and only if (i) X and Y
have the same expectations; and (ii) X and Y satisfy the following equation:

∫ T

−∞
FY (x)dx ≥

∫ T

−∞
FX (x)dx for every T ∈ R. (2)

Definition 3 (2nd order stochastic dominance) Let X and Y be two real-valued
random variables. X dominates stochastically Y at the second order if and only if
Eq. (2) is satisfied.
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Rotschild and Stiglitz proved that Definitions 1 and 2 are equivalent. They also
provided a characterization in terms of risk aversion, as we will define it in the next
subsection: Assertion 3 of the theorem below expresses the fact that Y is a MPS of
X if and only if any weakly risk averse agent prefers X to Y .

Theorem 3 (Rotschild and Stiglitz 1970) Let X and Y be two real-valued random
variables with the same expectation. The following three assertions are equivalent:

1. Y = MPS(X) (in the sense of Definition 2);
2. Y has the same distribution as X + Θ , where Θ is a white noise;
3. for any increasing and concave function u : R �→ R, we have that

∫
u(x)

d FX (x) ≥ ∫
u(x)d FY (x).

We can now characterize the behavior of agents w.r.t. lotteries with different
amounts of risk. Of special interest, we can now determine if the agent would prefer
“taking risks” or not.

2.3 Attitude of Agents with Respect to Risk

The simplest way to estimate whether an agent is risk seeking or risk averse consists
of asking her which lottery she would prefer among one lottery X without any risk (it
can yield only one consequence, known for sure) and another lottery Y with the same
expectation but containing some risk (the lottery can yield several consequences).
Note that, as both lotteries have the same expectation, Y = MPS(X). Assume now
that the agent’s vonNeumann-Morgenstern utility is linear (u(x) = x for simplicity).
Then the expected utility of the lottery corresponding to Y is equal to the expectation
of Y which, by definition, is equal to that of X and, also, to the expected utility of the
lottery associated to X . An agent who is expected utility maximizer shall therefore be
indifferent between X and Y . For instance, for the agent,

〈 x1+x2
2 , 1

〉 ∼ 〈
x1,

1
2 ; x2; 1

2

〉
.

These two lotteries have the same expectation (this is the reason why the agent is
indifferent between them), but the first one is not risky while the second one is. So we
can conclude that the preferences of the agent do not take into account the amount of
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risk involved in the lotteries. The agent is thus said to be “risk neutral”. Of course,
if the agent had strictly preferred X to Y , we would say that she has some aversion
w.r.t. risk and, therefore, she would be “risk averse”. Finally, if the agent had strictly
preferred Y to X , she would be said to be “risk seeking”. Arrow and Pratt propose
the following definition (Pratt 1964; Arrow 1965):

Definition 4 (Weak risk attitudes) An agent is weakly risk averse if, for every real-
valued randomvariable X , she prefers E(X) to randomvariable X itself: 〈E(X), 1〉 �
X . An agent is weakly risk neutral (resp. seeking) if 〈E(X), 1〉 ∼ X (resp. X �
〈E(X), 1〉).

Wehave seen above that a linear vonNeumann-Morgenstern utility implies that the
agent is risk neutral. Arrow and Pratt have shown that, more generally, the agent’s
risk attitude is characterized by the concavity or convexity of the von Neumann-
Morgenstern utility function:

Theorem 4 An agent is (weakly) risk averse if and only if her von Neumann-
Morgenstern utility function u is concave. She is (weakly) risk neutral if and only if
u is linear. Finally, she is (weakly) risk seeking if and only if u is convex.

Up to now, the risk attitude of the agent was characterized by comparing one risky
lottery with a lottery involving no risk. It could be objected that such a comparison
is extreme and could introduce some biases. So it might be more appropriate to
compare only lotteries involving some risk, some being more risky than others. The
concept of mean preserving spread allows to specify such lotteries: it is sufficient to
compare lotteries X and Y such that one of them is an MPS of the other. In this case,
an agent is risk averse if and only if she prefers lottery X to any MPS(X):

Definition 5 (Strong risk attitudes) An agent is strongly risk averse if, for every
real-valued random variable X , she prefers lottery X to any lottery Y such that Y =
MPS(X). An agent is strongly risk neutral (resp. seeking) if X ∼ Y (resp. Y � X ).

Of course, by definition, strong risk aversion implies weak risk aversion. But in
the EU model, the converse is also true:

Theorem 5 (Rotschild andStiglitz 1970) In the EU model, the following three asser-
tions are equivalent:

1. the agent is weakly risk averse;
2. the agent is strongly risk averse;
3. the agent’s von Neumann-Morgenstern utility is concave.

As the concavity of the vonNeumann-Morgenstern utility function u characterizes
the agent’s aversion w.r.t. risk, it seems natural to define the intensity of this aversion
in terms of properties of u. Arrow and Pratt have proposed to characterize it in terms
of a coefficient of absolute risk aversion: assume that u is strictly increasing and
twice continuously differentiable, with a strictly positive derivative. The coefficient
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Fig. 5 Coefficients of absolute risk aversion

of absolute risk aversion is defined as function RA : R �→ R such that RA(x) =
−u′′(x)/u′(x).

This definition canbe easily interpreted by considering a risk averse agent.Assume
that the set of consequences X is a monetary space. A common agent prefers in
general to win more money than less, so her utility u(x) strictly increases with x
and, consequently, u′(x) > 0. In addition, being risk averse, u(x) is concave, hence
u′′(x) < 0. From these properties, it can be deduced that RA(x) > 0. Consider now
utility function u1(x) = ln x , which implies coefficient R1

A(x) = 1/x . In Fig. 5, it
can be observed that the concavity rate of u1 decreases with x . This translates in
terms of coefficient of absolute risk aversion into a decreasing coefficient R1

A. The
level of aversion w.r.t. risk therefore varies with x and, in practice, it is generally
strictly decreasing. As a matter of fact, a poor agent is not often prone to take the
risk of loosing some money in order to gain more money whereas a wealthy agent is
inclined to take such a risk because the same loss of money seems to her relatively
much less important than to the poor agent.

Note that RA can also be exploited to compare the aversions among several agents.
Indeed, consider now two utility functions u1(x) = ln x and u2(x) = √

x + 2. These
functions induce two coefficients R1

A(x) = 1/x and R2
A(x) = 3/(2x + 4). Figure 5

displays functions u1, u2 as well as their respective coefficients of aversion. From
this figure, it can be remarked that the second agent (u2) is more risk averse for small
amounts of money whereas this trend is inverted for larger amounts. Note that such a
comparison is meaningful because von Neumann-Morgenstern utilities being unique
up to scale and location, RA remains invariant w.r.t. affine transforms of u.

Clearly, the EU model presents very nice properties. As we have seen, it is justi-
fiable from the viewpoint of the agent’s rationality. In addition, its linearity allows
for very efficient algorithms, notably in the context of sequential decision making
and in that of preference elicitation (Keeney and Raiffa 1993; Chajewska et al. 2000;
Boutilier 2002; Wang and Boutilier 2003). However, during the last decades, several
criticisms were raised against this model, which led to alternative decision models.
The next section shows some of the most important criticisms.
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2.4 Some Descriptive Limits of the EU Model

Among the first detractors of the EU model, Allais proposed a celebrated example
known as the “Allais paradox” (Allais 1953), about which experimental studies
have shown that the majority of the surveyed agents have preferences that violate
the independence axiom (Axiom 3) and are, therefore, not representable in the EU
model. Actually, consider the following two lotteries:

• L1 = 〈win 1M e, 1〉;
• L2 = 〈win 1M e, 0.89 ; 5M e, 0.1 ; 0 e, 0.01〉.
Most of the surveyed agents prefer L1 to L2 because the uncertainty contained in L2

is not counterbalanced by the potential gain of 5M e. When faced to the following
alternatives:

• L ′
1 = 〈win 1M e, 0.11 ; 0 e, 0.89〉,

• L ′
2 = 〈win 5M e, 0.10 ; 0 e, 0.90〉,

the same agents usually prefer L ′
2 to L ′

1 because the difference in probability between
0.11 and 0.10 is judged as relatively low and the agents therefore base essentially
their preferences on the potential gains of the lotteries. But, if we set: P = 〈1M e, 1〉,
Q = 〈5M e, 10/11 ; 0 e, 1/11〉, R = 〈1M e, 1〉 and S = 〈0 e, 1〉, then:

L1 = 0.11P + 0.89R L2 = 0.11Q + 0.89R
L ′
1 = 0.11P + 0, 89S L ′

2 = 0.11Q + 0, 89S.

Therefore, according to the independence axiom, if L1 � L2, the agent shall also
have the following preference: L ′

1 � L ′
2. Obviously, this is not observed experi-

mentally. This example is quite unsettling because this preference reversal can be
explained easily and does not seem to result from some irrational behavior. As we
will see in the next section, this example has led researchers to develop new decision
models based on different rationality criteria. These models have a higher descriptive
power than the EU model and are notably capable of explaining why people tend to
prefer L1 to L2 and L ′

2 to L ′
1. Other experimental studies, in particular (Kahneman

and Tversky 1972, 1979), highlight other biases w.r.t. the predictions made by the
EU model. This is the case, for instance, of the certainty effects.

The second criticism addressed against the EU model concerns the interpretation
of the concavity of the von Neumann-Morgenstern utility function u. Indeed, we
have seen that in this model a concave utility represents an aversion w.r.t. risk. But
u represents the agent’s preferences over the space of the consequences and, in
general, agents have decreasing marginal preferences over money, i.e., the amount
of increase of the agent’s satisfaction (as measured by the utility function) tends to
decrease when the amounts of money tend to rise. Thus, the satisfaction to increase
the agent’s wealth from 10 to 20 e is higher than that to increase it from 10010 to
10020 e. In terms of preferences, this decrease necessarily induces the concavity
of u. This double interpretation of u’s concavity implies that the EU model is unable
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to describe the behavior of agents that are at the same time risk averse and that have
decreasing marginal preferences.

The third main criticism against the EU model lies in its lack of flexibility to
model different types of risk aversions. Indeed, in EU, it is impossible to model an
agent who is weakly but not strongly risk averse. But this kind of agent can exist and,
more generally, there exist several notions of risk aversion that are not necessarily
all equivalent (Chateauneuf et al. 2004). We will see in the next section some “new”
decision models that can cope with this lack of flexibility.

The set of criticisms presented here cannot be exhaustive due to lack of space.
However, we shall mention two important additional criticisms. First, the formula
of the expected utility model combines through multiplications the probabilities of
occurrence of the consequences with the utilities. As a consequence, EU necessar-
ily requires the commensurability of preferences and uncertainties: one can “trade”
uncertainty for preference satisfaction. For instance, if 〈x1, 0.5 ; x2, 0.5〉 ∼ 〈x3, 1〉,
the agent is willing to trade/discard some uncertainty (0.5) for a change in conse-
quences (winning x3 instead of x1 or x2, hence a modification in her satisfaction). In
addition, even though commensurability may be a reasonable assumption in some
practical applications, is it always sensible to model uncertainties by probabilities?
According to Savage, this is the only rational representation. However, when con-
sidering the example of the Ellsberg’s urn (Ellsberg 1961), this justification seems
far from being convincing: consider an urn containing red, yellow and black balls.
The only information available about these balls is that one third are red and the
two remaining third are either yellow or black (but we do not know their respective
proportions). With so few information available, it seems difficult for a “rational”
agent to estimate the underlying probability distribution over the colors of the balls,
and experimental studies highlight this fact. When agents are invited to determine
the alternative they prefer among the following ones, whose outcome depends on the
color of a ball drawn randomly from the urn:

• Alternative A: win 1M e if the ball is red, else 0 e,
• Alternative B: win 1M e if the ball is black, else 0 e,

most of the agents prefer A to B because, potentially, the urn contains no black ball
whereas the urn is guaranteed to contains 1/3 of red balls. On the other hand, when
facing the following alternatives:

• Alternative C : win 1M e if the ball is red or yellow, else 0 e,
• Alternative D: win 1M e if the ball is black or yellow, else 0 e,

the agents prefer in general alternative D to C . But this kind of behavior is incom-
patible with the EU model because it violates the Sure Thing Principle. Indeed, if E
represents the event “the drawn ball is red or black”, if a1 and a2 represent the acts
yielding “1Me if red ball, else 0e” and “1Me if black ball, else 0e”, and if δh and
δk represent the “constant” acts yielding with certainty 0 e and 1M e respectively,
then alternatives A and B can be represented by acts a1Eδh and a2Eδh respectively,
whereas alternatives C and D correspond to acts a1Eδk and a2Eδk respectively.
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According to the Sure Thing Principle, one of the fundamental principles underlying
EU, A � B should imply C � D, which is not the case observed experimentally.

All these descriptive limits have led researchers to propose new models, also
relying on rationality criteria, but with a higher expressive power. We will now
briefly describe some of them.

3 Non-linear Models for Decision Under Risk

The descriptive limits mentioned above first led decision making researchers to pro-
pose models quite similar to EU but, still, weakening one or several axioms of von
Neumann-Morgenstern (or of Savage). Let us cite for instance the model proposed in
Machina (1982) which discards the independence axiom but is still locally coherent
with EU. There also exist models based on security levels like, e.g., that of Jaffray
(1988) in which the independence axiom is defined only on pairs of probability
distributions that share the same worst consequence.

However, these models have been replaced by what decision theorists call “new”
models, which are generalizations of EU. Among the first new models proposed,
“Prospect Theory” consists of deforming probabilities using an increasing transform
(Kahneman and Tversky 1979) in order not to take into account the true probabilities
but rather the way agents perceive these probabilities. Although seminal, this model
is not used anymore, essentially because it could sometimes propose to the agent to
make dominated decisions, i.e., to choose an alternative D1 such that there existed
another alternative D2 such that, whatever the state of nature that could occur, the
consequence yielded by D2 was judged at least as good as that yielded by D1 (and
it was judged strictly better for at least one state of nature). This feature being very
difficult to justify from a rationality point of view, the model is not used anymore.
However, it paved the way for the newmodels, notably for “Rank Dependent Utility”
(RDU), that we will now describe Quiggin (1982, 1993).

Let x1, x2, x3 be three consequences.Without loss of generality, let us assume that
u(x2) < u(x1) < u(x3). According to the EUmodel, lottery L = 〈x1, p1; x2, p2; x3,
p3〉 is evaluated as EU (L) = p1u(x1) + p2u(x2) + p3u(x3). It is easy to show that
this expression is equivalent to:

EU (L) = (p1 + p2 + p3)u(x2) + (p1 + p3)[u(x1) − u(x2)] + p3[u(x3) − u(x1)].
(3)

This new expression can be interpreted as follows: at worst, the agent is guaranteed
with probability p1 + p2 + p3 = 1 to win consequence x2. Then, the probability that
she gets a consequence strictly better than x2, i.e., at least as good as consequence x1
is p1 + p3. Finally, the probability to win something better than x1, i.e., x3, is p3. The
key idea of RDU is to combine this expression with the probability transformation
principle of the Prospect Theory. Thus, in its decision making process, RDU does
not take into account the true probabilities but only their perceptions by the agent.
The score assigned to L by RDU is therefore:
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RDU (L) = ϕ(p1 + p2 + p3)u(x2) + ϕ(p1 + p3)[u(x1) − u(x2)] + ϕ(p3)[u(x3) − u(x1)],
(4)

where ϕ is an increasing function from [0, 1] to [0, 1]. Experimental studies by
Kahneman and Tversky have shown that this function is, in general, similar to that
of Fig. 6, whose equation is ϕ(x) = e−√− ln(x).

Definition 6 (Rank Dependent Utility (RDU)) An agent behaves according to the
RDU model if her preference relation over the set of lotteriesL is representable by
two functions u and ϕ, where u is the von Neumann-Morgenstern utility over the set
of consequences and ϕ : [0, 1] �→ [0, 1] is an increasing function such that ϕ(0) = 0
and ϕ(1) = 1. The agent assigns to every lottery L = 〈x1, p1 ; . . . , xn, pn〉 such
that u(x1) ≤ u(x2) ≤ · · · ≤ u(xn) utility:

RDU (L) = u(x1) +
n∑

i=2

[
ϕ

(
n∑

k=i

p(xk)

)
[u(xi ) − u(xi−1)]

]
. (5)

As an example, if u(x) = x/2 and ϕ(x) = x2, then, to compute the RDU value
of lottery L = 〈3, 0.2 ; 10, 0.4 ; 5, 0.1 ; 9, 0.3〉, consequences must first be
sorted in increasing utility order: L = 〈3, 0.2 ; 5, 0.1 ; 9, 0.3 ; 10, 0.4〉. Then,
the application of Eq. (5) yields:

RDU (L) = ϕ(1) × 3

2
+ ϕ(0.8) ×

[
5

2
− 3

2

]
+ ϕ(0.7) ×

[
9

2
− 5

2

]
+ ϕ(0.4) ×

[
10

2
− 9

2

]
.

There exist alternative definitions of RDU. Let us show one of them that will
prove useful for highlighting the connection between RDU and another more general
model: Choquet expected utility.
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Fig. 7 Illustration of
comonotonicity
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Definition 7 (Rank dependent utility (RDU)) Let u and ϕ be the functions defined in
Definition 6. Let X be a random variable whose probability distribution is P . Then:

RDU (X) =
∫ 0

−∞
[ϕ(P(u(X) > t)) − 1]dt +

∫ ∞

0
ϕ(P(u(X) > t))dt.

Note that the Allais paradox can be explained by RDU. This is notably the case
when utility u is linear and the probability transform ϕ is like the one suggested
by Kahneman and Tversky: ϕ(x) = e−√− ln(x). The expressive power of RDU is
therefore higher than that of EU. It generalizes the latter since, when ϕ(x) = x ,
RDU boils down to EU. Note also that, when ϕ(p) ≤ p for every p, the agent
always underestimate the probabilities of the utility increases u(xi ) − u(xi−1) (see
Eqs. (3) and (4)). This can be interpreted as a kind of pessimism under risk (since
the agent takes more into account the worst consequences than the best ones).

The axiomatic foundations of RDU are quite complicated (Quiggin 1982;Wakker
1994; Chateauneuf 1999), so in this chapter, we will not detail them. However, to let
the reader understand the key feature of RDU, we will now focus on RDU’s main
properties: the comonotonic independence axiom in von Neumann-Morgenstern’s
framework and the comonotonic sure thing principle in Savage’s framework (Chew
and Wakker 1996). Here, we chose to present only the latter because it is some-
what simpler to understand than the former. For this purpose, we need to define
“comonotonic acts”: two acts f and g are said to be comonotonic if there exists
no pair of states of nature s, s ′ ∈ S such that f (s) �X f (s ′) and g(s) ≺X g(s ′).
Intuitively, two acts are comonotonic if their variations (in terms of preferences over
the consequences) do not evolve in the opposite directions when moving from one
state of nature to another. For instance, in Fig. 7, in which preferences over the con-
sequences increase along the vertical axis, f and g are comonotonic, as well as g
and k, and h and k. But g and h are not comonotonic because g(s3) �X g(s2) and
h(s2) �X h(s3). Note that comonotonicity is not a transitive property since g and
k are comonotonic, as well as k and h, but g and h are not comonotonic. The key
idea of RDU consists of imposing the “Sure Thing Principle” only over comonotonic
acts:

Axiom 10 (comonotonic sure thing principle) Let {A1, . . . , An} be a partition of S
and let f : Ai �→ xi and g : Ai �→ yi be two acts such that x1 ≤ x2 ≤ · · · ≤ xn and
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Fig. 8 The comonotonic sure thing principle

Table 4 The Allais paradox and the comonotonic acts

act A1 (P(A1) = 0.01) A2 (P(A2) = 0.89) A3 (P(A3) = 0.10)

L1 1M e 1M e 1M e

L2 0 e 1M e 5M e

L ′
1 1M e 0 e 1M e

L ′
2 0 e 0 e 5M e

y1 ≤ y2 ≤ · · · ≤ yn. Assume that there exists i0 ∈ {1, . . . , n} such that xi0 = yi0 . Let
f ′ : Ai �→ x ′

i and g′ : Ai �→ y′
i be two other acts such that:

{
x ′

i0
= y′

i0
; and x ′

i = xi and y′
i = yi for every i �= i0,

x ′
1 ≤ · · · ≤ x ′

n and y′
1 ≤ · · · ≤ y′

n.

Then f � g =⇒ f ′ � g′.

This principle is illustrated in Fig. 8: The common part of acts f and g can vary
only between points A and B. Thus, acts f ′ and g′ satisfy the constraints of the
above definition, which is not the case for acts f ′′ and g′′. Table 4 shows the acts
corresponding to the Allais paradox mentioned in the preceding section. In this
table, the Ai ’s are sorted in such a way that acts L1 and L2 correspond to f and
g of Axiom 10. It can be seen that quadruple (L1, L2, L ′

1, L ′
2) does not satisfy the

premises of Axiom 10 (see the difference between L1 and L ′
1). As a consequence,

the Allais paradox does not violate the comonotonic sure thing principle. This is the
reason why RDU can explain why agents prefer L1 to L2 and L ′

2 to L ′
1.

The RDU model is in fact a particular case of a more general model: Choquet
expected utility (CEU), that we will briefly describe after introducing the concept of
capacity:

Definition 8 (Capacity) A capacity μ : 2S �→ [0, 1], where S is the set of states
of nature, is a function satisfying the following two properties:

1. μ(∅) = 0 and μ(S ) = 1;
2. For every pair A, B ⊆ S , we have that A ⊆ B =⇒ μ(A) ≤ μ(B).
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Here, a capacity must be understood as a generalization of the concept of prob-
ability distribution.6 Indeed, any probability distribution satisfies properties (1) and
(2) above. This is also the case for all the probability transforms of the RDU model.
Therefore, capacities allow to define a more general decision model:

Definition 9 (Choquet expected utility (CEU)) An agent behaves according to the
CEUmodel if her preference relation over the set of actsX S is representable using
two functions u and μ, where u is the utility function over the consequences and
μ : 2S �→ [0, 1] is a capacity. The agent assigns to each act f utility:

C EU ( f ) =
∫

Ch
u( f )dμ =

∫ 0

−∞
[μ(u( f ) > t) − 1]dt +

∫ ∞

0
μ(u( f ) > t)dt.

(6)

It has been proved in Wakker (1990) that CEU reduces to RDU when Axiom 11
below is added to the axiomatics of CEU (Schmeidler 1986; Gilboa 1987; Wakker
1990). It is generally believed that this axiom is attractive for a “rational” decision
model since it expresses the fact that if, for every consequence x , the probability of
winning at least x is higher with act f than with act g, the agent should prefer f to
g.

Definition 10 (First order stochastic dominance) For every act h, let Fh(x) =
P({s ∈ S : h(s) ≤ x}) denote the cumulative distribution of h. Let f and g be two
acts and let Ff and Fg be their respective cumulative distributions. Then f stochasti-
cally dominates g at the first order if, for every x ∈ R, we have that Ff (x) ≤ Fg(x).

Axiom 11 (First order stochastic dominance) Let f and g be two acts. If f stochas-
tically dominates g at he first order, then f � g.

We will see again the CEU model and its usefulness for decision making under
uncertainty in the next section. To complete our overview of RDU, we must mention
some results about risk aversion.We have seen earlier that, in the EU model, strong
risk aversion is equivalent to weak risk aversion, which also corresponds to the
concavity of the von Neumann-Morgenstern utility u. Is this also the case in RDU?
A first answer to this question can be found in Chew et al. (1987), where it is proved
that a RDU agent is strongly risk averse if and only if her utility u is concave and
her probability transform ϕ is convex. Similarly, the agent is strongly risk seeking
if and only if u is convex and ϕ is concave. To our knowledge, there does not exist
yet any complete characterization of weak risk aversion in the RDU model. Only
sufficient conditions have been proposed and those do not require the concavity of
u (Chateauneuf and Cohen 1994). In terms of risk aversion, the expressive power
of RDU is therefore higher than that of EU. Finally, note that other concepts of risk
aversion designed specifically for RDUhave been proposed. Those are different from
both strong and weak risk aversions. For instance, Quiggin suggested to substitute

6For an interpretation in terms of weights of agents’ coalitions or of criteria, see
chapter “Multicriteria Decision Making” of this volume.
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strong risk aversion by monotonic risk aversion (Quiggin 1992): let X and Y be
two random variables. Y is said to be a monotonic mean preserving spread (MMPS)
of X if Y = X + Z , where Z is a white noise, and X and Z are comonotonic. An
agent is monotonic risk averse if she does not like monotonic risk increase, i.e., if
Y = MMPS(X), then X � Y .

Up to now, we have only studied decision models relying on the existence of
probability distributions to model uncertainties. But, what can we do if there does
not exist sufficient information to construct one, like in the Ellsberg’s urn example?
The goal of the next section is to provide some keys to answer to this question.

4 Decision Models Outside the Probabilistic Framework

Let us recall the Ellsberg’s urn problem: this is an urn containing 99 balls, which can
be either red, yellow or black. The only information available to the agent is that one
third of the balls is red and the remaining two third are either yellow or black (but
their respective proportions are unknown). Agents bet on the color of a ball to be
drawn from the urn. Thus, an agent is asked which alternative she prefers between
alternatives A and B below, and which one she prefers between C and D:

• Alternative A: win 1M e if the drawn ball is red, else win 0 e,
• Alternative B: win 1M e if the drawn ball is black, else win 0 e,
• Alternative C : win 1M e if the drawn ball is red or yellow, else win 0 e,
• Alternative D: win 1M e if the drawn ball is black or yellow, else win 0 e.

Most of the human agents prefer A to B and D to C . As we have seen before,
EU cannot account for such preferences (violation of the sure thing principle).
RDU can neither model these preferences. Indeed, if it could then, assuming
that the agent prefers winning more money than less, and denoting by Pr , Py, Pb

the probabilities that the drawn ball is red, yellow and black respectively, we
have that A � B ⇐⇒ RDU(A) > RDU(B) ⇐⇒ ϕ(Pr ) > ϕ(Pb) and D � C ⇐⇒
ϕ(Pb + Py) > ϕ(Pr + Py). But this is impossible to have both inequalities satisfied
because ϕ is an increasing function. Here, the problem is that there does not exist
a unique probability distribution compatible with the information available to the
agent. Therefore, in this case, we should not try to use a decision model that relies
on a unique probability distribution but rather on a model that relies on the set of all
the distributions compatible with the available information. Here, it is easy to see
that this set is convex: if P and Q are two compatible probability distributions, for
every α ∈ [0, 1], we have that αP + (1 − α)Q is also compatible with the available
information. As a consequence, to represent the uncertainties in the Ellsberg’s urn,
it is sufficient to know the boundary of the convex hull of all the compatible distri-
butions. But since the probability of any event and that of its complementary event
sum always to 1, the lower bounds on the probabilities are sufficient to characterize
all the convex hull. Those correspond to a function μ : 2S �→ [0, 1] such that, for
every A ⊆ S , μ(A) = min{Pcompatibles} P(A). For the Ellsberg’s urn, this function
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Table 5 The belief function of the Ellsberg’s urn and its Möbius inverse

Evt ∅ {R} {Y } {B} {R, Y } {R, B} {Y, B} S

f 0 1/3 0 0 1/3 1/3 2/3 1

φ 0 1/3 0 0 0 0 2/3 0

μ, also called a “belief function”, is described in Table 5. Indeed, the min of P(Y )

is equal to 0 because it is possible that the urn contains no yellow ball. On the other
hand, min P(Y, B) = 2/3 because, for all the probability distributions P compatible
with the Ellsberg’s urn, we have P(Y, B) = 2/3. More formally, belief functions
(Dempster 1967; Shafer 1976) are defined as follows (see chapter “Representations
of Uncertainty in AI: Beyond Probability and Possibility” of this volume):

Definition 11 (Belief function) A belief function μ is a capacity (in the sense
of Choquet) which is ∞-monotone, i.e., it is such that for all n ≥ 2, and for all
A1, . . . , An ∈ 2S :

μ

(
n⋃

i=1

Ai

)
≥

∑

∅⊂I⊆{1,...,n}
(−1)|I |+1μ

(
⋂

i∈I

Ai

)
.

To any capacity (and a fortiori to any belief function) is associated its Möbius
inverse φ defined by: φ(A) = ∑

B⊆A(−1)|A\B|μ(B) for every A ⊆ S . Intuitively,
φ represents the information/the belief about the realization of event A that is not
captured in its subevents. For instance, in Table 5, φ({R, Y }) = 0 because the agent
has no more information about the chances of realization of R or Y than she has of R
alone because there is no information available on the proportion of yellowballs in the
urn.Above,wehave characterizedφ in termsofμbut it is also possible to characterize
μ in terms of φ. Indeed, it is not difficult to show that μ(A) = ∑

B⊆A φ(B) for all
events A. This formula simply states that the agent’s belief about event A corresponds
to the sum of all her “elementary” beliefs on the realizations of A’s subevents. Thus,
Belief μ({R, Y }) about the realization of event {R, Y } corresponds to the belief
generated by the sum of the information available about R alone, Y alone and the
compound (R or Y ) that could not be captured in singletons {R} and {Y }. From
a mathematical point of view, this translates as μ({R, Y }) = φ({R}) + φ({Y }) +
φ({R, Y }).

In (Jaffray 1989), Jaffray observed that the set of all the belief functions is a
mixture set, i.e., it is closed under mixture operations or, in other words, any convex
combination of belief functions is another belief function. In addition, he remarked
that this is the key property used by von Neumann and Morgenstern to develop
their axiomatic foundation of EU. As a consequence, it is possible to substitute in
each axiom probabilities by belief functions. Expected utility thus boils down to
a Choquet integral with respect to capacity μ. More precisely, in von Neumann-
Morgenstern’s framework, the probability distribution over the space of the states
of nature generates, for each decision, a probability distribution over the outcomes
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of the decision, which is translated as a lottery. Here, Jaffray showed that the belief
function over the space of the states of nature generates, for each decision, a belief
function over the space of consequences. Let us call G the space of these functions.

Theorem 6 (Jaffray 1989) The two assertions below are equivalent:

1. Preference relation � over G satisfies Axioms 1, 2, 3, where lotteries over L are
substituted by G , the set of belief functions over the space of consequences.

2. � is representable by a utility function

U : G �→ R

such that U (μ) = ∫
udμ.

Function u : X �→ R is called the von Neumann-Morgenstern utility function of the
agent and is unique up to scale and location.

Therefore, the Choquet integral provides an attractive decision framework for sit-
uations in which probabilities are inadequate to model uncertainties. Thanks to the
following definitions, it can be appropriately redefined in terms of Möbius inverses
rather than belief functions: a belief function eB is said to be elementary and con-
centrated on B if eB(A) = 1 when A ⊇ B and eB(A) = 0 otherwise. In other words,
its Möbius inverse φB is such that φB(B) = 1 and φB(A) = 0 for every A �= B. Let
μ be a belief function whose Möbius inverse is φ. The focal set Cμ of μ is defined
as Cμ = {B : φ(B) > 0}. From these two definitions, it can be inferred that, for
every belief function μ, and for every consequence set A, μ(A) = ∑

B⊆A φ(B) =∑
B∈Cμ

φ(B)eB(A). But Theorem 6 trivially implies that, for every convex combina-

tion {λi , i = 1, . . . , n : λi ≥ 0 and
∑n

i=1 λi = 1},U (∑n
i=1 λiμi

) = ∑n
i=1 λiU (μi ).

As a consequence, if μ = ∑
B∈Cμ

φ(B)eB , U (μ) = ∑
B∈Cμ

φ(B)U (eB). Let us
denote by u(B) = U (eB) the utility of set of consequences B. Then, we get a linear
utility model called Belief expected utility (BEU):

Theorem 7 (Belief expected utility (BEU) – Jaffray 1989) The following two asser-
tions are equivalent:

1. Preference relation � over G satisfies Axioms 1, 2, 3, where lotteries over L are
substituted by belief functions over G .

2. � is representable by a utility function U : G �→ R such that U (μ) = ∑
B∈Cμ

φ(B)u(B), where u(B) is the utility of set of consequences B and φ is the Möbius
inverse of μ.

Table 6 illustrates the computation ofU on the four alternatives A, B, C, D of the
Ellsberg’s urn.Assume that u({0}) = 0, u({1M}) = 1 and u({0,1M}) = α. Then A �
B and D � C is equivalent to α < 1/2. Therefore BEU is capable of representing
“common” agent’s preferences on the Ellsberg’s urn.

However, the BEU formula clearly highlights its limits w.r.t. EU: in the EUmodel,
the agent’s utility function u needs be elicited only over the space of consequences
X whereas with BEU or CEU, it must be elicited on 2X . Unfortunately, elicitation,
i.e., the learning of the agent’s preferences, is a complex and time consuming process.
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Table 6 BEU utilities for the Ellsberg’s urn problem

Evts 0 1M e {0,1M e}
balls {B, Y } {R} S

μ 2/3 1/3 1

φ 2/3 1/3 0

Evts 0 1M e {0,1M e}
balls {R, Y } {B} S

μ 1/3 0 1

φ 1/3 0 2/3

B EU (A) = 2/3u({0}) + 1/3u({1M}) = 1/3 B EU (B) = 1/3u({0}) + 2/3u({0,1M}) = 2/3α

Evts 0 1M e {0,1M e}
balls {B} {R, Y } S

μ 0 1/3 1

φ 0 1/3 2/3

Evts 0 1M e {0,1M e}
balls {R} {B, Y } S

μ 1/3 2/3 1

φ 1/3 2/3 0

B EU (C) = 1/3u({1M}) + 2/3u({0,1M}) B EU (D) = 1/3u({0}) + 2/3u({1M}) = 2/3

Therefore, to fix this problem, Jaffray proposed to add a new axiom called a “domi-
nance” axiom to BEU. This axiom expresses the fact that, without any knowledge,
within a set of consequences {x1, . . . , xk}, the agent has no reason to believe that a
consequence is more likely to be yielded than any other. So the agent can summarize
the information about the set of consequences by defining her preferences taking into
account only the worst and the best consequences of the set. Consequently, utility
u(B) of a set of consequences B boils down to utility u(m B, MB), where m B and
MB denote the worst and the best consequences of B respectively.

Axiom 12 (Dominance) For every set of consequences B ⊆ X , let m B and MB

denote the worst and the best consequences of B respectively. Let eB be the elementary
belief function concentrated on B. Then, for every B, B ′ ⊆ X , if m B �X m B ′ and
MB �X MB ′ then eB � eB ′ .

Theorem 8 (Jaffray’s model 1989) The following two assertions are equivalent:

1. Preference relation � over G satisfies Axioms 1, 2, 3 and 12, where lotteries over
L are substituted by belief functions over G .

2. � is representable by a utility function U : G �→ R such that

U (μ) =
∑

B∈Cμ

φ(B)u(m B, MB).

Functions U and u are unique up to scale and location. In addition, u is a nonde-
creasing function of m and M and the von Neumann-Morgenstern utility u(x) of
consequence x is equal to u(x, x).

As a consequence of this theorem, utility u(m, M) takes into account two factors:
(i) the attitude of the agent w.r.t. risk (concavity of u(x, x)), but also (ii) the attitude
w.r.t. ambiguity when M �= m. The model can be further refined using the Hurwicz
criterion (Hurwicz 1951):
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Definition 12 (Hurwicz criterion) for every (m, M), let us call the “local opti-
mism/pessimism criterion” the value α(m, M) for which the agent is indifferent
between the following two alternatives:

1. winning m with probability α(m, M) and M with probability 1 − α(m, M),
2. winning at least m and at most M , without any further information.

Thanks to this criterion, utility u(m, M) can be redefined as α(m, M)u(m) +
[1 − α(m, M)]u(M), with u(x) the von Neumann-Morgenstern utility function of
the agent. In this context, coefficient α expresses the attitude of the agent w.r.t.
ambiguity and the concavity of u expresses the agent’s attitude w.r.t. risk. Now, the
task of eliciting the agent’s preferences (the learning of function u) has a complexity
similar to that in the EU model.

4.1 Qualitative Decision Models Under Uncertainty

In parallel to the research works made in the field of mathematical economics, deci-
sion under uncertainty has received attention in artificial intelligence. In particular,
researchers investigated qualitativemodels, which describe preferences only through
ordinal information (Tan and Pearl 1994; Boutilier 1994; Dubois and Prade 1995;
Brafman and Tennenholtz 1996; Lehmann 1996; Dubois et al. 1997). Thus, within
the framework of possibilistic lotteries (Dubois and Prade 1995), Dubois and Prade
proposed a counterpart to the vonNeumann-Morgenstern axiomatic foundation: they
axiomatized “qualitative utilities”, which generalize Wald criterion (Wald 1950) for
comparing possibility distributions. A possibility distribution is characterized by a
function π which assigns to each consequence x its possibility π(x) ∈ L , L being an
ordered set. The pessimistic qualitative utility model is based on an L-valued utility
function u defined over the set of consequences X , with L an ordered set. This
function assigns to every possibilistic lottery π the following value:

U−(π) = min
x∈X

max{n(π(x)), u(x)}

where n is a decreasing function which inverses the scale of L . Typically, when
L = [0, 1], n is chosen as n(x) = 1 − x . Value U− indicates to which extent, by
choosing π , the agent is sure to get a consequence having a “good” utility value.
In the same possibilistic framework, there exists a more optimistic version which
evaluates to which extent it is possible that the agent gets a consequence with a
“good” utility value. This version consists of assigning to every possibilistic lottery
the following quantity:

U+(π) = max
x∈X

min{π(x), u(x)}
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The axiomatic foundation of Savage has also been revisited in order to propose
qualitative counterparts to the EUmodel. Thus, Dubois, Prade and Sabbadin (Dubois
et al. 1998) proposed axiomatic justifications for the optimistic and pessimistic qual-
itative utility criteria when comparing acts in the sense of Savage. This led to the
following models:

U−( f ) = min
s∈S

max{n(π(s)), u( f (s))}
U+( f ) = max

s∈S
min{π(s), u( f (s))}

For every act f inX S .U+( f ) evaluates to which extent there exists a consequence
of f which is at the same time very good and very plausible. On the other hand,
U−( f ) evaluates to which extent all the consequences in act f are plausible and
good. These formula are therefore the numerical translations of logic principles.
For more details, see Dubois et al. (1999). Dubois, Prade and Sabbadin have also
proposed an axiomatic foundation of the Sugeno integral for comparing acts (Dubois
et al. 1998), which led to the following model:

Sv( f ) = max
x∈X

min{v(Fx ), u(x)}

where Fx = {s ∈ S : f (s) ≥ x} and v is a capacity defined on 2S .
These models depart from EU notably by their weakening of the “sure thing

principle”, which becomes the “weak sure thing principle”:

Axiom 13 (Weak Sure Thing Principle) For every f, g, h, h′ ∈ X S and for every
A ∈ 2S , we have that f Ah � g Ah ⇒ f Ah′ � g Ah′.

This axiom is important because, although it is weaker than the sure thing princi-
ple, it is sufficient to enable the computation of optimal policies in dynamic decision
problems by backward induction. Formore details on this point, see Sabbadin (1998).

Finally, pure ordinal aggregation rules (derived frommajority rules used in voting)
have been proposed under the name of “lifting rules” (Dubois et al. 2002, 2003).
To compare acts, they only rely on relative events likelihoods and on a preference
relation over the consequences. They are defined as:

f � g if and only if {s ∈ S : f (s) �X g(s)} � {s ∈ S : g(s) �X f (s)}

where �X is the projection on the consequence scale of preference relation �
restricted to the constant acts, and � is a relative likelihood relation over the events.
Their axiomatic justification is based on the introduction, in Savage’s framework, of
an axiom compelling the purely ordinal nature of the rule (Dubois et al. 2002, 2003):

Axiom 14 (Ordinal invariance) [ for every s ∈ S , ( f (s) �X g(s) if and only if
f ′(s) �X g′(s)) and (g(s) �X f (s) if and only if g′(s) �X f ′(s))]
=⇒ ( f � g if and only if f ′ � g′).
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This axiom states that preference f � g among two acts f and g, characterized by
consequence vectors ( f (s1), . . . , f (sn)) and (g(s1), . . . , g(sn)) respectively, does
not depend on the relative positions of these consequences in the agent’s preference
scale, i.e., it only depends on preferences f (s) �X g(s) and g(s) �X f (s) for
all the states of nature s ∈ S . This model reminds of the relative concordance rules
introduced in chapter “Multicriteria DecisionMaking” of this volume inmulticriteria
decision making. Such rules do not necessarily induce transitive preferences, except
when the beliefs over the events are highly hierarchical systems (see Dubois et al.
2002, 2003 for more details). Here again, in order to obtain transitive preferences
without constraining arbitrarily the beliefs over the events, it can be advantageous to
introduce reference points in the model and to propose rules like:

f �r g if and only if {s ∈ S : f (s) �X r} � {s ∈ S : g(s) �X r}

in which r represents a reference consequence on scaleX . For more details on this
type of models, see Perny and Rolland (2006).

5 Sequential Decision Models

In practical situations, a decision is seldommade independently of theother decisions.
Therefore, agents often have to choose among sets of decisions that must be made
consecutively, each one having some impact on the next ones. In this section, we will
study such problems and some decision models that were designed for that purpose.

Graphical models are well-suited for this task. “Decision trees” are certainly one
of the most popular models. Their graphs contain two types of nodes: “decision
nodes”, drawn as rectangles, which represent the alternatives among which the agent
has to choose; and “chance nodes”, draw as circles, which represent the uncertainties
about the events. All these nodes are put into the graph in such a way that time always
increases from the left to the right of the graph. Finally, to the leaves of the tree are
assigned the utilities of the consequences resulting from the sequence of decisions
and the set of eventsmade from the root of the tree up to the leaves. Figure 9 represents
a simple decision tree corresponding to the following problem (Raiffa 1968): An oil
wildcatter must decide either to drill or not. He is uncertain whether the hole is dry,
wet or soaking. If he decides to drill, then, his gain will depend on the quantity of
oil in the hole: if the hole is dry (no oil), he will loose 1M e; if the hole is wet,
he will win 2M e; finally, if the hole is soaking, he will win 10M e. At a cost
of 10K e, the wildcatter can make seismic soundings which help determine the
geological structure of the site. The soundings will disclose whether the terrain below
has no structure (NoS), in which case there is not much chance that the hole contains
some oil, or open structure (OpS), in which case the presence of oil is somewhat more
probable, or closed structure (ClS), in which case there are high chances that the hole
contains a lot of oil. This problem can be modeled by a decision tree in the following
way: The first decision to be made consists of making or not seismic soundings. This
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Fig. 9 Decision tree for the oil wildcatter problem

decision is represented by node T in Fig. 9. If the oil wildcatter decides to make the
soundings, we pass through the upper branch, else in the lower branch. Once the test
is made, the wildcatter gets back the result R of the test. Of course, this result is only
known after making the seismic soundings and, therefore, after making the decision
to make the seismic soundings. This is the reason why node R must be located on
the right of node T (time increases from left to right). Whatever the result of the test,
upon knowing this result, the oil wildcatter must decide whether he will drill or not
(nodes F1). If he decides not to drill, then he will have lost the price of the seismic
soundings, i.e., 10K e. This information can be found on the leaves of the tree. If
the oil wildcatter decides to drill, then he will win the amount of money depending
on the quantity of oil in the hole minus the price of the seismic soundings. This
quantity (the Ei ’s) is unknown when the agent makes the decision to drill or not,
hence the Ei ’s must be located on the right of F1 in the decision tree. In the end, we
get Fig. 9. In general, on the branches outgoing chance nodes, are indicated the beliefs
the agent has that the events will occur. Those are often the conditional probability
that the event will occur given the values taken by all the preceding nodes, i.e., all
the nodes to the left, up to the root. For instance, on the upper branch on the right
of E3 should be stored P(E3 = dry|F3 = yes, R = ClS, T = yes). Some variables
can be independent from others, so this expression can often be simplified. Here, for
instance, it is obvious that the state of the hole does not depend on the decisions of the
agent, so the above conditional probability is equivalent to P(E3 = dry|R = ClS).
Probabilities on the branches outgoing the Ei ’s therefore differ from one Ei to the
other.

In addition to their capacity to model sequential decision making problems, deci-
sion trees can also be exploited to help agents making the best decisions. For this
purpose, whatever the decision criterion chosen (EU, RDU, etc.), the idea is to look
for an optimal strategy, i.e., in every decision node accessible given the set of all
the decisions made previously, the choice of an alternative/decision among those
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possible at that node. Thus, a strategy considers all the states of nature possible.
For instance, in Fig. 9, the set of bold edges represents a strategy: when T=“yes” is
selected, as it is not possible to know which value R will take, we need to consider
all the possible values for R and an alternative needs be selected for each node Fi .
Note that, when the uncertainty within the chance nodes is modeled by probabilities,
a strategy precisely corresponds to a lottery. Indeed, consider the strategy in bold
edges in Fig. 9. This one represent the fact that the agent will loose 10K e if R =
“Ops” or R = “ClS” and that, if R = “NoS”, he will win 100M–10K e if E1 =
“soak”, 2M–10K e if E1 = “wet” and –1M–10K e if E1 = “dry”. Therefore, this
corresponds to lottery:

〈 –10K e, P(R = Ops or Cls) ; 100M–10K e, P(R = NoS, E1 = soak) ;
2M–10K e, P(R = NoS, E1 = wet) ; –1M–10K e, P(R = NoS, E1 = dry)〉.

Therefore, finding the EU optimal strategy in a decision amounts to find the strategy
whose corresponding lottery is optimal, i.e., it is maximal w.r.t. the EU criterion.
Luckily, to determine it, it is not necessary to compute all the lotteries and to extract
the best one. Actually, the above strategy can be rewritten as follows:

〈 –10K e , P(R = Ops) ;
–10K e , P(R = Cls) ;

100M–10K e , P(R = NoS) × P(E1 = soak|R = NoS) ;
2M–10K e , P(R = NoS) × P(E1 = wet|R = NoS) ;

–1M–10K e , P(R = NoS) × P(E1 = dry|R = NoS) 〉.

(7)

Remark that the last three lines correspond to P(R = NoS) times the following
lottery:

〈 100M–10K e , P(E1 = soak|R = NoS) ;
2M–10K e , P(E1 = wet|R = NoS) ;

–1M–10K e , P(E1 = dry|R = NoS) 〉.
(8)

which is nothing else than the lottery resulting from the bold strategy in the subtree
whose root is F1. If, in the bold strategy of Fig. 9, Decision F1 = “yes” is substituted
by F1 = “no”, it is easy to see that the resulting lottery will differ from that of Eq. (7)
only by the last three lines of the latter that are substituted by P(R = NoS) times
lottery 〈–10K e , 1〉, which is nothing else than the lottery corresponding to the
strategy of the subtree rooted at the lower branch of F1. Consequently, to compare
according to the EU criterion two lotteries L1, L2 that differ only in a subtree of the
decision tree, it is sufficient to compute their respective lotteries in this subtree and
to select the one with the highest EU score. As a matter of fact, the expectations
of the sub-lotteries in the other subtrees are identical for both L1 and L2 so, due
to the linearity of EU, they are irrelevant to compare L1 and L2. This justifies that
the following dynamic programming-based algorithm by backward induction can
determine the EU-optimal strategy in all the decision tree: first, select the decisions
that maximize EU in all the subtrees rooted at the decision nodes that are the closest
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Fig. 10 Decision tree and
the RDU criterion

20

100,5

0,5

20,5

0,5 30

5

0,5

0,5

0,27

0,25

0,48 5

2

30

c

d

a

b

E

F

to the leaves of the decision tree (in Fig. 9, this corresponds to the subtrees rooted at
Fi , i = 1, . . . , 4, respectively); then substitute these subtrees by leaves whose utility
values are the expectations of these decisions, and iterate this process until reaching
the root of the decision tree. The decision selected at each step of this algorithm
constitute the EU-optimal strategy.

The goal of this chapter is not to develop computational decisional algorithmics, so
wewill not detail further this backward inductionmechanism. However, it was useful
to mention it when considering features of the “new” decision models like RDU.
Actually, for these nonlinear models, backward induction produces incorrect results,
as we will show in the next example. Suppose that the probability transformation
function of the agent is ϕ(x) = e−√−ln(x), as suggested by Kahneman and Tversky,
and that her utility function is u(x) = x . Now, consider the decision tree of Fig. 10.On
the arcs outgoing from the chance nodes are indicated the probabilities of occurrence
of their respective events and, on the right of the leaves are displayed the utilities of
the consequences of the decisions. Calculating the RDU values of the strategies in
this decision tree, we have that:

RDU (a) = 2 + (5 − 2)ϕ(0, 73) + (30 − 5)ϕ(0, 25) = 11, 41
RDU (bc) = 5 + (10 − 5)ϕ(0, 5) + (20 − 10)ϕ(0, 25) = 10, 26
RDU (bd) = 2 + (5 − 2)ϕ(0, 75) + (30 − 5)ϕ(0, 25) = 11, 46
RDU (c) = 10 + (20 − 10)ϕ(0, 5) = 14, 35
RDU (d) = 2 + (30 − 2)ϕ(0, 5) = 14, 18.

In other words, in the subtree rotted at F , Strategy c is preferable to d, but in the
subtree rooted at E , the optimal strategy is bd rather than bc.

This phenomenon is not restricted to the RDU criterion: it is general and appears
as soon as the criterion departs from EU. In fact, to produce correct results, backward
induction requires two properties: consequentialism and dynamic consistency. The
first one states that, in each subtree, the optimal strategy depends only on this subtree
and not on the rest of the decision tree. The second property states that an optimal
strategy in a subtree is an extension of optimal strategies in its own subtrees. As
an example, if, in Fig. 10, bd is an optimal strategy for the subtree rooted at E ,
then d must also be an optimal strategy in the subtree rooted at F . Unfortunately,
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consequentialism + dynamic consistency implies the “sure thing principle” (or at
least a slightly weakened version) which leads to the EU criterion.

To complete our brief overview of sequential decision making, note that there
exist compact representations of decision trees like, for instance, influence diagrams
(Howard and Matheson 1984; Shachter 1986; Jensen et al. 1994). The first key
idea consists of considering decision trees as representations of “big” multivariate
functions. The case of the decision trees with a symmetric structure simplifies the
illustration of this idea: consider the trees of Fig. 11. Instead of considering the utility
values independently from one leaf to the other, consider the set of all these utility
values as the result of a function depending on the values of D and O that led to
the corresponding leaves. Similarly for the probabilities indicated on the branches
of the decision tree, do not consider the values separately but as a whole as the
probability distribution P(O|D) depending on the values of D and O . The second
key idea consists of exploiting the structural independences inherent to the decision
problem. There is often a large number of such independences and those usually
greatly simplify the “big” functions mentioned earlier. As an example, observe the 4
decision trees of Fig. 11. At first sight, they seem quite similar. However, upon exam-
ining carefully the probabilities and the consequences/utilities displayed beside the
branches of the tree, fundamental differences can be observed among these trees. In
the first one, probabilities and utilities differ from one another on all the branches
and, therefore, none of the functions P(O|D) and u(D, O) can be simplified. This
is precisely what is represented by influence diagram 1 in Fig. 12: circles represent
chance nodes, to which are associated the conditional probabilities of these nodes
given their parents in the graph (like in a Bayesian network (Pearl 1988)); lozenges
represent the utility multivariate functions and the variables they depend on corre-
spond to those at the tails of their ingoing arcs. In tree 2 of Fig. 11, it can be noticed
that utility values depend on the branch outgoing from O where they are located but
they do not depend on D. In other words, utility u(D, O) can be summarized as u(O)

and this is precisely what influence diagram 2 of Fig. 12 represents. In Tree 3, utilities
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depend on D but not on O , hence influence diagram 3. Finally, in Tree 4, proba-
bilities P(O|D) do not depend on the value of D, which corresponds to influence
diagram 4. To complete our description of influence diagrams, note that, although
no function is associated with decision nodes, the latter can also have ingoing arcs.
In this case, these arcs indicate the nodes (decisions and/or chances) whose values
are known to the agent when she makes her decision.

To conclude this section, note that models for representing sequential decision
making problems are not restricted to decision trees and their compact represen-
tations (e.g., influence diagrams). Other formalisms do exist, which can be better
suited for particular tasks. For instance, we can cite Markov decision processes
(MDP) (Bellman 1957; Howard 1960; Puterman 1994) or partially observed MDPs
(Sondik 1971; Monahan 1982), which are especially useful in planning. Although
these models have been based initially on probabilities, their possibilistic counter-
parts have been proposed in the literature (Fargier et al. 1998; Sabbadin 2001). In
this chapter, we will not develop further these models since chapter “Planning in
Artificial Intelligence” of Volume 2 is devoted to them.

6 Conclusion

This chapter has provided a brief and non exhaustive overview of the theory of
decision making under uncertainty. As we have seen, justifying mathematically the
proposed decision making models, relying on simple axioms reflecting common-
sense features that are expected to be satisfied by any “rational” agent, has been
one of the major concerns in the decision theoretic community. These axioms enable
to justify to users these models and, more importantly, the recommendations they
provide. This is a key point to make human agents/decision makers accept these
models. Currently, the main research topics of the field are threefold and are focused
on: (i) the elicitation of preferences; (ii) the models of uncertainty and their learning;
and (iii) the recommendation algorithms based on these models. Researches on pref-
erence elicitation focus on the minimization of the number of questions to ask to the
agent to capture her preferences, but also on how to focus questions in order to elicit
only the parts of the utility function that are needed to make “good” recommenda-
tions (Wang and Boutilier 2003; Gonzales and Perny 2004; Boutilier et al. 2010; Lu
and Boutilier 2011). As for the uncertainties, new compact graphical models have
been introduced recently (Probabilistic Relational Models, Markov Logic Networks,
Multi-Entity Bayesian networks, etc), which notably enable learning from relational
databases probability distributions defined over high-dimensional spaces, taking into
account generic domain knowledge (Getoor and Taskar 2007; Kok and Domingos
2009; Khosravi et al. 2010). Finally, recommendation algorithms have to address
problems over combinatorial spaces of ever increasing sizes (de Salvo Braz et al.
2005; Regan and Boutilier 2011).

For many years, in artificial intelligence, expected utility (EU) has been consid-
ered as the only reasonable model for decision under uncertainty. However, these
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last years, new decision theoretic models like RDU or Choquet have been intro-
duced in the major AI conferences and their place shall increase in the next years.
Indeed, they are not only capable to model faithfully the behaviors of agents facing
uncertainty and ambiguity, but they also proved to be very useful for modeling fair
and robust decision making problems. Finally, their expressive power should make
them the models of choice for preference elicitation for high stakes strategic deci-
sion problems. However, exploiting such models requires a high level of information
about the preferences of the agents as well as about the likelihoods of the events that
may occur. Unfortunately, in some AI decision problems (like planning in partially
known environments, preference elicitation and recommendation), the information
available does not usually allow to precisely quantify the utility of an action or the
probability of an event. In such situations, by relying on an ordinal representation
of preferences and uncertainties, the qualitative models presented in the preceding
sections prove to be better suited. To a large extent, these models are still unknown
outside the academic world but, in the near future, their exploitation in industrial
applications should increase significantly.
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Collective Decision Making

Sylvain Bouveret, Jérôme Lang and Michel Lemaître

Abstract This chapter introduces two prominent models of collective (multia-
gent) decision making, namely the basic ordinal model, and the utilitarian (numeri-
cal/quantitative) model. These models are then illustrated on three major collective
decision making problems: voting, fair division and auctions. For each of these three
problems we give a formal definition and we discuss the main links with computer
science and artificial intelligence.

1 Introduction

1.1 Collective Decision Making Problems

This chapter focuses on collective decision making (CDM) problems, in which a
group of people (agents) has to make a collective decision cooperatively. The chosen
decision, to be selected among a set of eligible decisions, will engage each agent.
Most procedures presented in this chapter are centralized procedures.

Typical CDM problems examples are: political elections; private everyday votes
(for example, friends choosing a restaurant); fair allocation (for example, dividing
goods in a divorce, allocating courses to students in a university...); a jury seeking
for a consensus in a court.

The study of CDM problems dates back to Antiquity. The name “social choice”
refers nowadays to the formal study of such collective problems. Nicolas de
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Condorcet (1743–1794) was one of the first to formalize some CDM problems.
His contribution to the field of voting systems (Condorcet 1735) is widely recog-
nized. Other prominent contributors are Kenneth Arrow (1921–2017), celebrated for
his famous impossibility theorem (see p. 4), and Amartya Sen (born in 1933), well
known for his work on social inequalities (Sen 1970).

Classical social choice theory has never been very much concerned about algo-
rithmic issues. This is where computer science and more specifically artificial intel-
ligence and operations research come into play: a recent research field has emerged,
named computational social choice, bringing computer science and social choice
together. Two research directions have appeared: the first one (from social choice
theory to computer science) aims at exploiting social choice theory concepts and
procedures in order to solve problems arising in computer science applications (for
example, aggregation procedures for web page ranking and information retrieval,
using voting for pattern recognition and classification, or computational resource
allocation). The other direction (from computer science to social choice theory)
aims at using notions and methods coming from computer science (representation
languages, complexity, algorithmics, interaction protocols...) in order to solve com-
plex group decisionmaking problems. This last direction is by far themost important.

Formally, a CDM problem consists of three elements: a set of agents N =
{1, . . . , n}; a set of eligible decisions or alternatives X ; an expression of indi-
vidual preferences (or sometimes beliefs — we will go back to this later) of each
agent over the alternatives. The expected result is, as the case may be, the choice of
a “socially optimal” alternative, the choice of a set of alternatives, or a ranking of
the alternatives.

Three of the most important sub-fields of social choice are:

• voting: agents (or voters) express their preferences over alternatives (in this case
candidates) andmust agree on the choice of a candidate (or a subset of candidates).

• fair allocation: a common resource has to be divided amongst agents expressing
their preferences about the possible shares they can possibly receive.

• judgement aggregation: agents express their beliefs over the real word and must
come up to a common conclusion.

The first two examples above concern preference aggregation (the most frequent
case in social choice), whereas in the last case, belief aggregation is at stake. Belief
aggregation is addressed specifically in chapter “Belief Revision, Belief Merging
and Information Fusion” of this volume and will not be discussed in this one. In the
following we are only concerned with preference aggregation, focusing successively
on voting, fair allocation, and finally on combinatorial auctions, which are a special
case of resource allocation.

There are manymodels dedicated to the problem of aggregating individual prefer-
ences into a collective one. We will now present the two prominent models on which
most works on CDM are based.
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1.2 The Basic Model: Ordinal Preferences

Let P be the set of total preorders1 on X . In the ordinal model, the preferences of
an agent i are represented by the individual preorder �i∈ P .

Let G : Pn → P be a collective preorder aggregation function. The collective
preorder �col= G(〈�1,�2, . . . ,�n〉) (or social welfare ordering) represents the
collective preference which results from the aggregation by G of the individual pref-
erence profile 〈�1,�2, . . . ,�n〉. A collectively preferred alternative is an alternative
maximizing the collective preorder �col .

Let us give a simple example of a preorder aggregation procedure: let N (a) be
the number of times for which an alternative a is (one of) the most preferred in
the individual preorders. Now define a �col b ≡ N (a) ≥ N (b). This is obviously a
preorder. On the other hand, the aggregation which prefers alternative a to alternative
b when a majority of agents prefer a to b is not a preorder, because it may generate
a cyclic collective preference, in which case the preference relation is not transitive
— this is the celebrated Condorcet paradox, see Sect. 2.

In this context, the centralized CDM problem consists in defining an aggregation
function G having “good” properties. What are these “good” properties for CDM?
We now introduce the main ones.

1.2.1 The Pareto-Efficiency Property and the Unanimity Principle

Informally, an efficient alternative is an alternative which satisfies all agents “as well
as possible”. The simplest and mostly used expression of efficiency is the Pareto-
efficiency property, based on Pareto-dominance. Let 〈�1,�2, . . . ,�n〉 be a prefer-
ence profile.We say that alternative a Pareto-dominates alternative bwhen a �i b for
all agents, with a 	i b for at least one agent (	i designates the strict part of�i , that is
a 	i b ≡ [a �i b and not b �i a]). A Pareto-efficient (or Pareto-optimal) alternative
is a non-dominated one. It is such thatwe cannot switch to another alternative increas-
ing strictly the satisfaction of an agent, without strictly decreasing the satisfaction of
another agent. We say that an aggregation function G satisfies the Pareto-efficiency
property if the alternatives collectively preferred are Pareto-efficient.

The unanimity principle simply requires that the aggregation function G satisfies
the Pareto-efficiency property.

1.2.2 The Independence of Irrelevant Alternatives (IIA) Property

This natural property asks that for each pair of alternatives a and b, the strict collective
preference betweena and b (a 	col b or b 	col a) only depends on theway each agent
strictly compares a and b (a 	i b or b 	i a) — the other alternatives are irrelevant.

1A preorder � is a binary relation that is reflexive and transitive. In a total preorder (or weak order),
no pair of alternatives is incomparable: x � y or y � x,∀x, y ∈ X .
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1.2.3 Arrow’s Theorem

Most results in classical social choice theory consist of impossibility or possibility
theorems of the following form: there is no collective decision procedure satisfying
a set of natural and desirable conditions R1, . . . , Rp, or the set of collective deci-
sion procedures satisfying the set of natural and desirable conditions R1, . . . , Rp is
exactly the set of procedures of form F . A celebrated example is Arrow’s theorem
(1951). Consider strict preference profiles 〈	1, . . . ,	i , . . . ,	n〉 on X (total strict
orders). Let S be the set of all possible strict profiles. Arrow’s theorem states that
if there are at least 3 alternatives, then any aggregation function G defined on S n

satisfying the unanimity principle and the IIA property is dictatorial, meaning that
there is an agent i such that for any profile P , G(P) = 	i .2

1.3 The Utilitarian Model, or the Model of Quantitative
Preferences

The utilitarian model (or numerical or quantitative preference model) represents
the preferences of agent i by an individual utility function ui : X → R. To each
alternative a corresponds a vector 〈u1(a), u2(a), . . . , un(a)〉 (utilities of a for each
agent) called the utility profile of a.

In order to compare the (quantitative) satisfaction of two agents for a given alter-
native, utilities must be defined on a common scale. But this is not always possible:
interpersonal comparison of utility is a critical question in CDM. Actually, agents
may use their own non commensurable utility scales. However in the following we
will assume (unless explicitly stated) that agents’ utilities are expressed on a common
utility scale.3

Let g : Rn → R be a collective utility aggregation function, and let u : X →
R be the function defined this way: u(a) = g(〈u1(a), u2(a), . . . , un(a)〉), for any
alternativea. The functionu, called collective utility functionor social utility function,
represents the collective preference obtained through aggregation by g of individual
utility functions ui . A collectively preferred alternative is an alternative maximizing
this function u.

Given individual and collective utility functions, we can easily recover the ordinal
model by defining individual and collective preorders on X as follows: for any
agent i , a �i b ≡ ui (a) ≥ ui (b), and a �col b ≡ u(a) ≥ u(b). The individual utility
function ui (respectively the collective utility function u) is said to represent the
individual preorder �i (respectively the collective preorder �col ). In this way, each

2Arrow’s theorem also holds (in a weaker form) when the individual preferences are preorders (that
is, with possible indifference between alternatives).
3A straightforward way to obtain a common utility scale, often used in fair allocation problems, is
to normalize the individual utility of each agent relatively to the utility she would get if she was
given all the resource (Kalai-Smorodinsky normalization).
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purely ordinal property (such as the Pareto-efficiency property) can be expressed in
the utilitarian model.

The main two collective utility aggregation functions are sum u(a) =∑
i∈N ui (a), and minimum: u(a) = mini∈N ui (a). These two functions respec-

tively correspond to the main two agendas of the utilitarian model, namely classical
utilitarianism and egalitarianism. Classical utilitarianism (sum) seeks to produce
collective utility, irrespective of the agent from which this utility comes from (hence
ignoring any equity concern). On the other hand, egalitarianism (min) seeks to maxi-
mize and equalize at the same time individual utilities: it selects an alternative which
maximizes the satisfaction of the least satisfied agent, hence conveying a very strong
equity flavor.

Classical utilitarianism and egalitarianism are two opposite and extreme attitudes
towards CDM.4 In classical utilitarianism, an agent is a “collective utility producer”.
The marginal collective utility produced by an agent does not depend on her present
degree of individual utility. Hence, the collective preference maximization could
indeed lead to lower the satisfaction of the least satisfied agents, if more satis-
fied agents “produce” more utility. Agents must show a high degree of solidarity:
some of them could be sacrificed on the altar of the collective utility maximization.
Conversely, in egalitarianism, even a large utility increment of an agent already sat-
isfied does not compensate for a tiny loss of utility of the least satisfied agent.

These two variations of utilitarianism are linked with two different approaches
in philosophy and economics: Rawls (1971) and Sen (1970) for egalitarianism, and
Harsanyi (1955) for classical utilitarianism are often advocated.

The utilitarian model often refers to an efficiency definition which is a refinement
of Pareto-efficiency, namely sum-efficiency. A sum-efficient alternative is an alter-
native maximizing the sum of individual utilities, that is, alternatives maximizing
the sum of individual utilities. A sum-efficient alternative is Pareto-efficient, but the
converse is not true in general.

In the utilitarian model, maximizing the collective utility function yields Pareto-
efficient (or Pareto-optimal) decisions if and only if the aggregation function g is
strictly increasing. This is the case for sum, but not formin. The leximin total preorder
is a refinement of the total preorder induced onX bymin, of which themaximization
always results in a Pareto-efficient alternative.

1.4 Centralized Versus Distributed CDM

Another essential dichotomy exists — orthogonal to the ordinal versus quantita-
tive/numerical preferences one — namely the way agents interact in the decision
making. In a centralized CDM resolution, a central authority (arbitrator, chairper-

4For example, egalitarianism prefers the utility profile 〈10, 10, 10〉 to the profile 〈9, 100, 100〉.
Classical utilitarianism prefers 〈1, 100, 100〉 to 〈66, 67, 67〉, and even to 〈2, 99, 99〉. See Sect. 3 for
two families of trade-offs between utilitarianism and egalitarianism.
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son, HomeOffice, auctioneer, ...) gathers in a first phase the preferences of the agents
(or at least a part of them, being informative enough for the decision to be made),
and then decides on the optimal alternative and communicates it to the agents. The
interaction phase between the central authority and the agents intended for collect-
ing preferences is generally called the elicitation phase (the interested reader can see
chapter “Compact Representation of Preferences” of this volume for more details).
In fully distributed CDM resolution, there is no central authority, agents interact
freely, and negotiate to reach a common consensus. There are also intermediate CDM
frameworks, that lie between centralized resolution and distributed negotiation.

This chapter concerns mostly centralized CDM resolution, because of its impor-
tance, and because distributed decision (in particular negotiation) is considered in
detail in chapter “Negotiation and Persuasion among Agents” of this volume.

1.5 Discussion

In practice, the nature of the CDM problem at stake dictates the choice of a par-
ticular model of preferences (ordinal or numerical/quantitative) and type of reso-
lution (centralized or distributed). By way of illustration, voting theory generally
assumes ordinal preferences and centralized resolution; fair allocation with money
(as with auctions), numerical preferences and centralized resolution; some fair allo-
cation problems — such as cake-cutting, see Sect. 3.5 — ordinal preferences and
distributed resolution.

Some difficulties may impair the use of a centralized CDM model:

• agents might be unable to reveal their preferences or simply refuse to do so, hence
complicating the elicitation phase;

• in the real world, the agents often have intricate preferences that are difficult to
translate into preorders or utilities: agents are often sensitive to several criteria (see
Chapter “Compact Representation of Preferences” of this volume), and are often
not indifferent to other agents preferences, as well as to some social norms.

However, to be accepted by the agents at stake, the CDM model and resolution
should be based on clear concepts, easy to explain and use.

Finally, we should be aware of the limitations of the standard CDM models pre-
sented above. Their interest can be mostly found for CDM problems having a tech-
nical aspect — typically, the routine allocation of numerous physical resources —
for which direct negotiations are hardly possible, and for which a kind of automatic
processing is required. These models can serve as well to build some technically
relevant solutions, initiating a negotiation process.

The following sections are devoted to three specific CDM problems. The first
concerns voting, making use of the ordinal model of preferences. The next one is
dedicated to fair allocation problems, forwhich equity is a strong concern.We present
in the last section the auction problem, a specific allocation problem in which agents
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interact in a limited way, and which is solved by the mean of maximizing the profit
of a particular agent (the auctioneer).

2 Voting

The use of voting procedures for collective decision making is not only of tremen-
dous importance in large-scale political contexts, but it is also more andmore applied
in low-stake contexts such as social networks, workplaces or other local communi-
ties (and perhaps also societies of autonomous agents), which explains why it has
acquired so much importance in the last fifteen years in the artificial intelligence
literature. Since there are now hundreds of papers on voting in the mainstream AI
conferences (such as AAAI or IJCAI) and journals (such as AIJ or JAIR) as well
as in more specialised conferences (such as AAMAS), we cannot report on every
research stream and we will only give a brief overview of the main topics (measured
in number of papers). For a finer overview we advise to consult Chaps. 2–10 of the
Handbook of Computational Social Choice (Brandt et al. 2016b).

2.1 Introduction to Voting Theory

A common assumption in voting theory is that the agents (which will be called ‘vot-
ers’ in this section) have ordinal preferences, and furthermore that these preferences
are linear orders (or rankings) over the set of alternatives. (There are exceptions to
this, such as in approval voting, which will be discussed further.)

Let N = {1, . . . , n} be a set of voters, andX = {x1, . . . , xm} be a set of alterna-
tives, or candidates. A profile is a collection of n votes, where each vote is a linear
order over X :

P = 〈V1, . . . , Vn〉 = 〈	1, . . . ,	n〉

where Vi (also denoted 	i ) is the vote expressed by voter i .
A resolute voting rule F is a function that maps each profile P to a candidate

F(P) inX , who is the socially preferred candidate.
An irresolute voting rule F is a function that maps each profile P to a nonempty

subset of X : F(P) is the set of socially preferred candidates, called cowinners;
the candidate that will be chosen in the end will be one of the candidates of F(P),
obtained by means of a tie-breaking mechanism whose specification is outside the
definition of F .5

5The reason why we sometimes need irresolute rules is the possibility of a tie: suppose for instance
that we have two candidates a and b, n = 2q voters, and a profile P containing q votes a 	 b and
q votes b 	 a. For an irresolute voting rule, we simply let F(P) = {a, b}, and the final winner
will be chosen by the tie-breaking mechanism. For a resolute rule, however, we have to specify
the tie-breaking mechanism as part of the rule. For this, a choice must be made: either we give up



594 S. Bouveret et al.

When there are only two candidates a and b, the arguably most reasonable irres-
olute rule is the majority rule:

maj(V1, . . . , Vn) =
⎧
⎨

⎩

{a} if a strict majority of voters prefers a to b
{b} if a strict majority of voters prefers b to a
{a, b} otherwise

May’s theorem (1952) gives an axiomatic characterisation of the majority rule.
Things become more complicated when the number of candidates is at least 3.

We now give an incomplete (but representative) list of voting rules. Unless stated
otherwise, we define only their irresolute version; again, a resolute version can be
obtained by composition with a tie-breaking mechanism.

A positional scoring rule is defined by a vector s = 〈s1, . . . , sm〉 of m integers,
with s1 ≥ · · · ≥ sm and s1 > sm : each time voter i ranks candidate x in position j , x
gets a score scorei (x) = s j ; the cowinners for the scoring rule Fs are the candidates
maximizing s(x) = ∑n

i=1 scorei (x). Here are three important examples of positional
scoring rules:

• plurality: s1 = 1, s2 = · · · = sm = 0 (the cowinners are the candidates ranked first
most often);

• veto (or antiplurality): s1 = s2 = · · · = sm−1 = 1, sm = 0 (the cowinners are the
candidates ranked last least often);

• Borda: s1 = m − 1, s2 = m − 2, …sm = 0.

Consider the profile P composed of one vote c 	 a 	 b 	 d, two votes a 	 b 	
d 	 c and two votes d 	 b 	 c 	 a: the cowinners for plurality are a and d; for
Borda and veto, it is b.

Another important family of voting rules is that of the rules based on the majority
graph. Given two candidates x and y, and a profile P , let NP(x, y) be the number
of voters who prefer x to y in P . The majority graph MP associated with P is the
directed graph whose vertices are the candidates, and which contains an edge from
x to y if and only if NP(x, y) > n

2 . A voting rule is based on the majority graph if
the cowinners can be computed from MP .

A candidate x isCondorcet winner for P if for any y �= x , we have NP(x, y) > n
2 ,

that is, if it beats every other candidate in a pairwise duel by a majority of votes.
Clearly, x is Condorcet winner for P if MP contains an edge from x to every other
candidate. Of course, when there exists a Condorcet winner, it is unique. However,
for some profiles, there is no Condorcet winner (see the example below). A voting
rule is Condorcet-consistent if it elects the Condorcet winner when there exists one.
The majority graph MP associated with the previous profile P is given in Fig. 1.
Each candidate being dominated by another candidate, there is no Condorcet winner
for P . If the first voter, instead of voting c 	 a 	 b 	 d, had voted c 	 b 	 a 	 d,
then the edge a → b would have been replaced by an edge b → a and b would have
been a Condorcet winner.

neutrality and use a predefined priority relation over candidates; or we give up anonymity, and use
a predefined priority relation over voters or sets of voters.
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a

b

c

d

Fig. 1 Majority graph MP

Here are three examples of rules based on the majority graph:

• Copeland: the Copeland score of a candidate x with respect to a profile P is
the number of candidates that x beats in the majority graph MP , plus half the
number of candidates for which there is a pairwise tie with x (there is a pairwise
tie between x and y if MP contains neither an edge from x to y nor one from y
to x). The Copeland (co)winners are the candidates with largest Copeland score.
For example, for the profile P above, the Copeland winners are a and b.

• Slater: a Slater order for P is a linear order onX minimizing the number of edges
disagreeing with MP . A Slater winner is a candidate ranked first in some Slater
order. For the profile P above, the unique Slater order is a 	 b 	 d 	 c, with only
one disagreement with MP (about (a, c)), and the Slater winner is a.

• Banks: for S ⊆ X , let M↓S
P be the restriction of MP to S. M↓S

P is a maximal
acyclic subtournament of MP if M↓S

P is acyclic and for each S′ such that S ⊂
S′ ⊆ X , M↓S′

P is not acyclic. Then x is a Banks winner if x is non-dominated in
a maximal acyclic subtournament of MP . For the profile P above, the maximal
acyclic subtournaments of MP are obtained for {a, b, d}, {a, c} and {b, c, d}, and
the Banks winners are a, b and c.

Clearly, these three rules are Condorcet-consistent. For a survey of rules based on
the majority graph, with a focus on computation, see Brandt et al. (2016a).

The weighted majority graph, or pairwise comparison matrix WP is defined by:
for each x, y ∈ X , x �= y, WP(x, y) is the number of voters who prefer x to y
minus the number of voters who prefer y to x . A voting rule is based on the weighted
majority graph if the (co)winners can be computed from the weightedmajority graph
(or pairwise comparison matrix) WP .

Consider the profile Q:

4 voters : a 	 b 	 c 	 d
2 voters : b 	 c 	 d 	 a
3 voters : c 	 d 	 a 	 b

The weighted majority graph for Q is
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a b c d
a − 5 −1 −1
b −5 − 3 3
c 1 −3 − 9
d 1 −3 −9 −

Here is a rule based on the weighted majority graph: the Simpson (or maximin)
rule outputs the candidates maximizing miny �=x WP(x, y). The maximin winner for
Q is a, with miny �=a WQ(a, y) = −1. Clearly, miny �=x WP(x, y) > 0 if and only if x
is a Condorcet winner for P , and there cannot be two candidates with this property,
therefore, the maximin rule is Condorcet-consistent.

Another rule based on the weighted majority graph is the Kemeny rule, defined
as follows: the Kemeny score K (V, P) of a linear order V with respect to profile P
is defined by K (V, P) = ∑

(x,y)∈X ,x �=y WP(x, y). A Kemeny consensus for P is a
linear order V ∗ maximizing K (V ∗, P), and a Kemeny winner is a candidate ranked
first in a Kemeny consensus. The Kemeny rule is Condorcet-consistent as well. The
Kemeny rule can be used a voting rule, but perhaps even more so as a social welfare
function (outputting the set of Kemeny consensuses). Also, it is easily adaptable to
truncated votes, which explains why it is used for the aggregation of rankings of
web pages given by different search engines (Dwork et al. 2001). On profile Q, the
Kemeny consensus is a 	 b 	 c 	 d, with Kemeny score 18.

Some Condorcet-consistent rules are not based on the weighted (and a fortiori,
unweighted) majority graph. Here is an example: the Dodgson rule6 is defined as
follows: for each x ∈ X , D(x) is the smallest number of elementary changes needed
for making x a Condorcet winner, where an elementary change consists in swapping
two adjacent candidates in a vote.

In order c to become a Condorcet winner for Q, it has to move one position up
in two out of the first 6 votes; as for a, it needs to move two positions up in one of
the last 5 votes; b and d need respectively 3 and 7 elementary changes in order to
become Condorcet winners: therefore, a and c are the Dodgson cowinners for Q.

Here are now two rules that proceed by successive rounds. First, single transfer-
able vote (STV) proceeds in n − 1 rounds, as follows:

1. let y be the candidate ranked first by the smallest number of voters (using a
tie-breaking mechanism if necessary);7

2. eliminate y; the votes where y was ranked first are ‘transferred’ to the voter’s
preferred candidate among those who remain;

3. iterate the process until there remains only one candidate.

Consider the profile R containing 3 votes a 	 d 	 b 	 c, 4 votes b 	 d 	 a 	 c,
3 votes c 	 d 	 a 	 b and 2 votes d 	 c 	 b 	 a. At the first round, d is eliminated;

6Charles Dodgson was better known under the name of Lewis Carroll.
7Another way of handling ties consists in considering all tie-breaking possibilities and gather the
corresponding winning candidates; the resulting rule is called the parallel universe version of STV
(Conitzer et al. 2009).
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the votes of the two voters who preferred d are transferred to their second choice, that
is, c. At the second round, we have the reduced following profile: 3 votes a 	 b 	 c,
4 votes b 	 a 	 c, 3 votes c 	 a 	 b and 2 votes c 	 b 	 a: a is eliminated. At the
last round, only b and c remain; 7 voters out of 12 prefer b to c, and the winner is b.

When there are only three candidates, STV coincides with plurality with runoff,
which is defined more generally as follows: the first round selects the two candidates
with the largest plurality scores (again, using tie-breaking if necessary), and the
winner of the second round is selected according to majority.8

Social choice theorists have studied some desirable properties of voting rules.
Condorcet-consistency is one of them; note that no positional scoring rule is Con-
dorcet-consistent (Moulin 1988), and that STV and plurality with runoff are not
Condorcet-consistent either. We give three other important properties, which for the
sake of brevity we define for resolute rules only:

• monotonicity: when x is the winner for profile P , it remains the winner for a profile
obtained from P by moving x up in some vote, the rest being unchanged;

• participation: when x is the winner for P , the winner for a profile obtained from
P by adding one more vote is either x , or a candidate which the new voter prefers
to x ;

• reinforcement: when x is elected separately by two profiles, it is also elected by
their union.

• clone-proofness: if a candidate x is cloned into a set of clones {x1, . . . , x p}, and
assuming that these clones of x will be ranked contiguously (in an arbitrary order)
in each vote, and that the rest of the vote is equal to the vote before x was cloned,
then the winner after cloning x will be (a) the same winner as before cloning x , if
this winner was not x , and (b) one of the clones of x , if the winner was x .

For instance, positional scoring rules satisfy monotonicity, participation and rein-
forcement, but not clone-proofness; Copeland and maximin satisfy monotonicity,
but not participation, reinforcement, nor clone-proofness; more generally, as soon as
there are at least 4 candidates, Condorcet-consistency is incompatible with partici-
pation and with reinforcement. STV fails monotonicity, participation, reinforcement
and Condorcet-consistency, but satisfies clone-proofness. Plurality with runoff fails
to satisfy all these properties! For a survey on voting rules and their properties, see
Brams and Fishburn (2004) and Zwicker (2016).

In approval voting (see Laslier and Sanver 2010 for an extensive survey), the input
is different: each voter specifies an approval ballot, which is subset of candidates
she approves; the cowinners are the candidates approved by the largest number of
voters. After adapting the properties we listed above to approval ballots, we obtain
that monotonicity, participation, reinforcement and clone-proofness are satisfied by
approval voting, and that Condorcet-consistency is not.

8Plurality with runoff is used for political elections in many countries, such as France. STV –
arguably better than plurality with runoff – is used for political elections in some countries such as
Ireland and Australia.
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2.2 Computing Voting Rules

Many voting rules are computable in polynomial time. This is the case for positional
scoring rules and plurality with runoff, that are computable in time O(nm), and for
Copeland, Simpson, and STV,9 computable in time O(nm2).

But for some other rules, winner determination is hard. The first article that shows
that a voting rule is computationally hard is Bartholdi et al. (1989b), which shows that
Dodgson and Kemeny rules are NP-hard. The exact complexity of the problem was
determined by Hemaspaandra, Hemaspaandra and Rothe (1997): deciding whether
x is a Dodgson winner is �P

2 -complete, that is, needs a logarithmic number of calls
to NP-oracles.

The Kemeny, Slater and Banks rules are also hard to compute. Deciding if x is
a Kemeny winner is �P

2 -complete (Rothe et al. 2003).10 Deciding if x is a Banks
winner isNP-complete (Woeginger 2003); however, it is possible to find an arbitrary
Banks winner in polynomial time by a greedy algorithm (Hudry 2004b). Note that
when comparing Banks to Kemeny, an important difference is that for Banks, since
winner determination is “only” in NP, we can always find a succinct certificate
for verifying that x is a winner (such a certificate is the subset S such that M↓S

P is
maximal acyclic), while for Kemeny, certificates are exponentially large (unless the
polynomial hierarchy collapses). Finally, winner determination for the Slater rule is
NP-hard, even under the restriction that ties between candidates do not occur (Ailon
et al. 2005; Alon 2006; Conitzer 2006); but it is not known whether the problem is
in NP or not.

These hardness results do not mean that we should give up using these rules,
especially when they have good properties. Here are three ways of dealing with
hardness.

First, practical computation: sometimes using a translation into a well-known
setting with good solvers, such as integer linear programming; and sometimes using
specific heuristics.

Second, approximation: interestingly, a polynomial approximation algorithm of
a voting rule defines a new voting rule — sometimes already known under an other
name, sometimes not. For example, let us consider the Tideman rule, defined as
follows: if x, y are two candidates, let Deficit(x, y) = max(0, 1 + � N (y,x)−N (x,y)

2 �)
(Deficit(x, y) is the number of votes which x needs in order to win against y, if
that is possible) and the Tideman score is defined by T (x) = ∑

y �=x Deficit(x, y).
The Tideman winner is the candidate minimizing the Tideman score. This rule is
computable in O(nm2), and is a good approximation of the Dodgson rule, in the
following sense: under the assumption that the profiles are uniformly distributed
(also called impartial culture assumption), the probability that a Tideman winner is
a Dodgson winner converges asymptotically towards 1 when the number of voters
tends to infinity (McCabe-Dansted et al. 2008). Also, sometimes it is possible to
design an approximation of a voting rule that not only is easier to compute than

9For its version where ties are broken as soon as they appear.
10For the more general problem of the computation of median orders, see Hudry (2004a).
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the original rule, but also satisfies more desirable properties! For instance, while the
Dodgson rule does not satisfy monotonicity, monotonic polynomial approximation
of it have been designed by Caragiannis et al. (2009).

Third, fixed-parameter tractable algorithms: sometimes a rule is hard but becomes
polynomial-time computable when the number of candidates is fixed; this is the case
for instance for the Kemeny rule, for which winner determination can be made by
inspecting each of the m! orders and computing their scores in polynomial time.

These following three handbook chapters review the complexity, the approxima-
tion, and the practical computation of these rules that are hard to compute: Brandt
et al. (2016a) for rules based on the majority graph, such as Banks or Slater; Fischer
et al. (2016) for rules based on the weighted majority graph, such as Kemeny; and
Caragiannis et al. (2016a) for other rules, such as Dodgson.

2.3 Voting on Combinatorial Domains

In many contexts, a decision has to be taken over several variables that may be
intercorrelated. Two typical examples:

• multiple referenda: variables correspond to binary issues. For example, the inhab-
itants of a town may have to decide whether the town should build a swimming
pool or not, and whether it should build a tennis court or not.

• committee elections: for example, a president, a vice-president and a secretary
have to be elected, and some candidates (not necessarily the same ones) run for
these positions. Sometimes there are no specific positions and the aim is just to
elect k people.

In these situations, the space of candidates is a combinatorial domain: it consists
in a Cartesian product X = D1 × · · · × Dm , where Di is a finite domain of values
for variable Xi .

When the preferences of a voter on the values of a variable do not depend on the
values of other variables, there are said to be separable. When all the voters have
separable preferences, the vote can be decomposed into several independent voting
processes, each bearing on a variable: for instance, there will be a vote about the
swimming pool, and independently, a vote about the tennis court. Problems arise
when some voters have nonseparable preferences. Consider the following example:
there are two binary variables P (build a swimming pool), T (build a tennis court),
and five voters whose preferences are

voters 1 and 2 : PT 	 PT 	 PT 	 PT
voters 3 and 4 : PT 	 PT 	 PT 	 PT
voter 5 : PT 	 PT 	 PT 	 PT

A first problem is concerned with the way the voters can express their preferences
on {S, S} and on {T, T }. This is not a problem for voter 5, whose preferences are
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separable. On the other hand, for voters 1–4, this is problematic. Take for example
voter 2. If she votes for the swimming pool, she can favour, according to the votes of
other voters, ST (her best candidate) or ST (her worst candidate); and if she votes
against the swimming pool, she can favour one of her two intermediate candidates. In
both cases, she can feel regret once the final outcome of the vote is known. A second
problem is that the outcomeof the vote can be extremely bad. If the votersmajoritarily
vote ‘optimistically’, the outcome will be ST , which is the worst alternative for all
voters but one. Such paradoxes have been studied under the name multiple election
paradoxes (Brams et al. 1998; Lacy and Niou 2000).

When there is no guarantee that voters have separable preferences, the decompo-
sition into independent voting processes is thus a bad idea, and other solutions must
be found. There is no perfect solution; some possibilities:

1. askvoters to specify their preference relation explicitlyon the set of all alternatives.
2. restrict the possible combinations of values for which one can vote.
3. ask voters to report a small part of their preference relation (e.g., their top alter-

native), and apply a voting rule that needs only this information (e.g., plurality).
4. ask voters to report their preferred alternative(s) and complete their preferences

using a distance between alternatives.
5. use a compact preference representation language in which the voters’ prefer-

ences will be represented succinctly.
6. sequential voting: vote about the variables one ofter the other, and communicate

the outcome for a variable to the agents before they vote on the next variable.

One has to keep inmind that there are�1≤i≤m |Di | alternatives. Therefore, as soon
as there are more than three or four variables, Solution 1 is unrealistic.

Solution 2 is somewhat arbitrary: who decides which combinations are allowed?
Moreover, in order this method to be realistic, the number of possible combinations
has to be limited to a small number: voters thus express their preferences on a very
small part of the set of alternatives.

Solution 3 is likely to give completely insignificant results as soon as the number
of variables is significantly larger than the number of voters (2m � n). For example,
consider 5 voters and 6 binary variables, that is, 26 candidates, and choose plurality
as the voting rule; one can expect the votes to be completely scattered, for example
001010: 1 vote; 010111: 1 vote; 011000: 1 vote; 101001: 1 vote; 111000: 1 vote; all
other candidates: 0 vote. This solution is then completely pointless.

Solution4presupposes the existenceof a natural andobjective (voter-independent)
distance between alternatives. It is used, among others, for defining theminimax com-
mittee election rule (Brams et al. 2007), and other rules, as well as in belief merg-
ing (see chapter “Main Issues in Belief Revision, Belief Merging and Information
Fusion” of this volume). This solution is communicationwise cheap; it is however
more costly in terms of computation, and it requires a significant domain restriction.

Solution 5 comes down to aggregate preferences specified in a compact repre-
sentation language (see chapter “Compact Representation of Preferences” of this
volume), such as CP-nets. It is potentially highly costly in terms of computation.
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Finally, Solution 6 is an interesting trade-off: it is relatively cheap in communica-
tion and computation, and it is applicable to nonseparable preferences. However, in
order it to work well, the following domain restriction has to be made (Lang and Xia
2009): there must exist a linear order on the variables X1 > · · · > X p, common to
all voters, such that the preferences of each voter on Xi are independent of the values
of Xi+1, . . . , X p: for example, for the choice of a collective menu, MainDish >

FirstCourse > Wine looks reasonable enough.
More details on voting over combinatorial domains can be found in Lang and Xia

(2016).

2.4 Computational Barriers to Strategic Behaviour

A key problem in voting theory is that in some circumstances, some voters have an
incentive to report insincere preferences in order to give more chances of winning to
a candidate they prefer to the one who would be elected normally. Such a behaviour
is called manipulation.

Consider for example plurality with runoff applied to the following profile: 8
votes a 	 b 	 c, 4 votes c 	 b 	 a and 5 votes b 	 a 	 c. At the first round, c is
eliminated, and at the second round, b is elected. Suppose now that 2 of the 8 first
voters (those whose preference is a 	 b 	 c) decide to vote c 	 b 	 a (all other
votes being unchanged). The new profile is then composed of 2 votes c 	 a 	 b,
6 votes a 	 b 	 c, 4 votes c 	 b 	 a and 5 votes b 	 a 	 c. At the first round, b
is eliminated, and at the second round, a is elected. Since the actual preferences of
these two voters are a 	 b 	 c, they are better off, since a is now the winner.

This example is not an isolated case. Indeed, the Gibbard–Satterthwaite theo-
rem (Gibbard 1973; Satterthwaite 1975) shows that when there are at least three
candidates, any voting rule which is nondictatorial and surjective (that is, for each
candidate x , there is a profile for which x wins) is manipulable: for some profiles,
some voters will have an incentive to report insincere preferences.

Although it is not possible to find a reasonable rulewhich is notmanipulable, away
of limiting the impact of manipulation consists in making sure that a manipulation,
whenever there is one, is hard to compute; this has lead computer scientists to study
the computational resistance to manipulation. In practice, one considers that for
a given voting rule, if finding a manipulation is NP-hard, then one can assume
that voters – whose rationality is limited – will give up the idea of looking for
one. Let us state the problem more formally by defining the following problem
called coalitional constructive manipulation: for a voting rule F , given a
distinguished candidate x ∈ X , and the votes	1, . . . ,	k of voters 1, . . . , k, is there
a vote	i for each of the voters i = k + 1, . . . , n such that x is elected by application
of F on the profile 〈	1, . . . ,	k,	k+1, . . . ,	n〉 ?

The first articles on this topic have been written by Bartholdi et al. (1989a) and
Bartholdi and Orlin (1991). Then this question came back in the early 2000s, with
Conitzer and Sandholm (2002a). Since then, more than thirty papers on the problem
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of complexity of (several variants of) manipulation have been written. They are
surveyed by Conitzer andWalsh (2016). (See next section for another interpretation.)

Let us start by an example illustrating the constructive manipulation of the
Borda rule by a single voter. Consider the following profile: P = 〈a 	 b 	 d 	
c 	 e, b 	 a 	 e 	 d 	 c, c 	 e 	 a 	 b 	 d, d 	 c 	 b 	 a 	 e〉. The current
Borda scores (from these 4 votes) are a: 10, b: 10, c: 8, d: 7 and e: 5. Obviously,
the last voter can make a or b win. Can she make c win? Yes, by ranking c first,
then ranking in second position the least threatening candidate (e), then the least
threatening after e (d), then a, then b (or vice versa). The final scores are then a: 11;
b: 10; c: 12; d: 9; e: 8. Can she make d win? The same algorithm leads to rank d first,
then e, then c, then, without loss of generaltiy, a, then b. The final scores are then a:
11; b: 10; c: 10; d: 11; e: 8: the existence of a constructive manipulation for d here
depends on the tie-breaking priority order (there exists a constructive manipulation
for d if and only if d has a higher priority than a or than b). On the other hand, there
exists no constructive manipulation for e. The greedy algorithm we have applied
(rank first the candidate that we want to be the winner, then the others by increasing
order of their current Borda score, possibly taking tie-breaking priority into account)
gives a successful manipulation if and only if there is one: the manipulation of the
Borda rule by a single voter is therefore polynomial.

What about the same problem for two voters ormore? Consider a profile for which
the current Borda scores are a: 12; b: 10; c: 9; d: 9; e: 4; f : 1, with tie-breaking
priority a > b > c > d > e > f . Generalizing the previous greedy algorithm does
not work: suppose that the last two voters want e to win; after they rank it first, e has
14 points, and after they both rank f second, f has 9 points. They can continue with
ranking d third for one of them and fifth for the other one (d then has 13 points).
Then there are two ways of going further, depending on whether c is ranked once
third and once fifth, or twice fourth; one can check that in the first case, it will not
be possible to make e win, but that in the second case it will. This example suggests
that computing a manipulation of the Borda rule by two voters or more is hard; its
NP-hardness was long conjectured, and was proven independently by Betzler et al.
(2011) and Davies et al. (2011).

Such complexity studies were done for numerous voting rules, in several contexts
(constructive or destructive manipulation, by a single voter or a coalition of voters,
by weighted or unweighted voters, with a restriction to single-peakedness profiles or
not, etc.). We refer to Conitzer and Walsh (2016) for detailed results.

Some other works have also considered the issue of the average complexity of
manipulation, starting from the constatation that an NP-hardness result talks about
the worst case and does not guarantee that computing a manipulation will be usually
hard. The results in this direction tend to show that there does not exist any rule that
is often enough hard to manipulate (Procaccia and Rosenschein 2007).

Beyond manipulation by coalitions of voters, there exist other types of strategic
behaviour, such as “procedural control”: some voting rules can be strategically con-
trolled by the central authority (‘chair’) in charge of the election. The first article on
this topic (Bartholdi et al. 1992) defines several types of control: by addition, sup-
pression or partitioning of candidates or voters. For example, for control by addition
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of candidates, the chair can add a certain number of candidates in the hope of diluting
the support to the candidates that can beat her favorite candidate. For each type of
control and each voting rule F , three possibilities exist:

• F is insensitive to control: the chair can never act so as to change the winner.
• F is resistent to control: F is not insensitive to control but the control problem is
computationally hard.

• F is vulnerable to control: F is not insensible to control and the control problem
is computationally easy.

For example, the plurality rule is computationally resistant to control by addition or
suppression of candidates, but computationally vulnerable to control by suppression
of voters (Bartholdi et al. 1992).

Other types of strategic behaviour, related to control, have been considered more
recently, such as bribery, control of sequential voting on a combinatorial domain or
manipulation by cloning candidates.

For a synthesis on computational barriers to strategic behaviour, see the work by
Conitzer and Walsh (2016) for manipulation and by Faliszewski and Rothe (2016)
for control and bribery.

2.5 Incomplete Knowledge and Communication

We consider here questions such as: given an incomplete description of the votes, is
the outcome already determined? If not, what are the candidates who can still win
and what are the relevant pieces of information to ask to the voters? How can we
do that in order to minimize the amount of communication exchanged between the
voters and the central authority?

For example, let us consider the following partial profile, with 4 candidates and
9 votes, out of which only 8 have been expressed:

4 voters : c 	 d 	 a 	 b
2 voters : a 	 b 	 d 	 c
2 voters : b 	 a 	 c 	 d
1 voter : ? 	? 	? 	?

If the voting rule is plurality, then it is not difficult to see that the outcome is
already determined independently of the last vote (the winner is c), while for Borda,
the partial scores (computed from the 8 votes expressed) are a: 14; b: 10 ; c: 14; d:
10; thus, only a and c can win, and in order to determine the winner one needs only
to know whether the last voter prefers a to c or vice versa. This problem is known
under the name vote elicitation (Conitzer and Sandholm 2002b; Walsh 2008).

More generally, in order to model situations where the central authority has an
incomplete knowledge of the voters’ preferences, one considers that each voter
has expressed a partial order over candidates, and a partial profile is a n-uple
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of partial orders P = 〈P1, . . . , Pn〉. A completion of P is a (complete) profile
T = 〈T1, . . . , Tn〉, where each Ti is a linear order extending Pi . Then one defines the
possible and necessary winners (Konczak and Lang 2005) with respect to a voting
rule and a partial profile:

• c is a possible winner if c is a winner for some completion of P .
• c is a necessary winner if c is a winner for each completion of P .

Thus, in the above example, c is a necessary winner for plurality; for Borda, the
possible winners are a and c, and there is no necessary winner.

The computation of possible and necessary winners has received a significant
attention, starting by Xia and Conitzer (2008). There also exists a probabilistic ver-
sion, where one counts the extensions where a candidate wins (Bachrach et al. 2010).

Several classes of situations deserve a special attention:

1. Possible and necessary winners for the addition of voters: some voters have
expressed their votes entirely, whereas the others have not expressed anything:
the partial profile is P = 〈P1, . . . , Pn−k〉, where Pi is a linear order on X . This
class of situations corresponds, with a different interpretation, to a coalitional
manipulation problem: more precisely, let us consider the coalition A composed
of the last k voters. Then x is a possible winner if the coalition A can make x win
(or equivalently, A has a constructive manipulation for x), whereas x is a possible
winner if A cannot prevent x from winning (or equivalently, A has no destructive
manipulation against x).

2. Possible and necessary winners for the addition of candidates: the voters have
expressed their preferences on a fixed subset of candidates, and nothing on the
other candidates: the partial profile is P = 〈P1, . . . , Pn〉, where Pi is a linear order
on {x1, . . . , xm−k} ⊆ X . This class of situations occurs when new candidates
declare in the curse of the process: one can for instance think of a Doodle poll for
finding the date of a meeting, where voters have expressed their preferences on a
first set of time slots, and when new time slots that were previously not considered
can become possible after this first vote; or else, consider a hiring committee
where a preliminary vote occurs between the candidates already interviewed and
a new candidate is declared admissible (Chevaleyre et al. 2010). As an example,
consider 12 voters, an initial set of candidates X = {a, b, c} and a new candidate
y. If the voting rule is plurality with tie-breaking priority order a > b > c > y,
the partial profile is such that the plurality scores before y is taken into account
are a : 5, b : 4, c : 3. On can check that a and b are possible winners, but not c.
For instance, for b, it is enough that 2 of the voters who ranked a first now rank
y first: the new plurality scores are a : 3, b : 4, c : 3, y : 2, and the winner is b.

3. Truncated ballots: every voter has expressed a partial ranking consisting of her
top k candidates.

4. Incomplete lists: every voter i has expressed a ranking of an arbitrary subset
Si ⊆ X of alternatives (the candidates in X \ Xi being incomparable with those
in Si , and incomparable with each other). This class of situations occurs when
voters have an informed opinion on a subset of alternatives only: for instance, on
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a web application for evaluating restaurants, a voter can evaluate only those she
has tried.

A problem closely related to the search of possible winners for the addition of
candidates is that of manipulation by candidate cloning (Elkind et al. 2010); the
difference is that for candidate cloning, although we don’t know how the clones of
a candidate will be ranked by a voter in the profile after cloning, still, we know that
they will be ranked contiguously in each vote.

Another topic is the design of communication protocols for voting rules. The
definition of a voting rule does not say anything on the way the winner will be
determined by the central authority. On the other hand, a communication protocol
for a voting rule specifies the pieces of information that each voter will communicate
in each round, in such a way that at the end of the protocol, the result will be known.
(More generally, a protocol can be seen as an algorithm where atomic instructions
are replaced by communication actions between agents, in such a way that an agent,
in a given round, communicates information based on her knowledge.) The cost of a
protocol is the total number of bits exchanged in the worst case. The (deterministic)
communication complexity of a voting rule F is the cost of the cheapest protocol for
F : it measures the minimal amount of information to be communicated so that the
result of the vote can be determined. The communication complexity of voting rules
is studied in detail by Conitzer and Sandholm (2005).

A trivial protocol for an arbitrary voting rule F is the following: each voter i
sends her vote Vi to the central autority (this requires n logm! bits), and then the
central authority sends back the name of the winner to all the voters (this requires
n logm bits). The communication complexity of a voting rule is thus in O(n logm!).
However, for some voting rules there exist cheaper protocols. This is obvious for
instance for plurality, since it suffices for each voter to send the nameof their preferred
candidate to the central authority: the communication complexity of plurality is
therefore at most in the order of n logm (it is in fact exactly of this order; the proof
of the lower bound is nontrivial Conitzer and Sandholm 2005); but it is also the case
for many other voting rules, such as plurality with runoff (in the order of n logm),
STV (in the order of n(logm)2), etc.

Another related problem is the compilation of the votes of a subelectorate. In
a context where the votes do not come in a single round (consider for instance a
political election where the votes of the citizens living abroad come with a few days
delay, or to a Doodle pool where some persons are late in responding). In this case,
it makes sense to compile the votes expressed so far, using as little space as possible,
so as to “prepare the ground” for the time where the remaining votes are known. The
compilation complexity of a voting rule is the minimal size for compiling a profile. It
is identified, for some rules, by Chevaleyre et al. (2009) and Xia and Conitzer (2010).

For more details about voting with incomplete preferences, communication pro-
tocols, vote compilation, as well as the learning of (some classes of) voting rules and
the robustness of voting rules, see the chapter by Boutilier and Rosenschein (2016).
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2.6 Some Other Issues

For the sake of brevity, there are a number of other research topics at the meeting
point of voting and AI which we have not discussed in this section.

One which is especially relevant to this book is group planning. It is addressed
for the fist time by Ephrati and Rosenschein (1993): each agent has her own goal; at
each round, agents vote on the next action to perform without revealing their pref-
erences explicitly. More generally, collective combinatorial optimization deals with
the design of methods for the collective version of specific combinatorial optimiza-
tion problems, such as shortest path finding (Klamler and Pferschy 2007), minimum
spanning tree (Darmann et al. 2009); egalitarian versions of some other combinato-
rial optimization problems are studied by Galand and Perny (2006), Escoffier et al.
(2013).

A fewother topics, such as: randomized voting, iterative voting, computer-assisted
theorem proving in social choice, approximate notions of single-peakedness, the
computational aspects of apportionment and districting, group classification, group
recommendation, social choice and crowdsourcing, and dynamic social choice, are
briefly reviewed in the chapter by Brandt et al. (2016c, Sect. 4), and the first four are
reviewed in more detail by Endriss (2017). Lastly, new approaches to the rational-
ization of voting rules, partly originating in AI research, are reviewed in the chapter
by Elkind and Slinko (2016).

3 Fair Allocation

Quand on partage le gâteau, l’important est : qui tient le couteau ?
(When the cake is divided, the main question is: who holds the knife?)
Bernard Maris, French economist, killed on January 7, 2015 in Paris

3.1 Fair Allocation Problems

Every CDM process is guided, explicitly or not, by the desirable properties that the
collective decision must satisfy. We have seen in the introduction the most promi-
nent of these properties: efficiency, which is often implemented by Pareto-efficiency.
Another property which is very often required is fairness. Indeed, the essence of
CDM is very often to look for admissible compromises between the agents antag-
onistic interests and preferences, which is a possible definition of fairness. We will
later introduce several formal models of fairness.

The need for fairness is particularly strong in a kind of CDM problems called
fair allocation or fair division problems, which are the subject of this section. Here,
the alternatives are just allocations of goods (or resources) to agents. Even if the
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traditional CDM problem assumes that the agents have preferences over all the alter-
natives, it is commonly assumed that each agent only cares about what she receives
(her own share). In other words, an agent will be indifferent between two allocations
where she receives the same share.

Fair allocation problems can be divided into classes. The first one concerns divis-
ible goods or resources, like money, time, water or land. For a long time this class
has been explored by economists, using continuousmathematics inmicroeconomics.
The second one is about indivisible objects or resources, like works of art, pieces of
furniture, teaching time slots, cars or houses.Mixed problems exist, a classical exam-
ple being fair division problems with indivisible goods, but monetary compensation
(money is a special divisible good, others are indivisible).

The contribution of artificial intelligence to the field of fair allocation mainly
concerns fair allocation of indivisible goods without monetary compensation, which
are the most difficult from an algorithmic point of view, because of their strong
combinatorial nature. Actually, consider the allocation of m objects to n agents
(each object must be allocated to one and only one agent), the number of possible
allocations is nm : the size of the solution space increases exponentially with the size
of the problem instance. For similar reasons, artificial intelligence is involved also in
fair allocation of divisible and heterogeneous resources (cake-cutting), see Sect. 3.5.

3.2 Some Real World Fair Allocation Problems

Before going further and in order to emphasize their importance, we enumerate a set
of real world fair allocation problems.

1. frequency allocation to radio stations, land division, mining and natural resource
sharing (Antarctic, ocean floor,Moon), common exploitation of a scientific facil-
ity, such as Earth-observing satellites (Lemaître et al. 1999);

2. fair representation (apportionment) (Balinski and Young 2001), setting up elec-
toral boundaries;

3. fair allocation of kidneys or other organs to transplant;
4. allocation of positions in public entities;
5. sharing operating costs of international organisations, assessment of taxes;
6. allocation of permits to discharge pollutants;
7. sharing water treatment facilities between localities;
8. dividing estates in inheritance or divorce;
9. sharing time slots in schools, hospitals, airports,...;
10. allocating tasks or offices to employees, rooms to students, articles to reviewers,

quotas of refugees to countries.

Notice that a lot of these problems concerns fair division of indivisible and non-
shareable goods without monetary compensations.
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3.3 How to Define Fairness?

Even if fairness is sometimes defined using the prominent Aristotelian’s principle
“equal treatment of equals, unequal treatment of unequals”, there is no definitive
and universal definition of fairness, but a number of properties corresponding to
different formal definitions. None of these properties is universally considered to
be the right notion of fairness, but each one conveys a different aspect of fairness.
Some of these properties are defined on the collective preference (such as anonymity,
separability, inequality reduction) while others apply to allocations (proportionality,
envy-freeness).

Even if there is no universal notion of fairness, two properties are commonly
required: unanimity and anonymity. Unanimity corresponds, in the context of fair
division, to the Pareto-efficiency property, already discussed in Sect. 1.

3.3.1 Anonymity

If equal agents should be treated equally, then the anonymity property should be
the first prerequisite. This properties conveys the fact that the collective preference
should not depend on the agents’ identities. Formally, for all permutation of agents
σ , then the collective preorder aggregation function G, must satisfy

G(�1,�2, . . . �n) = G(�σ(1),�σ(2), . . . �σ(n)).

3.3.2 The Tension Between Unanimity and Strict Equality

In this paragraph we adopt the utilitarian model, with a common scale of utilities: for
example, it is meaningful to say that a given allocation satisfies agent 1 more than
agent 2.

In general, unanimity and strict equality cannot be satisfied at the same time. That
is, there is in general no Pareto-efficient allocation giving to each agent the same
amount of individual utility, as the following abstract situation involving two agents
confronted to four possible allocations illustrates:

allocations u1 u2
a 4 4
b 3 6
c 7 5
d 2 11

Allocation a is perfectly equitable, but is dominated by allocation c (c is better than
a for each agent). Hence a is ruled out, in spite of its perfect equity. How to choose
then between b, c and d? No one dominates another. Egalitarianism (maximizing the
min) selects cwhereas classical utilitarianismchooses the sum-efficient but obviously
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unfair d. From an equity point of view, we are inclined to select c as the “optimal”
allocation. But there are less obvious situations. Imagine having to choose between
two allocations associated to the following utility profiles: 〈1, 49, 50〉 and 〈2, 2, 96〉.
Or what about the case 〈14, 43, 43〉 and 〈15, 15, 70〉?

3.3.3 The Priority Principle

Another principle is sometimes considered in situations where anonymity is not
completely relevant: the priority principle. Following this principle, an allocation
decision should be based on agents’ characteristics. For example, in the kidney
allocation problem, patients having waited longer than others could have priority,
or those having a longer life expectancy after transplant. Birthright is also a typical
example.

3.3.4 Independence of Unconcerned Agents (IUA)

This property, also called separability, applies to the collective preference.According
to IUA, the collective preference should be such that an agent who is indifferent
between two allocations can be ignoredwhen choosing between these two allocations
(she is not concerned by the choice). In other words, if this property is not satisfied,
the collective preference between two allocations for which an agent is indifferent,
depends on the precise individual utility of this agent for these allocations, which is
hardly acceptable.

Consider the following example (Moulin 1988). There are three agents and the col-
lective utility aggregation function g is themedian. Leta andb be two allocationswith
respective utility profiles 〈0, 2, 3〉 and 〈0, 1, 4〉. We have g(〈0, 2, 3〉) > g(〈0, 1, 4〉)
hence a 	col b. Now, consider two other allocations a′ and b′, with respective profiles
〈5, 2, 3〉 and 〈5, 1, 4〉 (utilities of agents 2 and 3 are not modified, but utility of agent
1 is raised from 0 to 5. We have now g(〈5, 2, 3〉) < g(〈5, 1, 4〉), that is b′ 	col a′.
The preference is reversed. Agent 1 is not concerned by the choice between a and b,
but her individual utility influences the choice between allocations which does not
change utilities of others! The collective preorder represented by the median does
not satisfies the IUA property.

This property is connected to the following important result. A collective preorder
is continuous and satisfies the IUA property if and only if this preorder is represented
by an additive collective utility aggregation function g(−→u ) = ∑

i f (ui ) where f is
continuous and increasing.

3.3.5 Inequality Reduction

This property supposes the utilitarian model with a common individual utility scale.
We have to define first what is called an inequality reducing transfer, or Pigou-

Dalton, transfer. Let −→u = 〈u1, u2, . . . , un〉 be a utility profile, with u1 < u2.
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Consider a utility transfer from agent 2 to agent 1 (from the richest to the
poorest) such that after this transfer, −→u becomes −→v with u1 + u2 = v1 + v2 and
|v2 − v1| < |u2 − u1|. Such transfer is said to reduce inequalities.

The inequality reduction property requires that any inequality reduction transfer
does not strictly decrease the collective utility. Formally, the preorder�col represented
by the aggregation function g reduces inequalitieswhen, for any pair of utility profiles−→u and −→v equal except on their first and second components, such that u1 < u2,
|v2 − v1| < |u2 − u1| and u1 + u2 = v1 + v2, we have g(

−→u ) ≤ g(−→v ).
Here is an example with three agents and g(〈u1, u2, u3〉) = u21 + u22 + u23. Let

a and b be two allocations respectively associated to the utility profiles 〈0, 3, 4〉
and 〈1, 2, 4〉. From a to b, inequalities are reduced, however g(〈0, 3, 4〉) = 25 >

g(〈1, 2, 4〉) = 21whichmeans that a is preferred to b.We conclude that the collective
preference does not obey the inequality reduction property in this case.

An interesting fact is connected with this property and the separability (IUA)
property: the preorder�col represented by the additive aggregation function g(

−→u ) =∑
i f (ui ) reduces inequalities if and only if f is a concave function. In the previous

example, f (x) = x2 is convex.
We now turn to properties which apply to allocations.

3.3.6 Proportionality (or Proportional Fair Share) and Max-Min Fair
Share

An allocation satisfies proportionality when each agent gets at least 1/n of the total
utility she would have received if she receives alone all objects (n is the number of
agents). This property was coined by Steinhaus in 1948 in the context of continuous
fair division (cake-cutting) problems.

Proportionality has been adapted to indivisible goods without monetary compen-
sation by Budish (2011), which defines themax-min fair share property. The original
definition is purely ordinal. In utilitarian terms, the max-min fair share of an agent
is the maximal utility that she can hope to get from an allocation if all the other
agents have the same preferences as her, when she always receive the worst share
(it is the best of the worst shares). An allocation satisfies the max-min fair share
property if each agent receives a utility no less than the utility of her max-min fair
share. Proportionality implies max-min fair share.

3.3.7 Envy-Freeness

This very general and intuitive property does not require interpersonal comparisons of
utility (just like proportionality). It both applies to the ordinal and cardinal (utilitarian)
models.

An allocation is envy-free if no agent strictly prefers the share of another agent
to her own share. It is a kind of stability property. Formally, let ai/j be an allocation
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identical to a except that agent i gets the share that was the share of agent j in a. We
say that a is envy-free if a �i ai/j for all agents i, j .

Envy-freeness and Pareto-efficiency are generally not compatible. Furthermore,
the problem of determining whether an allocation satisfying envy-freeness and
Pareto-efficiency exists is quite complex; even in most reasonable settings (see for
instance, Bouveret and Lang 2008).

Under additive preferences, envy-freeness implies proportionality. Other fairness
properties and their relations to each other are presented in the paper by Bouveret
and Lemaître (2016).

3.4 Main Aggregation Functions

In the utilitarian model, a family of aggregation functions is particularly interesting
in the context of fair division, namely the root-power quasi-arithmetic means family,
defined as follows (assuming strictly positive utilities):

gp(
−→u ) =

(
1

n

∑

i

u p
i

)1/p

, p �= 0 g0(
−→u ) =

(∏

i

ui

)1/n

, for n = |−→u |

The family is parameterized by the real number p. Functions of this family are
additive11 and hence induced preorders obey the separability (IUA) property (see
p. 23). When p = 1, g1 is the standard arithmetic mean, corresponding to classical
utilitarianism. The case p = 0 corresponds to the Nash function, which is indepen-
dent of individual scale of agents utilities, a particularly interesting property. The
collective preorder induced by g reduces inequalities if and only if p < 1. Finally,
when p tends to −∞, g tends toward the min function, and the induced preorder
tends toward the leximin preorder.12

Notice that this family creates a continuum between the extremes classical utili-
tarianism (sum) and egalitarianism (min).

Another family of interest is the family of ordered weighted averages (OWA)
(Yager 1988), a variant of the weighted averages in which weights do not hold on
the components but on the ranks. A n-OWA is a family of aggregation functions
from R

n into R, taking −→w = 〈w1, . . . ,wn〉 ∈ [0, 1]n as parameter, with
∑

i wi = 1,
defined by O−→w (

−→a ) = ∑n
i=1 wi · a�

i , where 〈a�
1, a

�
2, . . . , a

�
n〉 is 〈a1, a2, . . . , an〉 once

sorted weakly increasing. OWAs can express: the mean (wi = 1/n for all i); the

11Strictly speaking, these function are not additive. However the preorders they induce can be
represented by additive functions, derived from original ones by increasing transformations. Even
g0 is additive in the broad sense of the term, because the additive function

∑
i log(ui ) represents

the same preorder.
12The leximin preorder is a refinement of the preorder induced by the min function which satisfies
unanimity (Pareto-efficiency). The leximin preorder is precisely the one which at the same time
reduces inequalities and is independent of the common scale of utilities.
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min (w1 = 1, and wi = 0 for all i > 1); the median (w(n+1)/2 = 1, and wi = 0 for
i �= (n + 1)/2); parameterizable compromises between min and mean, for example
wi = αi , 0 < α < 1 (with a suitable normalization); a function which tends towards
a representation of the leximin preorder (the previous one when α tends towards 0).

3.5 Procedural Allocation of a Divisible and Heterogeneous
Resource (Cake-Cutting)

The previous allocation model — choosing an allocation that maximizes an appro-
priate collective utility function — is based on two implicit assumptions. First, each
agent should completely and honestly report her preferences (under the form of a
utility function). Second, the agents rely on a central entity that is in charge of com-
puting the allocation. In some cases, the agents do not wish to publicly report their
preferences, and even if they accept to do so, nothing prevents them from acting
strategically and misreporting them. Finally, the agents can simply refuse to trust a
central authority. Hence the model based on the central optimization of a collective
utility function is not adapted to every situation.

There exists a very different kind of allocation procedures, that have been stud-
ied for years. These procedures are by essence distributed and output a fair and
efficient allocation from the preferences or a small fraction of them reported (hon-
estly if possible) by the agents. These procedures — often called mechanisms— are
particularly used in the context of the allocation of an infinitely divisible and hetero-
geneous good. The traditional metaphor is the cake-cutting situation: a rectangular
cake (formally modeled has the [0, 1] real interval) is the common divisible and
heterogeneous resource, and has to be shared among the n starving invitees, which
all have a particular utility function on this interval.13

The allocation procedures that are studied in this context are similar to games
in which the agents interact. The most prominent procedure in this context is the
well-known “I cut, you choose” game, that can be used to cut a cake between two
participants which can be roughly described as follows. One of the two participants
is the divider. The other one is the chooser. Provided that the cake can be divided in
all possible ways, that it is heterogeneous and that the participants can have different
tastes for different parts of the cake, cutting the cake in two equal parts is in general
not Pareto-optimal. The safest action for the divider is to cut the cake into two pieces
that are equal from her point of view. Then the chooser will take the best of the
two pieces. Under mild natural assumptions,14 it is easy to see that the resulting
allocation is Pareto-efficient, envy-free and proportional (satisfying the fair share

13Or at least an ordinal function on intervals: between two intervals, each agent must be able to
determine which of the two is better.
14The agents are rational (they decide so as tomaximize their satisfaction) and their utility is additive
in the ordinal sense: if A 	 B, C 	 D and A ∩ C = ∅, then A ∪ C 	 B ∪ D.
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property). However, as we shall see later, the generalization of this protocol to three
agents or more is not straightforward.

The allocation problem of divisible and heterogeneous goods has a lot of real-
world applications, among which we can mention the time-sharing of a common
facility, or the land division problem.

A large number of works are dedicated to this problem, essentially in the field
of economics. The seminal books by Robertson and Webb (1998), Young (1994,
Chaps. 8 and 9) and Brams and Taylor (1996) are good surveys of the topic. The
interested reader can also have a look at the more recent paper by Brams et al.
(2006). Plenty of procedures are now well-known and well-studied, adapted to dif-
ferent contexts, and characterized by their fairness and efficiency properties. Some
impossibility theorems have also been described.

More recently, researchers in artificial intelligence have contributed to the field
of cake-cutting. They have mainly focused on the algorithmic complexity of the
proposedprocedures. The analysis of the complexity bounds requires the introduction
of precise models of interaction between the agents. From this point of view, the
researchers in AI also contribute: for instance, the classical model of interaction,
that has been proposed by Robertson and Webb (1998), has been recently extended
by a group of computer scientists (Brânzei et al. 2016). For interested readers, the
paper by Procaccia (2009) proposes an interesting survey of the complexity bounds
of cake-cutting procedures and the chapter by Procaccia (2016) gives an overview
on algorithmic aspects of cake-cutting.

To give an idea of the difficulty of the mathematical problems we have to deal in
this area and how computer scientists have contributed to the field, let us go back to
the aforementioned problem of finding a protocol to find an envy-free cake cutting
for three agents or more. In the early 60’s, Selfridge and Conway independently
came up with a protocol that returns an envy-free cake cutting in a bounded number
of steps for three agents (Brams and Taylor 1996). A few decades later, Brams and
Taylor (1995) came up with a general envy-free protocol that works for any number
of agents. This protocol is guaranteed to terminate in finite time; however, the number
of queries needed can be unbounded, even for four agents. The problem of finding
a protocol that returns an envy-free allocation in a bounded number of queries for
any number of agents had been opened for decades until it was finally solved by two
computer scientists, Aziz and Mackenzie (2016). They came up with an algorithm

that finds an envy-free allocation in less than nn
nn

nn

queries, hence closing what has
been described by several researchers as one of the main challenges in the field.

To finish this overview, we can mention some extension of the cake-cutting prob-
lem (called online cake-cutting) in the case where some participants arrive and depart
when the allocation process is ongoing (Walsh 2010).
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3.6 Fair Division and Computer Science

As we have seen earlier, resource allocation problems have long been mainly studied
by economists, either from the normative or axiomatic point of view (as in the works
by Young 1994 and Moulin 2003 for instance) or from the procedural point of view
like in the works by Brams and Taylor (1996, 2000) about cake-cutting. However,
like in voting, computer scientists andAI andOR researchers have started for a couple
of years to investigate the computational aspects of resource allocation problems:
compact preference representation, algorithmic or complexity issues... The vitality
of the field is well illustrated by the chapters dedicated to fair division in the survey
books on computational social choice (Brandt et al. 2016b, Chaps. 11–13) (Rothe
and Rothe 2015, Chaps. 7 and 8).

3.6.1 Compact Preference Representation

Even if a lot of work has been done in recent years on the topic of compact preference
representation (see chapter “Compact Representation of Preferences” of this volume
dedicated to this topic), only a small fraction of this work directly concerns resource
allocation problems, with the notable exception of combinatorial auctions (as wewill
see in Sect. 4). On the one hand the domain of compact preference representation is
quite young and resource allocation problems only represent a small fraction of the
individual or collective decision making problems involving compact representation
issues. On the other hand, a lot ofworks dedicated to algorithmic or complexity issues
of fair division problem simply rule out these compact representation problems by
assuming that the preferences are additive: see for instance the paper by Lipton
et al. (2004) mainly dedicated to additive preferences, or the works by Bezáková
and Dani (2005), Bansal and Sviridenko (2006), Asadpour and Saberi (2007) on the
Santa-Claus problem.

The first papers explicitly dedicated to compact preference representation in fair
division problems date back to the works by Chevaleyre et al. (2004) on k-additive
functions and those by Bouveret et al. (2005) and Bouveret and Lang (2008) mainly
concerning logic-based compact representation. We can also mention an adaptation
of the language of CP-nets for the compact preference representation in the context of
fair division problems, that was proposed by Bouveret et al. (2009). It seems however
that not much work has been done since on compact representation in fair division,
and that AI researchers have focused on simpler settings like additive preferences.
One of the reasons might be that it is not so clear whether the benefit of using an
expressive compact representation language is worth the additional complexity cost
and elicitation burden or not, and that the use of simple additive preferences might
well be enough for most applications.
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3.6.2 Complexity and Algorithmic Issues

At the beginning of computational social choice, most works especially dedicated
to algorithmic aspects of resource allocation are from the fields of combinatorial
auctions or operations research. In the latter domain, fair division problems have
been mostly considered from the point of view of “fair” multicriteria optimisation
problems, that is, optimisation problems where the criteria should be maximized
(or minimized) while being made as equal as possible. For instance, leximin, or
(inequality-reducing) OWA optimization problems belong to this kind of problems.
Among these works, to cite only two, Ogryczak (1997) applies fair optimization to
fair facility location problems, and Luss (1999) to fair division.

Several works have followed the earlier paper about algorithmic aspects of fair
division in different fields of research, both in artificial intelligence and operations
research. For instance, a very active stream of works has concerned algorithmic and
complexity aspects of a particular fair division problem, the Santa-Claus Problem.
This problem can be formulated as follows: Santa-Claus has to allocate a set of m
(indivisible, non shareable) toys to a set of n children. Each child has an additive
utility function on the set of toys. The allocation must be made so as to maximize the
utility of the least satisfied child. Of course, in spite of this special formulation, this
problem is nothing else than a fair division problem with indivisible goods, additive
preferences, and under the egalitarian criterion. Several papers (just to name a few,
Bezáková and Dani 2005; Bansal and Sviridenko 2006; Asadpour and Saberi 2007)
have investigated the complexity and approximation algorithms of this problem.
They have also drawn a interesting parallel with scheduling problems that have led
to fruitful approximation approaches.

Still in the context of additive preferences, several works have also investigated
other fairness criteria. The seminal paper by Lipton et al. (2004) is one of the first
works concerning the complexity and approximation of computing an allocation
minimizing the envy between agents.15 de Keijzer et al. (2009) have extended the
latter paper by proving that the problem of determining whether an envy-free and
Pareto-efficient allocation was NP-complete. Later on, the case of ordinal separable
(i.e. additive) preferences has been investigated by Bouveret et al. (2010), and fur-
ther by Aziz et al. (2015) that have introduced interesting notions of envy-freeness
and Pareto-efficiency based on stochastic dominance. Concerning utility maximiza-
tion problems, Bouveret and Lemaître (2009) have focused on the computation of
leximin-optimal solutions using constraint programming approaches. Golden and
Perny (2010) and Lesca and Perny (2010) have also studied preference aggregation
in particular in the context of fair division problems, focusing on fairness criteria like
Lorenz optimality, maximization of an OWA or of a Choquet integral (extension of
the OWA that can take into account positive or negative interactions between agents).

Finally, several papers go beyond additive preferences and investigate theoretical
complexity issues related to the use of compact preference representation languages

15This work introduces an interesting extension of the aforementioned envy-freeness criterion, by
proposing different measures of envy.
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in the context of fair division. For utility maximization problems, the paper by Dunne
(2005) was one of the first works investigating the complexity of fair division prob-
lems with preference representation based on Straight-Line Programs. At the same
time, Bouveret et al. (2005) have focused on preference representation based on
propositional logic. All these results have been extended to other social welfare
functions, other languages like k-additive languages, and approximation issues by
Nguyen et al. (2014). Finally, the complexity of finding envy-free allocations with
logic-based compact preference languages has been investigated by Bouveret and
Lang (2008).

3.6.3 Distributed Allocation and Communication Complexity

Even if distributed allocation and negotiation issues in fair division will mainly be
discussed in chapter “Negotiation and Persuasion among Agents” of this volume, an
overview of computer science aspects of resource allocation would be incomplete
without evoking this domain. In the absence of any central authority, the natural way
of computing an “optimal” allocation is to start from an initial allocation and then
let the agents changing it using multilateral negotiation. In this framework, the main
desirable properties are related to the convergence of the negotiation process, and the
complexity is not defined in terms of computation, but in terms of communication
costs (number of steps, size of the messages exchanged...).

The first theoretical results in this domain date back to Sandholm (1998). The
notion of communication complexity has been imported in fair division in particu-
lar by Endriss and Maudet (2005) and Dunne et al. (2005), that mainly focus on the
number of swaps needed to reach an optimal allocation.We can also mention, among
other works on the subject, the paper by Chevaleyre et al. (2007) that focuses on a
relaxation of the envy-freeness criterion, for which the agents only have a limited
knowledge of the other agents. Finally, a paper by Chevaleyre et al. (2017) ana-
lyzes the fairness properties (like envy-freeness or proportionality) of the allocations
obtained after the convergence of the negotiation process with several kinds of deals,
and also in the case where the set of possible swaps is constrained by a graph.

3.6.4 Recent Trends

We can observe an interesting recent trend in the community of computational fair
division. As already noticed in the section dedicated to compact preference repre-
sentation, a significant trend is to abandon complex theoretical frameworks and look
for simple models that are inspired by practical applications and can be used in real
situations. This has led to a stream of works trying to implement fair division in prac-
tice (see for instance the wonderful web application Spliddit16), or take inspiration

16http://www.spliddit.org/.

http://www.spliddit.org/
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from practice to find better ways of defining fairness or motivating fairness criteria.
With simplicity in mind, most of these works are based on additive preferences.

Among the works proposing some alternative approaches to fairness, Bouveret
and Lemaître (2016) introduce a scale of five fairness criteria of increasing strength.
This scale can be used as a measure of the level of conflict of the agents’ preferences:
the higher criterion it is possible to satisfy, the less conflicting the preferences are,
and the more likely it will be possible to find a satisfactory allocation. Among the
five criteria, the maximin share and the Competitive Equilibrium from Equal Income
(CEEI) criteria were already known in economics, but had been ignored so far by
computer scientists. This is no longer the case, and it had led to fruitful works on
theoretical properties, approximation and complexity, either about CEEI (Brânzei
et al. 2015; Aziz 2015), or about the maximin share (Procaccia and Wang 2014;
Amanatidis et al. 2015; Kurokawa et al. 2015). Caragiannis et al. (2016b) have also
revisited a long-standing criterion, the seminal Nash social welfare function, and
shed a new light on its appealing fairness properties.

Finally, we can also mention an interesting work that perfectly characterizes the
fruitful collaboration between economics and computer science. Dickerson et al.
(2014) analyze, both in practice and analytically, the probability of existence of an
envy-free allocation, depending on the ratio between the number of objects and the
number of agents: when this ratio is low, an envy-free allocation is very likely not to
exist, and the opposite when the ratio is high enough. Furthermore, the simulations
show a very interesting phase-transition phenomenon.

4 Combinatorial Auctions

4.1 From Classical to Combinatorial Auctions

Auctions is probably one of themost widely studied collective decisionmaking prob-
lem in the economical literature in the last fifty years. In its most general definition,
an auction is simply a structuredmechanism in which some agents, the bidders, com-
pete for some objects to buy. The mechanism (which is in practice implemented by
a central entity, the auctioneer) is in charge of determining which objects each agent
will get at which price. A wide variety of mechanisms are studied by economists
and used in practice. Just to name a few, an auction can be open if the participants
publicly announce their bids, or sealed if the bidders only reveal this information to
the auctioneer and hide it from the other participants. An auction is ascending if the
bidders iteratively increase their bids until no agent is willing to pay a higher price,
and descending if the price proposed for an object decreases until at least one bidder
declares to be interested. In a first price auction, the winner should pay the price
corresponding to the highest bid, whereas in a second price auction, she should pay
the second highest price.
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Themost common auctions types are theEnglish auction (open first-price ascend-
ing) which is commonly used in artwork sales. The Dutch auction (open first-price
descending, inwhich the auctioneer progressively decreases the price proposed for an
object until a bidder accepts and pays this price) is traditionally used for perishable
products like tulips in the Netherlands. The Vickrey auction (sealed second-price)
is also called philatelic auction because it is used in the United States for collec-
tion stamps sales. Finally, the sealed first-price auction is classically used for the
attribution of government contracts.

Auction theory has been studied for about 50 years mostly in economics — the
first theoretical work on auctions is generally attributed to Vickrey (1961) — but
computer scientists have recently paid an increasing attention to this field, mainly
with the study of combinatorial auctions.

The study of combinatorial auctions in computer science dates back to the work
of Rassenti et al. (1982). The starting point of this work is that classical auctions
mechanisms, sequential by nature (that is, selling objects one by one) can be quite
inefficient and barely adapted to the situations where the bidders have non-modular
preferences on the objects; in other words, when they have are preferential depen-
dencies.

Let us consider a simple example where three objects are for sale: a vinyl disc
player (p) and two (indivisible) sets of vinyl discs: the first set contains records from
the Beatles (b) and the second one records from the Rolling Stones (s). Agent 1 is
very interested in having one of the two sets of records (no matter which of the two),
but does not own any disc player. Moreover, she is not interested in buying the disc
player alone, because she does not have any vinyl disc to listen to. She is for instance
ready to pay e100 for {p, b} or {p, s}, e110 for {p, b, s} but nothing for individual
objects. In other words, p and b are complementary, p and s are as well, but s and b
are substitutes. Agent 2 is also interested in the sets of records, but she already owns
a disc player. Let us say that she is thus ready to pay e30 for {b} or for {s}, e10 for
{p}, e40 for {p, b} or {p, s} and e70 for {p, b, s} (her preferences are additive).

If the objects are sold sequentially, the first agent will probably have difficulties to
bid for them. Not knowing Agent 2’s preferences, she will probably not take the risk
of bidding for one of the two sets of records if she does not know for sure whether
she will get the disc player (and the other way around). Agent 2 will not have the
same difficulties: her preferences being additive, she can safely bid on each of the
three objects separately. Not only sequential allocation can have a negative effect on
bidding, but it can also harm the overall auction efficiency. For instance, in the latter
auction, if Agent 1 is risk-adverse and chooses not to bid at all, the three objects will
go to Agent 2 for a total price of e70 (provided that it is a first-price auction). If all
three objects had been allocated to Agent 1, the auctioneer would have earnede110.

An obvious solution to this problem is to sell bundles of objects instead of selling
them individually.17 However, it it not obvious how to do so, because the way the
bundles are formed should be related to the preferential dependencies of the agents. In
some cases it is reasonable to assume that these dependencies are the same (in a shoe

17Other methods exist; see for instance simultaneous ascending auctions (Cramton 2006).
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sale for instance, we can reasonably assume that the agents will only be interested in
pairs of shoes, not individual shoes), but it is not always the case. For instance, in the
latter auction, would it be more relevant to sell p and s together, or b and s together?
The only solution to this problem is to sell all the objects simultaneously, and provide
a way for the bidders to choose themselves the bundles they want to bid for. This is
the basic idea behind combinatorial auctions. It has motivated the first works in this
domain, concerning the allocation of take-off and landing slots in airports (Rassenti
et al. 1982). In this application, the notion of preferential dependency is naturally
present (what would an airline do with a take-off slot without the corresponding
landing slot?).

It is not a surprise that this extension of classical auctions has been mainly devel-
oped and studied in the field of computer science and artificial intelligence. A lot of
problems that arise in combinatorial auctions are well-known in computer science.
As we shall see, the combinatorial blow-up induced by the representation of the
allocation space calls for compact representation bidding languages. Furthermore,
the problem of determining the optimal allocation is a lot more complex than in
traditional auctions and induces intricate algorithmic issues. Finally, even if we will
elude these aspects in the chapter, issues related to the design of truth-telling auctions
mechanisms and their resistance to manipulation is a crucial topic. They are not only
related to combinatorial auctions, but have a special formulation in this context. All
these topics are covered in details in the reference book by Cramton et al. (2006).

In what follows, we will denote by O the finite set of objects to be allocated
to the agents (the set of objects the agents bid for). Given a set of n agents N
and a set of objects O , an allocation −→π is a vector 〈π1, . . . , πn〉, where for all i ,
πi ⊂ O denotes the share received by agent i . In this section, we will only focus on
allocations satisfying the preemption constraint, that is, such that ∀i �= j : πi ∩ π j =
∅ (an object cannot be allocated to two different agents).

4.2 Bidding Languages

As we have seen, the main difference between combinatorial and classical auctions
is the bidding set, which is namely the set of objects O for classical auctions and
the set of bundles 2O for combinatorial auctions. From the theoretical point of view,
changing the bidding set does not make a huge difference in the formal definition of
the problem. However, in practice, the combinatorial dimension of the bidding set
induces crucial representation18 and computation issues.

The most prominent bidding languages used in combinatorial auctions are the
ones from the family of XOR / OR / OR� languages (Nisan 2006; Fujishima et al.
1999; Sandholm 2002).

18A simplistic representation of an agent’s utility function requires 2m − 1 values, corresponding
to the number of non-empty subsets of O .
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Definition 1 (XOR / OR / OR� languages) LetO be a finite set of objects. An atomic
bid on O is a pair 〈S ,w〉 ∈ 2O × R

+. A set {〈S1,w1〉, . . . , 〈Sp,wp〉} of atomic
bids is said to be admissible ifSi ∩ S j = ∅ for all i �= j in {1, . . . , p}.

A bid expressed in the XOR language is a finite set of atomic bids

〈S1,w1〉 XOR . . . XOR 〈Sp,wp〉.

The utility function associated to a bid M in the XOR language, mapping each
set of objects π (in other words each possible share) to the price the agent is ready
to pay for it, is defined as follows:

u : 2O → R
+

π �→ max
〈S i ,wi 〉∈M

S i⊆π

wi

A bid expressed in the OR language is a finite set of atomic bids

〈S1,w1〉 OR . . . OR 〈Sp,wp〉.

The utility function associated to a bid M in the OR language is:

u : 2O → R
+

π �→ max
M ′⊆M

M ′ admissible

∑

〈S i ,wi 〉∈M ′
S i⊆π

wi

A bid expressed in the OR�language is a bid expressed in the OR language in
which one or several dummy objects d /∈ O can be present.

In the XOR language, an agent can cast a custom set of atomic bids. Each atomic
bid gives the price the agent is ready to pay for the corresponding bundle. Given a
set of objects the price an agent is ready to pay for it is the price of the best bundle
it contains.

The OR language works the same way, except that in this language, the prices are
interpreted additively.

By adding dummy objects to the bids in the OR� language the agents can make
several bids incompatible, as in the XOR language, even if they do not overlap
otherwise.

Some authors (see for instance the work by Sandholm 1999) have proposed to
combine the OR and XOR language to benefit from the expressivity of the XOR
language and the compactness of the OR language. Several languages have been
developed and used, among which we can mention the OR-of-XOR, XOR-of-OR
and OR / XOR languages.

Some other kinds of bidding language have also been developed, among others
logical ones. For instance, Boutilier and Hoos (2001) have proposed a language mix-
ing logic and numerical weights (representing utilities) associated to subformulas.
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The main interest of such a language is to combine the approach based on objects
and the approach based on bundles, by proposing a way to logically combine the
weighted formulas (that can be seen as the atomic “bids” of this language).

4.3 The Winner Determination Problem

4.3.1 Formulation and Theoretical Complexity

The Winner Determination Problem (WDP for short) is the central problem in com-
binatorial auctions. The objective is to decide, among the set of bids, which ones
will be selected, coming down to determine which objects will be allocated to which
agents. The main allocation criterion used in combinatorial auctions is the utilitar-
ian criterion, that is, we look for the allocation that maximizes the revenue of the
auctioneer.

Definition 2 (Winner Determination Problem)

• Input: A set of agents N , a set of objects O , and a set of utility functions
(u1, . . . , un) expressed as bids in a combinatorial auction language.

• Output: An allocation −→π of the objects that maximizes
∑n

i=1 ui (πi ).

Notice that this formulation of WDP implicitly assumes that the auctioneer can
freely dispose objects (in other words, the allocation can be incomplete), which is a
common assumption in combinatorial auctions.

TheWinner Determination Problem has mainly been studied in the context of OR
or XOR bids, for which there is a natural formulation in 0–1 linear programming.
The idea is to create a variable xj

i ∈ {0, 1} for each atomic bid 〈S j ,wj 〉 ∈ Mi . x
j
i = 1

if and only if this atomic bid is selected in the allocation.

max
∑

i∈N
∑

S j∈M i
w j × xj

i

s.t. xj
i ∈ {0, 1}

∑
i∈N

∑
S j∈M i
o∈S j

xj
i ≤ 1 for all o ∈ O (OR constraint)

or
∑

S j∈M i
xj

i ≤ 1 for all i ∈ N (XOR constraint)

We can notice that this formulation of the OR and XOR Winner Determination
Problemmakes the problem strictly equivalent to the well-known knapsack problem.
It implies that the general decision version of the problem isNP-complete (Rothkopf
et al. 1998), but it also remains NP-complete even with very restrictive assumption
about the values and the kind of bids allowed, and also on the number of agents
(Lehmann et al. 2006).



622 S. Bouveret et al.

4.3.2 Optimal Solving

In spite of the complexity of the WDP for OR, XOR languages and their variants,
quite large instances can be nevertheless efficiently solved by state-of-the-art linear
solvers running on the previous formulation of the WDP. However, the use of ad
hoc branching approaches (see for instance chapter “Heuristically Ordered Search
in State Graphs” of volume2) that are tailored to this particular problem give even
better results.

There are two natural ways of solving the WDP with a branching algorithm. The
first possibility is to branch on objects, that is, to choose an object at each node of
the search tree and to decide to which bid this object will be allocated. To take into
account the free disposal assumption, a classical approach is to create a dummy bid
containing all the objects and to which will be allocated all the disposed items. This
branching approach can be used in combination with several methods that drastically
reduce the size of the search space. For instance, some parts of the search tree can
be pruned by only allocating objects to bids that have not already been considered in
the previous branches. The second way of solving theWDP is to branch on bids, that
is, to choose at each node of the search tree an atomic bid and decide whether it will
be satisfied or not. Maintaining a conflict graph between bids, that updates when the
bids are selected or discarded, dramatically improves the algorithm efficiency.

5 Conclusion

In this chapter, we have presented the foundations of (mainly) centralized collective
decision making.19

This domain, that has originally been mostly studied by political scientists and
economists, has recentlymet computer science andmore specifically artificial intelli-
gence. This very active scientific domain born from this convergence has been called
computational social choice. To illustrate the scientific activity in this domain, we
have presented in this chapter three prominent centralized collective making prob-
lems: voting, fair division and combinatorial auctions. For each of these domains,
we have presented the main works related to artificial intelligence.

Centralized collective decision making proceeds by directly aggregating the
agents preferences into a collective preferred decision that is not supposed to be
changed afterwards. A different approach to collective decision making is to let the
agents interact and negotiate: this is the case in distributed collective decision mak-
ing, presented in chapter “Negotiation and Persuasion amongAgents” of this volume,
that will complement the overview given in this chapter.

19The cake-cutting setting, that has also been introduced in this chapter, is an exception: the resolu-
tion of this problem is based on interactions between agents, which is by definition not a centralized
process.
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Formalization of Cognitive-Agent
Systems, Trust, and Emotions

Jonathan Ben-Naim, Dominique Longin and Emiliano Lorini

Abstract Acognitive agent is an agent characterized by properties that are generally
attributed to humans. Cognition is viewed here as a general mechanism of reasoning
(in contrast with reactive agents) about knowledge. Such agents can perceive their
environment, reason about fact or epistemic states of other agents, have a decision
making process, etc. This article presents the main concepts used in cognitive agents
formalizations, and speak about two particular concepts related to humans: trust and
emotion. The language used for cognitive agents is here a logical language because it
particularly fits well for both knowledge representation and reasoning formalization.
But, even if trust and emotion can be both easily formalized by logical languages,
we show that some numerical models are also well adapted.

1 Introduction

To characterize an agent is never easy because a lot of languages can be used, the
properties attached to this agent can be various, some concepts may have different
names in different contexts, the set of concepts that we need in some context must
be different of the set needed in another context, etc. In the following, agents are
defined as entities having some properties such as: autonomy (they can act without
any human action but only with respect to their internal states); reactivity (they can
interact with other –human or artificial– agents by using a communication language,
or perform some actions that are needed by the environment); pro-activation (they
can adopt a behavior following from their goals by taking the initiative); etc. As it
is summarized by Wooldridge (2000), agents are viewed here as computer systems
“deciding for themselves what to do in any given situation”.
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More specifically, in the area of artificial intelligence (AI), the agents properties
are often described by using concepts usually associated to humans such as: mental
attitudes (belief, knowledge, goal, desire, intention, etc.); social attitudes (commit-
ment, common belief or common intention, acceptance, etc.), time and action. The
properties can also be themselves more specific to humans. We can cite for instance:
rationality (in a very wide sense, it means that agents do not act in a contradictory
manner: they do not believe both something and its converse, they act with respect
to their goals, etc.); sincerity (agents do not aim to communicate something they
thinks false), etc. These properties depend on the context where agents evolve. For
instance, is it suitable to have a sincere agent playing poker or an insincere agent
supposed to report weather forecasting? Certainly not. So, all the properties used by
system designers are selected depending on a particular application.

In the following, we call “cognitive agent system” (or “cognitive system” for
short) a system which has a behavior predictable only from its mental attitudes. So,
the problem is to determine the mental attitudes that are needed to formalize the
properties that we want to attribute to the agents of the system. An advantage of such
systems is that they candescribe everything, even functional objects (cars, locks, etc.).
These systems are very popular in AI because they have interesting properties: they
are philosophically well-founded, the formal tools are mathematically well defined,
the high abstraction level that is used allow to distinguish how something works in
the real workd from the general concepts that will used to model it. Finally, these
systems have a strong explanatory power (an action mathematically following from
both their properties and the agents’mental states that aremembers of these systems).

In the following, we first speak about cognitive agent systems formalization
(Sect. 2). Such an agent is supposed to be able to: represent its physical environment
(including the other agents); represent the manner that it wants this environment
evolves; reason about these representations in the aim to perform an action.1 Logic
is a tool that fits very well both this formalizing task and this reasoning task, and
this section will only present logical tools (more precisely, modal logics), including
three types of operators: belief or knowledge (environment representation), desires,
goals, preferences, etc. (representation of the wished evolution of this environment),
action and time.2

Finally, we present two particular concepts strongly related to cognition: trust
(Sect. 3) and emotion (Sect. 4). We will focus on the cognitive structure of these con-
cepts, that is, on mental states that are necessary to trust or to trigger an emotion. But
logic is less appropriate to the representation of their intensity than numerical mod-
els. It explains why there are both logical models and numerical models representing
trust and emotion. We will give a short overview of these two approaches.

1Note that the word agent comes from Latin language agere and means to act, to do.
2These logics are often called BDI logics (for belief, desire, intention). By analogy, we speak also
of BDI agents (systems).
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2 Cognitive-Agent Formal Systems

2.1 Short History of BDI Systems

One can say that the story of formal systems as they are today is as long as that
of philosophy. Indeed, since Aristotle, philosophy investigated a certain number of
concepts: modal logics (logics of necessary and possible), epistemic or doxastic
logics (belief and knowledge), deontic logics (obligation, interdiction, permission),
temporal, conditional, dynamic logics (explicit or implicit actions), etc.

Our main subject is modal logics, that is, logics including operators that are not
truth-functional. So, if � is a modal operator, then the formula �ϕ (where ϕ is also
a formula of the modal logic) is true independently of the truth-value of ϕ. This �
operator can represent beliefs, goals, intentions, etc. For example, ifBeli sunnymeans
that Agent i believes it is sunny, then i can believe it is sunny or not, independently
of the weather. (See chapter “Knowledge Representation: Modalities, Conditionals,
and Nonmonotonic Reasoning” of the same volume for more details about modal
logics.)

All these formal works, as well as certain others, in particular in philosophy (see
Searle (1983) and especially Bratman (1987)), have contributed to the construction,
between end of 80’s and beginning of 90’s, of the logic BDI of Cohen and Levesque,
where: first, intention is defined, in a non-primitive way, from beliefs and goals
(Cohen and Levesque 1990); and second, the formal framework is also used to
characterize the capacities of the agents with regard to communication (Cohen et
al. 1990). One can say that those works have been the corner stone of cognitive-
agent systems.3 Indeed, it suffices to see theories of agents (in particular, those of
the language of the agents) as theories of action.4

Those works have been followed by those of Rao and Georgeff who, based on
the logical principals adopted by Cohen and Levesque, have looked forward to a
more rigorous formal framework in a temporal logic accompanied with a semantics
and an axiomatization (Rao and Georgeff 1991). It is worth noting that in those
works intention is defined in a non-primitive way. In the same research avenue, we
can mention the work of Wooldridge, who introduced the logic LORA (LOgic of
Rational Agent) in Wooldridge (2000). The goal of Wooldridge was not only to
formalize an agent architecture of the type BDI, but also its evolution in time.

Concerning french work, we canmention the work of Sadek (see his PhD thesis or
KR’92), who, in a formal framework of the same family, defined rationality rules in
order to guide the behaviour of a rational agent in a system of rational interactions.
By the way, his theory has influenced a language of agent communication (agent
communication language or ACL) that became an international reference, which

3Their paper in Artificial Intelligence has received the AAMAS most influential paper award in
2008.
4This explains by the way the success of the theory of linguistic actions (Austin 1962; Searle 1969)
in the agent community: in those theories, the language is seen as the accomplishment of actions,
facilitating de facto the formal union of physical and linguistic actions.
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has been used or gave rise to numerous works in the agent community: the FIPA
language.5

In the mid 90s, more operational languages appeared, in the sense that the goal is
not only to have a logical formalism able to capture the concepts useful to construct
the agent systems of interest, but also to implement them. So,BDI systems formalized
in situation calculus appeared (see for example the works of Shapiro, Lespérance,
and Levesque in Toronto). Programming languages based on primitives of the BDI
type also appear: one can mention e.g. GOLOG or ConGolog. This community gave
rise to what can be called nowadays cognitive robotics, whose laboratory of the same
name in Toronto is the most prominent representative.

Certain formalisms also aims at describing normative systems, that is, systems
where the agents have not only to consider what they believe (or know) and what are
their goals, but also what they must do. This aspect uses (also also inherits theoretical
questions from) deontic logic. For example, we can mention the BOID architecture
(where O represent the obligation component of the BDI system) of van der Torre et
al. (see e.g. the paper published in AGENTS’01).

Next, BDI systems not onlymanipulatemental attitudes (in addition to time and/or
action), but also social concepts or external constraints. Obligation can be seen as an
internal norm (it is then formalized by an operator indexed by an agent or a group
of agents), or as an external law every agent must obey (it is then formalized by a
non-indexed operator).

By the end of 90’s, the BDI systems, as they are then formalized, are heavily criti-
cized, because they are based on strong hypotheses about mental states, in particular
sincerity. So, in FIPA for example, an agent believes everything it is told by another
agent, because it always assumes the latter tells the truth.

To avoid this problem, certain works describe the effect of a linguistic action by
separating what the speaker wants to mean from what the listener believes on the
basis of hypotheses made by the latter about the sincerity and competence of the
former. Other works looked forward to alternative concepts allowing us to free us
from those hypotheses about the internal states of the agents. For example, there are
numerous works on social commitment aiming at capturing the public commitment
of an agent generated by what that agent says. For instance, when someone says
something, he (or she) is committed to the truth-value of that proposition: he could
not say he did not said it, and cannot say or do something that opposes what he
said (see e.g. the work of Singh (Singh 1999) and de Colombetti in Switzerland).
Nevertheless, those approaches also have drawbacks: other hypotheses are made (for
example, the public aspect of linguistic actions and the fact that they are correctly
interpreted by their targets). In addition, it is not obvious that this concept is devoid
of links with the mental states of the committed agents.

Finally, this notion has not been studied in a satisfactory way as a non-primitive
concept,6 despite the fact it apparently contains a normative and conventional com-
ponent, as well as violation condition. In such circumstances, those approaches are

5http://www.fipa.org/repository/aclspecs.html.
6That is, a concept constructed from lower-level concepts.

http://www.fipa.org/repository/aclspecs.html
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almost not BDI systems, since they do not involve mental states: there is an intuitive
link, but it has to be formally established.

Other traditional concept have been confronted to that problem, e.g., common
belief. The latter is generally defined as the infinite conjunction of the alternative
beliefs between agents. For example, if there is common belief between agents i
and j about ϕ, then i believes ϕ, j believes ϕ, i believes j believes ϕ, j believes i
believes ϕ, i believes j believes i believes ϕ, etc.

Thus, the problem in an implemented system is to decidewhether there is common
belief without having access to the minds of the agents. At best, we can construct
a subjective notion of common belief, i.e., the fact that an agent believes there is
common belief (maybe it is not the case). A number of philosophical works are
related to this question (see e.g. Gilbert (1989)). They led to notions like acceptance
(see e.g. Lorini et al. (2009).

In parallel, certain prior AI problems have been transferred to the BDI framework
and gave rise to a rich literature: the frame problem (how to describe environment in
a concise and exhaustive fashion?), the problem of characterizing actions (what are
the necessary and sufficient conditions to execute a given action?), the problems of
revision (how to have an agent’s knowledge evolves with time?) and action ramifi-
cation (how to describe the impact of an action on the domain, including the mental
states of the agents). For example, the advent of BDI systems was followed by the
problem of revising mental states (see e.g. van der Hoek et al. (2007).

More recently, this problem has become the heart of a branch of the domain:
dynamic epistemic logics (see below). Put simply, the goal is to integrate into the
semantics of these logics the fact that the beliefs (or knowledge) of an agent can
evolve: that agent can change his mind, learn that certain propositions are true, learn
that others are false, etc. At the cost of certain technical constraints, the logics of
public announcements give an adequate answer to the hard question of mental-states
evolution. For an overview on that subject see e.g. van Ditmarsch et al. (2007).

Finally, agent testbeds havebeendeveloped, like e.g.AgentSpeakbyRao, Jasonby
HÃbner and Bordini, or 2APL by Dastani. Those testbeds allow the implementation
of agents and multi-agent systems, but do not yet exhaust all the expressive power of
the BDI logics. In particular, they are not equipped with a complete set of boolean
operators and do not use theorem provers, which by the way already exist for certain
(families of) well-known logics.

Concepts proposed in the domain of BDI systems have also been used in other
domains of AI. For example, this is the case of argumentation, where e.g. Amgoud
used argumentation methods to generate desires and plans in an autonomous agent
(Amgoud and Rahwan 2006) (see also chapter “Argumentation and Inconsistency-
tolerant Reasoning” of this volume).

2.2 Basic Concepts

In what follows, we present the basic concepts generally used in the formalization
of cognitive-agent systems in terms of mental states. Of course, all systems do not
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use all concepts simultaneously, because the way an agent system is characterized
depends on the domain of that system.

As soon as we need nested operators, modal logics are particularly adequate,
because a formula of a modal logic in the range of a modal operator forms a new
formula of that logic. So, we can have an arbitrary large degree of nestedness in
the formulas of the object language. This property is particularly important in the
domain of cognition, because we can have beliefs about almost anything, including
other beliefs: Agent i believes Agent j believes Agent k believes Agent i believes
p, etc. (see chapter “Knowledge Representation: Modalities, Conditionals, and Non-
monotonic Reasoning” on knowledge representation of the same volume).

2.2.1 Belief Operators

The notion of belief has been deeply studied in the domain of doxastic and epistemic
logics, since the early 60s (see Gochet and Gribomont (2006) for an exhaustive
overview). This is probably one of the most studied notion in Logic, in all its forms
(classical logic, modal logic, with or without degrees representing the strength of the
beliefs or knowledge of an agent.7)

A commonly used logic is the propositional modal logic without degrees where
“Agent i believes ϕ is true” is denoted by Beli ϕ, where Beli (for every agent i)
is called the modal operator of Agent i’s beliefs, and where ϕ is some formula.
Traditionally, the fact that Beli ϕ is true in a certain world w0 is interpreted as the
fact that ϕ is true in all worlds that are accessible from w0 according to Agent i . Note
that i has no certainty that the real world belongs to this set of epistemic worlds (i
may be wrong). To represent this, the semantics includes an accessibility relation for
every agent. So, the fact that i believes ϕ is true in the real world w0 is denoted by
w0 � Beli ϕ. Semantically, this means ϕ is true in all worlds that are accessible from
w0 via the relation corresponding to i and denoted by Bi .

There is a consensus in the literature that the logic of beliefs in the normal modal
system KD45 (Chellas 1980), even though this logic constitutes an idealization of
certain principles. For example, this logic assumes an agent instantly knows all
beliefs implied by its own (omniscience) and it is conscious of all those beliefs
(positive introspection). Nevertheless, those criticisms are mitigated by the fact that
they constitute idealizations (not aberrations), which are not necessarily counter-
intuitive for an artificial agent.

Figure1 shows the semantics of the belief operator of agent i . The set of all worlds
that are accessible from w0 is denoted by Bi (w0), where Bi is the accessibility
relation between worlds for Agent i and is graphically represented by arrows.

7In the present work, we only consider qualitative approaches to the notion of belief. We do not
discuss the quantitative approaches formalizing degrees of belief (see e.g. (Laverny andLang2005)).
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Fig. 1 Kripke semantics of the operator Beli

2.2.2 Temporal Operators

There are many temporal logics, depending on the way one wants to represent time
(ramified or linear, with or without explicit temporal indexes, etc.). Temporal log-
ics are relatively well-studied in the domain of modal logics and theoretical com-
puter sciences (van Benthem 1991). There semantics is based on transition relations
between possible states and are thus equivalent to (potentially infinite) automates (see
chapter “Qualitative Reasoning” of the same volume for more detail about temporal
reasoning).

Here, we focus on a very simple notion: linear time. Since this notion is combined
with the beliefs of the agents, thismeans that the latter are not about epistemicworlds,
but about linearly-ordered sets of worlds called “stories”. This allows us to simulate
a tree-based nature of time, since each story corresponds to a development of future
events (the agent believes possible).

For example, Fig. 2 represents the four stories believed by Agent i . The dots on
the stories represent the present moment and the dashes the past and future moments.
So, the agent right now believes that p is true (Beli p); it consider the possibility that
r is right now true but becomes false thereafter (¬Beli ¬(r ∧ F¬r)); etc.

We can define the operators H and P (about the past) in the same way we defined
the operators G and F.

Fig. 2 Linear time and epistemic worlds
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Technically, time is defined in a modal logic of linear time of Type S4.3t
(see Burgess (2002) for more details). Nevertheless, those operators can be seman-
tically defined with a tree-based structure (which is by the way what is done in Rao
and Georgeff (1991)).

Finally, we sometimes use the two operators X and X−1 such that Xϕ means “ϕ
will be true right after the present moment is the considered story” and X−1ϕ means
“ϕ was true right before the present moment in the considered story”. Obviously,
there exists formal links between those operators and the temporal ones defined
previously.

2.2.3 Goal Operators

The notion of goal has been widely studied in the literature and has been used in
very different senses (see e.g. the notion of goal in Cohen and Levesque (Cohen and
Levesque 1990) or Rao and Georgeff (Rao and Georgeff 1991), the notion of choice
in the PhD thesis of Sadek or KR’92). We focus on the notion of chosen goal (or
preferred goal), with regard to the coherent subset of proposition the agent wants to
make true. The primitive operators of goal are denoted by Choicei (where i ranges
over all agents) and Choicei ϕ means that “Agent i right now choose to make the
goal ϕ right now true”. There is no restriction on the formula ϕ, so it can represent
the present state of affairs. This is the difference with the operators of goals to be
achieved (abandonedwhen the desired state of affairs comes true) or to bemaintained
(an agent looks forwards to keep a certain state of affairs true). As we did it with
beliefs, we interpret Choicei ϕ in a world w0 as the fact that ϕ is true in all the
preferred world of the agent from w0. Most generally, goals are partial pre-order,
but, for the sake of simplicity, we do not consider this point: we focus on coherent
non-ordered binary goals.

A difficult and non-studied question is the following: how those goals emerge?
From a cognitive point of view, it looks like they emerge from a deliberative process
aboutmore primitive attitudes: desires, ideals, and imperatives (seeRao andGeorgeff
(1991); Conte and Castelfranchi (1995); Castelfranchi and Paglieri (2007)). The set
of goals we characterize is the one obtained from a process of selection of ideals
and desires. It is meant to resolve conflicts between those two concept and to elimi-
nate impossible cases. Then, the chosen goals of an agent satisfy the two following
fundamental rationality principles: they are consistent (an agent cannot choose two
contradictory goals); the chosen goals are related to the beliefs of the agent that chose
them. In Cohen and Levesque (1990), the relation between beliefs and goals is an
inclusion relation: if an agent right now believes ϕ is true, then it necessarily right
now has ϕ as a goal (this notion is called strong realism). We can also impose a rela-
tion of weak realism, where it is only required that there is a non-empty intersection
between the epistemic worlds that are possible and those that are preferred.

Some recent works aim to explain the goals building process by theway of desires.
Desires and goals are often combined (see for instance Dubois et al. (2017).
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2.2.4 Ideals

There exist many normative systems in logic with very different characteristics, more
or less complex, adapted to a class of problems or another. Those norms may have
different origins: state laws, institution rules, moral (be it religious or not), etc.

Certain particular norms, specific to a given agent, are called ideals. We introduce
a new set of operators such that Idli ϕ means: “ϕ is an ideal state for Agent i”. This
means that i gives an order to itself, a kind of “must make true” for ϕ (when ϕ is
false at the present moment) or “must keep true” (when ϕ is already true) (Castaneda
1975).

There are different ways to explain how a state ϕ becomes an ideal state for a
certain agent. A possible explanation is that ideals are just social norms that have
been internalized (or adopted) by this agent (Conte and Castelfranchi 1995). Assume
an agent believes in a certain group (or institution) there is a certain norm (e.g. an
obligation) saying that a state ϕ must be true, whilst the agent sees itself as a member
of that group. In such a case, the agent adopts this external norm (that does not
originate from the agent and has not yet been acknowledge as a norm by the agent)
and that norm becomes an ideal for that agent. For example, if Agent i believes in
France, it is obligatory to pay taxes and that agent considers himself (or herself) as
a French citizen, then he adopts this obligation and pays his taxes.

Semantically, the ideals are represented from the possible worlds considered as
ideal by the agent having internalized those ideals. There is no particular relation
with the other operators, besides belief, if we assume an agent is conscious of its
ideals (see chapter “Norms and Deontic Logic” of the same volume for more details
about normative operators). (See also Gabby et al. (2013) pour for more details about
normative and deontic systems and Berreby et al. (2015); Lorini (2016) about moral
systems.)

2.2.5 Explicit Action

When one tries to define “Agent i is capable of executing Action ϕ”, one has to
consider logics of action (see chapter “Reasoning about Action and Change” of the
samevolumeon reasoning about action and change).Generally speaking, those logics
formalize actions with state-transition systems. There are essentially to schools of
thought, onewhere action is explicit and onewhere it is implicit (see the next section).

The main logic of explicit action is propositional dynamic logic (PDL), which
studies the interact between an action and its effects (Harel et al. 2000). It has been
shown (e.g. in van Linder et al. (1998) that dynamic logic is particularly adapted to
the characterization of the concepts of capacity and power. There is a rich literature
on the integration of dynamic logic into logics of beliefs and goals (see e.g. epistemic
dynamic logic Baltag and Moss (2004) or doxastic dynamic logic Segerberg (1992,
1995)).

PDL distinguishes between actions like α and formulas like ϕ andψ , and its set of
non-logical constants is constructed from those two categories. The formulaAfterα φ
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Fig. 3 Transition from the
world w0 to the world w′

0 via
the execution of the action
i :α

expresses the fact that ϕ will be true after any possible execution of Action α. So,
Afterα ⊥ means α is not executable.8

Several extensions have been proposed where an agent is added to the arguments
of the PDL operators. In such extensions, the formula Afteri :α φ means that ϕ is true
after any possible execution of Action α by Agent i . For any action α and agent i ,
Afteri :α is an action modal operator.

Semantically, action is treated as a transition from a real world to a set of other real
worlds (certain semantic constraints can force this set of worlds to be a singleton).
Figure3 represents this transition.

In DEON’2008, Lorini and Demolombe have augmented the PDL language with
the operators Doesi :α , where Doesi :α φ means “Agent i is about to execute Action α

and thereafter ϕ will be true”. This allows us to speak about what an agent can do
(¬Afteri :α ⊥) and what an agent does (Doesi :α �).

2.2.6 Implicit Action

Action is implicit in logics of agency, which study the interaction between an agent
and the effects caused by it. The peculiarity of those logics is that they do not represent
the actions that caused the effects (only results matter).

For example, in the logic STIT (Belnap et al. 2001), actions are formalized by
formulas involving an agent and speaking about the effects caused by that agent. So,
the action described in “i buys the product p” is formalized by the following formula
of agency: “i sees to it that Product p is bought by Agent i”.

Formulas of agency are of the form STIT i φ, which means “The action chosen
by Agent i at the present moment ensures that ϕ is true, independently of what the
other agents do”. In short, “i sees to it that ϕ”. The modal operator STITi is called
the operator of agency.

2.2.7 Dynamic of Mental States

Last years, a certain number of researchers working in the domain of logics for
autonomous-agent formalization and in multi-agent systems have proposed logics
for the dynamicofmental states. Theybelong to the large family of dynamic epistemic

8Besides BDI logics, the operator Afterα is often denoted by [α].
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logics (DEL), see e.g. Ditmarsch et al. (2007). DEL is a term used in a very large
sense to include dynamic extensions of logics of belief and knowledge, but also logics
of preferences and norms (deontic logics) (Baltag and Moss 2004; Kooi 2007; van
Benthem and Liu 2007). In those logics, modal operators are introduced to describe
the effects, on the mental states of the agents, of various types of informative events
(transmission of public or private messages, orders, etc.).

Here, we consider the most known dynamic epistemic logic, namely public
announcement logic (PAL) (Ditmarsch et al. 2007). Informally, a fact p is publicly
announced if and only if: every agent learns that p is true; every agent learns that
every agent learns that p is true; every agent learns that every agent learns that every
agent learns that p is true, etc., up to infinity. In the PAL logic, public announcements
are events that update the beliefs and knowledge of the agent: the role of a public
announcement is, first, to reduce the set of possible worlds to the worlds where the
publicly announced fact holds, and second, to restrict the epistemic accessibility
relations to those worlds. PAL uses the notation p! for the public announcement of
p, and introduce modal operators of the form [p!] to describe the effect of a public
announcement on the mental states of the agents: the formula [p!]q means that q will
be true after the public announcement of p. We take below an example to illustrate
those dynamic operators.

Marie, Paul, and Alice are seated around a table on which are laid three cards.
The cards are face down, but, on every card, is written a distinct number between 1
and 3. So, the cards can be called Card 1, Card 2, and Card 3. Marie, Paul, and Alice
take one card, each. We assumeMarie took the card 1 (denoted bym1), Paul the card
2 (denoted by p2), and Alice the card 3 (a3). Each player confidentially looks at his
(or her) card and put it of the table face down. Therefore, each player only knows
the number written on his card.

In Fig. 4, the model on the left represents the beliefs of Marie, Paul, and Alice
in the initial situation. There are 6 possible worlds and the one in grey is the real
one. The arrows represent the accessibility relations B between epistemic worlds,
for each player. For example, in the real world, Marie considers as possible the world
where Marie has Card 1, Paul Card 2, and Alice Card 3, as well as the world where
Marie has Card 1, Paul Card 3, and Alice Card 2. So, in the real world, Marie has no
certainty about the card distribution.

Fig. 4 Example of Cards
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Assume it is publicly announced that Alice has a card with an odd number. This
announcement is represented by the event a1 ∨ a3! (Alice has Card 1 or Card 3). In
Fig. 4, the model to the right of the arrow represent the beliefs of Marie, Paul, and
Alice after this announcement. Thanks to the latter, Marie learns that Paul has Card 2
andAlice Card 3. Indeed, the effect of the public announcement is to reduce the set of
possible worlds to those where Alice has an odd card and to restrict the accessibility
relations to those worlds. So, in the real world, after the public announcement, Marie
knows the card distribution: Marie has Card 1, Paul Card 2, and Alice Card 3. This
fact is represented by the formula m1 ∧ p2 ∧ a3 ∧ Belm (m1 ∧ p2 ∧ a3), which is
true in the real world of the model on the right. In contrast, the public announcement
does not make Paul and Alice learn anything: after the public announcement they
still have no certainty about the card distribution.

Up to know, we gave an overview of the concepts related to cognitive-agent
systems and a way to formalize them. In what follows, we present two particular
complex concepts that can be described in terms of mental states, time, and action.
Cognitive-agent systems are thus very adapted to the formalization of these two
concepts. Nevertheless, the latter are also formalized in more numerical ways and,
in what follows, we give an overview of this.

3 Formalization of Trust

Trust systems (or trustmodels) are used in certainmulti-agent systems to help users to
choose the agents to interact with. Indeed, agents may be incompetent or malicious.
But, the agents are typically so numerous that it is impossible for a central authority
to test them all. Consequently, the goal of a trust system is to evaluate the agents on
the basis of relations between them. More precisely, for a user u, the evaluation of
the peers of u is based on two kinds of information:

• the result of past interactions between u and the other agents;
• the feedbacks other agents have provided about their peers.

The value (a score, a position in a ranking, etc.) of an agent a can naturally be seen
as the trust of u in a.

Trust systems can be motivated by several large-scale applications where no cen-
tral authority can test all agents. As examples, we can mention: e-commerce (Ebay,
Amazon, etc.), large wikis (Wikipedia, Planetmath, etc.), social networks (Facebook,
Tweeter, etc.), webpages and hypertext links, papers and citations.

Various trust systems have been developed. To validate and compare them two
kinds of approaches are possible: a theoretical and an experimental one. The first
approach consists in establishing desirable properties (or axiom, postulates) that a
trust system could satisfy. The second approach consists in developing a testbed
where different trust systems can compete.

As far as we know, there are two kinds of trust systems: logic-based systems
(essentially modal-logic-based systems) and numeric systems. Two position papers
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that cover a large number of models are for example (Sabater and Sierra 2005) and,
more recently, (Pinyol and Sabater-Mir 2013).

3.1 Logic-based Trust Models

In the logical approach, the goal is to characterize the notion of trust in a certain formal
language. Similarly, the objective is to formalize in such a language the notion of
trusting someone, as well as the mental state of an agent trusting someone.

One of the main models of trust is the cognitive one from Castelfranchi et Falcone
(denoted by C&F) (Castelfranchi and Tan 2001). Contrary approaches that are more
computational, the C&F model is more than subjective probabilities updated in the
light of direct interactions with the trustee (the agent to be trusted) and feedbacks
from interactions between the trustee and other agents.

Informally, the C&F model defines trust as an personal belief of the truster (the
agent that has to decide whether or not to trust the trustee) that the trustee is reliable
with regards to various aspects (capacity, intention, readiness, etc).

According to C&F and the analysis conducted in Herzig et al. (2010), the notion
of trust is based on four components: a truster i , a trustee j , an action α of j , and a
goal ϕ of i . According to their definition, “i trusts j that j will perform α in order
to achieve ϕ” if and only if: ϕ is a goal of i ; i believes j is capable of performing ϕ;
i believes that performing ϕ will makes φ true; and i believes that j intends to do α.

For example, assume i trusts j to send a certain product p in order to possess p.
Then: possessing p is a goal of i ; i believes j is capable of sending p; i believes
sending p will make him (or her) possessing p; and i believes j intends to send p.

In other words, trust is formally defined as follows:

Trust(i, j, α, ϕ)
def= Goali ϕ ∧ Beli (Capable j (α) ∧ After j :α ϕ ∧ Intend j (α))

where every operator used above is either a basic one or a compound one defined
from the basic ones (cf. Sect. 2.2):

• Goali ϕ
def= Choicei Fφ means “Agent i chooses to make Fφ true at the present

time”;

• Capable j (α)
def= ¬After j :α ⊥ means “Agent j is capable of executing Action α if

and only if α is already executable”;9

• Intend j (α)
def= Choice j Does j :α � means “Agent i intends to execute Action α if

and only if executing α (right here, right now) is a chosen goal of i”.

9One could think that this should be a sufficient but not necessary condition. Indeed, it suffices
that Agent i believes Agent j will be capable of executing Action α in time to achieve Goal ϕ.
Nevertheless, it is worth noting that we formalize a notion of trust “right here, right now”, not a
notion of potential trust.
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A relatively recent paper allowing an agent to reason about its trust model, by
providing a method for incorporating a computational trust model into the cognitive
architecture of the agent is Koster et al. (2013).

We turn to approaches where the notion of trust is not based on modal logic, but
more numeric objects.

3.2 Numerical Models of Trust

Previously, trust was seen essentially as a particular belief of the truster about certain
aspects of the trustee. Depending on whether i trusts j or not about a proposition ϕ,
i was in position to decide whether or not to believe what j says about ϕ.

The situation is similar with numeric approaches. The first question is to decide
how to represent trust in a numeric way. Various solutions have been proposed, for
example, trust can be represented by a number, an interval, or a fuzzy interval.

First, trust can be represented by a simple number. One of the first approaches
of this kind is Marsh (1994). Another important approach is that of Pagerank (Page
et al. 1998), the system at the basis of the well-known Google search engine. More
precisely, a webpage can be seen as an agent and a hypertext link from x to y as
a positive feedback. Pagerank associates every agent with a real number between 0
and 1 on the basis of these feedbacks. Theses numbers can be seen as the degrees of
trustworthiness of the agents.

It is worth noting that Pagerank evaluates the trustworthiness of an agent for an
external user.Most trust systems evaluates the trustworthiness of an agent for another
agent x . In such a case feedbacks from direct interactions with x are obviously more
important than feedbacks from interactions where x is not involved.

A relatively exhaustive study of questions related to Pagerank and its alternatives
can be found in e.g. Langville and Meyer (2005). A version of Pagerank adapted to
peer-to-peer systems as been constructed in Kamvar et al. (2003).

In certain approaches, an agent is either trustworthy or not, and a model can
associate an agent x with a number indicating the probability that x is trustworthy.
In other approaches, a model can associate an agent x with a number indicating the
degree of trustworthiness of x . In other words, depending on the model, the same
number x is associated with can mean different things. For example, assume x is
associated with 0.5. It can mean that x perfectly achieves one goal out of two, as
well as x achieves every goal half-successfully.

Concerning links between trust and other important notions, it is described in e.g.
Osman et al. (2015) how trust models can be used to distinguish between good and
bad advices. Finally, a paper describing how the notion of trust can be integrated
with those of negotiation and argumentation is e.g. Bonatti et al. (2014).
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3.3 Applications of Trust Systems

We present six examples of multi-agent systems where a user (be it an external entity
or an internal agent) needs an evaluation of the trustworthiness of the agents:

E-commerce (Ebay, Amazon, …).

The agents are the buyers and sellers. A user has to choose the agents to make
transactions with. But they are numerous, generally unknown to him (or her), far
from him, and some agents are malicious or incompetent. So, the user needs an
evaluation of the agents. After each transaction, the buyer can rate the seller, and
vice versa. So, a trust system can exploit these ratings to construct an evaluation.
We can globally admit that the more an agent is trustworthy, the more he tends to
provide honest and accurate feedbacks. The same goes for the buyers. So, in case
of cycles the trustworthiness of an agent x depends on that of an agent y, and vice
versa, which makes the evaluation hard to construct.

Large wikis (Wikipedia, Planetmath, …).

The agents are the contributors of the wiki, that is, those that create, delete, or
modify articles. A user has to choose to trust or not the contributions and thus
needs an evaluation of the contributors. It is easy to imagine how to modify a wiki
so the contributors can provide opinions about their peers, in particular when they
participate in long debates about controversial issues. A trust system could exploit
these opinions to construct an evaluation. We can admit that the more an agent
provides serious contributions, the more he (or she) tends to provide serious opinions
about its peers. So, again opinion cycles constitute a difficulty.

Social networks (Facebook, Myspace, …).

The agents are the persons, applications, etc. registered in the network. A user has
to choose the agents to establish a formal link with. Such a link gives access to
all sorts of personal information about the user. But, some persons or applications
are malicious. A friendship link between a and b can be seen as the fact that a
recommends b as an honest agent, and vice versa. Those links can exploited to
evaluate trustworthiness. There are recommendation cycles and the more an agent is
honest, the more it provides honest recommendations.

Web pages and hypertext links.

The agents are the web pages. A hypertext link from a page a to a page b can be seen
as a recommendation, that is, as the fact that a provides an opinion that the content
of b is important. There are cycles and the more a page a has an important content,
the more the hypertext links contained in a are important.

Papers and citations.

An agent is a paper or an author. A citation relation from a paper x to a paper y can be
seen as the fact that x supports y. Similarly, an authorship relation between a paper
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x and an author a can be seen as a support relation for a. The are no relation cycles,
but the more a paper x is trustworthy, the more the citation or authorship relations
coming from x are important.

Entity-key bindings and certificates.

In the systems based on public key certificates, there are entities willing to send
messages to other entities. Since an entity can listen messages that are not intended
for it, they are encrypted and decrypted with keys. So, the system generates a set of
keys such that there exists a function f transforming any key K into a key f (K )

such that the following holds:

(a) f (K ) is the unique key that can decrypt the messages encrypted with K , and it
can decrypt only these messages;

(b) the converse is true, that is, K is the unique key that can decrypt the messages
encrypted with f (K ), and it can decrypt only these messages.

Next, a set of bindings is published. A binding is a pair 〈E, K 〉 where E is an entity
and K a key. Such a binding represents a claim that E is the unique entity that
knows f (K ). If it is indeed the case, then we say that 〈E, K 〉 is valid. So, to send a
confidential message to an entity, it suffices to find a binding containing it, and use
the corresponding key. By (a), only this entity will be able to decrypt the message.
The problem is that a malicious entity F can publish a false binding 〈E, K 〉. In other
words, E does not know f (K ), but F does. So, if this false binding is used, then F
can listen some messages intended for E and decrypt them.

To counter this, a set of public key certificates is published. A certificate is a
pair 〈D, S〉, where D is a quadruplet of the form 〈E, K , E ′, K ′〉 and S is a digital
signature, that is, S is supposed to be the result of encrypting D with f (K ). Such
a certificate represents a claim that E supports the validity of 〈E ′, K ′〉. Again, the
problem is that false certificates can be published. However, it is possible to formally
check that the certificate 〈D, S〉 was created by an entity knowing f (K ). By (b), it
suffices to decrypt S with K and then check that the result is indeed equal to D. Only
the certificates that pass this test are considered.

Now, we can explain the link with trust systems. An agent is a binding 〈E, K 〉.
A user is an entity E that has to choose valid bindings before sending messages.
A certificate 〈〈E, K , E ′, K ′〉, S〉 can be seen as the fact that 〈E, K 〉 supports the
validity of 〈E ′, K ′〉. These support links can be exploited to evaluate the validity of
the bindings. Finally, the problem of evaluating the validity (or trustworthiness) of
the bindings is difficult in particular because there are cycles of support links and the
following holds: if a binding 〈E, K 〉 is valid, then E is the unique entity knowing
f (K ), thus the certificate 〈〈E, K , E ′, K ′〉, S〉 was created by E , i.e., this certificate
is authentic, so we should attach more importance to it.
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4 Formalization of Emotions

There is a rich literature on emotions, be it in philosophy 10 (Gordon 1987), psychol-
ogy (Lazarus 1991; Ortony et al. 1988), economy (Loewenstein 2000), or cognitive
sciences (Lane and Nadel 2000).

In computer sciences, emotions play an important role in multi-agent systems at
different levels.Muchwork focus on themodelization of facial and gestural results of
emotions with animated conversational agents (ACA) (see e.g., Gratch and Marsella
(2005); Pelachaud (2009)). ACA also use models of emotions to represent those of
the users, to show their affective states, or a particular personality.

The goal is to make such agents so realistic that users have the impression to
interact with other humans. First, this goal assumes a great realism in the expressive
aspects of the agents (facial and corporalmovements, intonations, verbal expressions,
etc.). Second, it is necessary, for the agents, to be able to recognize and take into
consideration user’s emotions in their of reasoning (as well as their artificial own).
So, agents can speak and act in a most adequate fashion.

Emotions are fundamental to have natural and optimal interactions between agents
and users, because nowadays it is known that we constantly communicate informa-
tion about our emotional states (be them real or not) without explicating them. For
example, a “Hello!” accompanied with a smile constitutes a common and short way
to express your greetings to someone and to tell him (or her) you are happy to see
him (which could be explicated by “Hello, I am happy to see you”).

4.1 Logical Formalization of Emotions

Concerning formal models of emotions, we look forward to construct logical frame-
works in order to formalize certain specific emotions, their properties, the links
between them, etc. (see e.g., Adam et al. (2009); Turrini et al. (2010)). The main
objective is to take advantage of logical methods to rigorously specify how to imple-
ment emotions into an artificial agent. The design of systems containing such agents
(capable of reasoning and expressing certain emotions) can benefit from the fact that
logic is a tool particularly adapted to the notion reasoning and forcing the designer
to disambiguate the different dimensions of emotions (identified in different psycho-
logical models of emotions).

Generally, logical definitions of emotions characterize cognitive structures of
emotions, rather than emotions themselves. According the theories of cognitive eval-
uation (Lazarus 1991), the cognitive structure of an emotion is the configuration of
the mental state of an agent when it (artificially or not) feels that emotion. The
cognitive structure is just a part of the affective phenomenon. In the sequel, we use
the word “emotion” for “the cognitive structure of an emotion”.

10Plato clearly establishes a distinction between reason, passion, and desire.
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We distinguish between simple emotions and what we call complex emotions
(Adam et al. 2011; Lorini and Schwarzentruber 2011). The former are those that can
be described only with mental attitudes like beliefs, goals, or ideals. The latter are
those requiring more complex reasonings like counterfactual conditionals: “I could
have made ϕ true, whilst it is actually false”. In that sense, complex emotions are
associated with counterfactual reasonings about norms, responsibilities.

For example, the fact that agent i feels joy about Fact ϕ may be expressed as
follows:

Joyi ϕ
def= Beli ϕ ∧ Choicei ϕ

According to this definition, Agent i feels joy about ϕ if and only if i believes ϕ is
true and wish ϕ to be true. For example, Tom feels joy about a certain test, because he
thinks he successfully passed it and it is what he wishes. So, Tom is happy because
he believes the state of affairs is as he wishes. Joy has a positive valence, that is, when
it is felt, it is associated to a state of affairs corresponding to desires. This is not the
case of sadness for example whose state of affairs does not correspond to desires.

Concerning complex emotions, we restrict ourselves to those related to the notion
of responsibility (be it that of the agent feeling the emotion or another one). The
responsibility of Agent i for the fact that ϕ is true can be defined as follows: ϕ is true
and i could have made ϕ false. More formally:

Respiϕ
def= φ ∧ Cdi¬φ

Here Cdi (i could have made) is a basic operator of the formal language, but can
be defined from the implicit action operator STIT (for more details, see Lorini and
Schwarzentruber (2011).)

So, when Agent i is responsible for the fact that ϕ is true, whilst i has ¬ϕ as goal,
i feels regret (see e.g., Zeelenberg et al. (1998)). More formally:

Regretiϕ
def= Goali ¬ϕ ∧ Beli Respiϕ.

Other emotions can be defined in the same way. Emotions constitute a growing
domain, because computer science does not have yet exhausted all their possibilities.
Existing and implemented systems can often be reduced to simple labels that can be
activated or deactivated. Formal models based on logic force designers to explicate
the nature of emotions and thus to better understand them.

4.2 Numerical Models of Emotions

There exist numerical models of emotions that study the quantitative aspects of those
affective phenomena. For example, (El-Nasr et al. 2000) proposed a numerical model
of emotions called FLAME (Fuzzy Logic Adaptive Model of Emotions) based on
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fuzzy logic. The main contribution of this work is a quantification of the intensity
of emotions, from appraisal variables like desirability or probability. For example,
based on the psychological model of emotions of Ortony, Clore and Collins (Ortony
et al. 1988), in the model FLAME, the intensity of hope with regard to a certain event
depends on the degree of desirability of that event and its subjective probability.More
recently, several researchers in AI have augmented formal models of emotions with
quantitative aspects. For example, Meyer et al. (Steunebrink et al. 2008) proposed a
model describing how the intensity of emotions decreases with time. Lorini (Lorini
2011) proposed a systematic study of the intensity of emotions on the basis of expec-
tations (hope, fear, disappointment, relief) and the relation between those emotions
and the mechanism of belief revision of a cognitive agent.

There also exist numerical models of emotion where the latter is represented by a
vector whose numbers correspond to components of emotion. For example, Mehra-
bian captures mood by a vector representing pleasure, excitation, and dominance
(i.e., the capacity of an individual to dominate a stimuli). In other words, mood
depends on the values of those three components. We can also mention works on the
robot with human-like head WE-4R constructed in the university of Waseda (Japan)
by Hiroyasu Miwa and his team. The model of emotion is a space-oriented vector
calculated from three components: pleasure, activation, and determination.

4.3 Applications of Emotion Models

Concerning applications, teaching systems have been developed to deal with emo-
tions and thus increase the degree of perseverance and commitment of the students. In
parallel, simulators, video games, and ambient-intelligence systems have been devel-
oped (see e.g., Adam et al. (2011) for an overview of the literature and applications
of emotions in that domain). Among the very large variety of existing ACA, EM11

is a typical system that simulates the decline of emotions with time for a specific set
of emotions corresponding to the goals that generated them. Another example is the
system Affective Reasoner of Gratch and Marsella where agents use representations
of themselves and others. Finally, GRETA (de Rosis et al. 2003) is an ACA 3D that
can be animated in real time and is capable of expressing emotional states.

5 Conclusion

In the present chapter, we have first tackled the formalization of cognitive-agent
systems. Such an agent is capable of behaving in an autonomous way, according
to its goals. In addition, it is characterized, a minima, by mental attitudes (beliefs,
desires, norms, etc.), time, and action. After a brief overview of the great research

11It is a system based on the Tok architecture of the project Oz. See http://www.cs.cmu.edu/afs/cs.
cmu.edu/project/oz/web/.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/oz/web/
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avenue in this domain, we have presented the fundamental concept of BDI systems,
as well as the tools to deal with the well-known AI problem of knowledge evolution.
Finally, we used the aforementionedmaterial in order to formalize two concepts used
in those systems: trust and emotion. We also showed that those two concepts can
also be formalized in a more numerical fashion, which is less fine from the point of
view of the definitions of the concepts of interest, but easier to be applied in concrete
frameworks.

Of course, there are many other branches in AI about the formalization of
cognitive-agent systems. But, some of them are not based on mental states, other
are limited to a certain formal language. The peculiarity of the systems presented in
this chapter is that they correspond to logic (with both a semantics and an axioma-
tization) whose properties (in terms of complexity, decidability, and completeness)
are also studied. More precisely, those logics are modal logics particularly conve-
nient to represent mental states, as well as relations between those states (beliefs
about beliefs, goals, etc. of other agents. The objective is to represent in a fine grain
the concepts used by the agents with a logic having “good” logical properties. So,
the issues are both computational and mathematical. In addition, they are strongly
related to SHS via philosophy and psychology, in particular. It is worth noting that
there are studies about the influence of trust on emotions, and vice versa (see e.g.,
Bonnefon et al. (2009)).

Naturally, trust and emotion are not the only concepts investigated in the literature.
In particular, we have not presented non-reductionist social concepts, for example,
notions of group belief or acceptance that are reducible to the sum, over all agents
of the group, of their beliefs or acceptance. Consequently, it is necessary to capture
a group as a unique entity constituting an institution ruled by specific social rules.

The study of formal properties of intelligent agents is thus a first step in the study
of multi-agent systems. The latter need to capture the nature of the group constituted
by the agents (What unites them? What is the structure of the group represented by
them? Is it just a set of agents or a more complex relational structure including e.g.
friendship, hierarchy, commerce, etc.?).
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Negotiation and Persuasion Among
Agents

Leila Amgoud, Yann Chevaleyre and Nicolas Maudet

Abstract This chapter presents several techniques allowing agents to come up with
an agreement. We start by discussing negotiation among two agents: after having
recalled the axiomatic approach of Nash, we present a standard protocol, and point
to recent advances in the field. We then discuss issues raised in the multilateral
case. Finally, we conclude the chapter by describing an example of persuasion-based
negotiation, where agents can put forward justifying reasons through the negotiation,
so as to possibly modify preferences over offers or more generally, influence the
negotiation process.

1 Introduction

Imagine that a number of robots is to be sent on a remote planet, for exploratory pur-
poses. It is often required to ensure coordination and to allocate different exploration
tasks among them. This problem can be tackled as a centralized collective deci-
sion problem, as discussed in chapter “Collective Decision Making” of this volume.
However, this centralized approach may not always be well suited in our case:

• the computing resources of robots may not allow a designated center to solve the
entire problem;

• the amount of information that would need to be communicated to the center could
be prohibitive;
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• robots may not belong to the same institution (for instance, different countries
may have contributed to this group of robots), making it impossible to delegate
the allocation task to only one of these institutions.

It is thus sometimes desirable that the allocation occurs as the outcome of a decentral-
ized process (Wellman 1996). More generally, as soon as a problem involves agents
owned and programmed by different individuals or institutions, such approaches are
appropriate, even though the task is collaborative (Rosenschein and Zlotkin 1994).
From the perspective of the designer of the agent, the aim is to come up with a strat-
egy that fills her objective, given the constraints of the system and the (anticipated)
strategies of the other agents. From the perspective of the designer of the system, the
aim is to design rules of encounter (Rosenschein and Zlotkin 1994), that is, rules
governing the interaction, in such a way that the system exhibits good properties
despite the potentially self-interested behavior of the agents. Such rules constitute
the protocol of the system. Some important questions then occur:

• is it possible to guarantee the termination of the process?
• can we provide guarantees regarding the outcome?
• is it possible to give bounds on the amount of computational resources or commu-
nication required?

In this chapterwe focus onnegotiation approaches,which can be seen as decentral-
ized techniques to reach consensus among agents. In Sect. 2 we detail the parameters
of the negotiation setting. After having recalled the axiomatics of bilateral negoti-
ation, due to John Nash, we detail basic protocols and strategies, where agents are
assumed to have full knowledge of preferences of others Sect. 3.2. In Sect. 4 we dis-
cuss negotiation settings involvingmore than two agents.We conclude the chapter by
sketching some aspects of argumentation-based negotiation (Sect. 5), where agents
can exchange expressive messages during the negotiation.

2 Parameters of the Negotiation Process

In this chapter, a set of agentsA negotiate over a set of alternativesX . Both setsX
andA may be large. For example,X may be defined as the cartesian product of a set
of attributes (see chapter “Collective Decision Making” of this volume). We assume
these agents have quantitative preferences: the satisfaction of agent i for alternative
x is given by an utility function ui : X → R.

2.1 Money

An important feature of the negotiation iswhether it involvesmoney (as opposed to be
simply based on exchange of bundles). When this is the case, a common assumption
made in economy is that utilities are quasi-linear, which means that they are linear
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in the monetary component. More specifically, consider two situations s and s ′ in
which both agents hold the same goods, but such that robot 1 (resp. robot 2) holds
p1 (resp. p2) more in s ′. If utilities are indeed quasi-linear, this would yield utilities:

u1(s) = u1
(
s ′) + p1

u2(s) = u2
(
s ′) + p2

We say utilities are transferable since an agent can transfer a part of his utility by
means of money.

2.2 Domains of Negotiation

There are several typical classes of domains on which the negotiation can occur.
Rosenschein and Zlotkin (1994) define three main classes: worth-oriented domains
(WOD), state-oriented domains (SOD) and task-oriented domains (TOD), ranging
from the most general to the most specific. In all of these domains, the agents attempt
to find an agreement on the allocation of indivisible tasks (or goods). Using notations
introduced in chapter “CollectiveDecisionMaking” of this volume, if the set of goods
(or tasks) is denoted O , an allocation −→π gives to each agent i a bundle πi ⊆ O .
We will focus here on non-shareable goods or tasks. In TODs and SODs, since an
assumption of symmetric abilities is made, agents share the same valuation for the
different states of the world (usually through the same utility function). However,
in TODs, each agent is concerned only with her own goods: her preferences may
thus be specified on 2O instead of the joint plans of agents, because actions of others
have no consequences on her own actions. Furthermore, while in TODs and SODs,
the overall goal is assessed as “all-or-nothing” (e.g., robots must explore all the sites
together), inWODs, agents have different valuations for different states of the world.

Let us illustrate these ideaswith ourmulti-robot exploration scenario (this example
is in part borrowed from Koenig et al. 2006).

Example 1 Consider three robots (r1, r2, and r3) belonging to the same team. These
robots have to explore and probe various locations s1, . . . , s8, in order to determine
if these locations may be drilled later. Here, X is defined as the set of all different
partitions over s1, . . . , s8 (so its cardinality is exponential in the number of locations).
The cost assigned by a robot to a set of locations is the (minimal) time taken by this
robot to visit each location once. Observe that this is typically not modular, e.g. the
cost visiting several sitesmay not the sum of visiting each site separately. If the robots
are identical and all initially positioned on the same location, we can assume their
valuations are identical. In this case, if agents negotiate over the set of locations they
wish to visit before the mission starts, the negotiation problem is a TOD. Assume
now that r1 and r2 need to meet during their mission, in order to obtain supplies from
one another. The well-being of r1 does not depend only on the locations she will
visit, but also on the behavior of r2. This negotiation problem is a SOD. Lastly, if
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the agents have different interests regarding the locations to explore, the negotiation
problem is a WOD.

2.3 Number of Agents

The number of agents taking part in the negotiation, and the constraints over their
interactions are important parameters. In the simplest case, two agents seek an agree-
ment. This is a bilateral negotiation. Multilateral negotiation raises other important
issues. For example, an agent may be contacted by other agents while a negotiation
is already in progress. Designing algorithms that scale up to real world applications
is a major issue. Note that these applications often induce specific constraints on the
possible interactions: in the case of our robot scenario, we can imagine that the com-
munication system will allow each robot to interact only with its close neighbors.
Agents may also have different roles, with specific rights. There are several possible
approaches to tackle the problem of multilateral negotiation that we shall describe
later. However, even when the number of agents is large, it is often useful to rely on
simple negotiation building blocks involving two agents.

2.4 Deadlines

Finally, an important parameter of the negotiation is whether it involves a deadline
upon which either an agreement is found, or a default outcome (conflict point) is
implemented. We will leave this aspect aside in this chapter–the interest reader may
find more details in books dedicated to negotiation, e.g. Fatima et al. (2014).

3 Bilateral Negotiation

The simplest setting involves only two agents negotiating together.

3.1 The Axiomatic Perspective

Let us consider the situation of two foraging robots holding in their cart a given
amount of resource, and which find out, together, a new deposit they will have to
share. Here are some of the options they have:

(o1) robots share evenly the amount
(o2) one of the robot exploits 50% while the other exploits 25%
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(o3) one exploits everything, while the other gets nothing
(o4) one exploits everything, and furthermore steals the content of the other cart

Intuitively, only the first option sounds reasonable. However, if one considers as
acceptable any transaction which increases the utility of both robots, only the two
last ones should be avoided. This means that we need further principles to define
what a “reasonable outcome” of a negotiation for both parties should be.

The approach initiated by Nash (1950) is to start from a set of well-identified
axioms:

• Social rationality (SR)— the sum of agents’ utilities must increase after the trans-
action. In our example, all the options are socially rational.

• Pareto-optimality (PO)— there does not exist any transaction which would be at
least as good for both agents, and better for one of them. In our example, option o2
is not Pareto-optimal, since the second agent could as well take half of the deposit.

These two axioms are minimal conditions, but as we have seen they only exclude
one option out of the four. Let us add a condition on the individual utility of agents:

• Individual Rationality (SR)— the transaction does not decrease the utility of any
of the parties. In our example, option o4 is not IR since one agent looses the content
of its cart without gaining anything. Note that an IR transaction must be SR.

We are left with options o1 and o3. We now introduce two further axioms which
may be discussed.

• Scale independence (SI)— the utility of an agent captures the satisfaction degree
for a given situation. Suppose the utility of our two robots vary, depending on
circumstances, from 0 to 10 for the first one, and from 0 to 1000 for the second
one. Suppose a transaction leads to an outcome of 9 for the first agent, and 500 for
agent 2. The fact the the utility of agent 2 is above that of agent 1 does notmean that
agent 2 is more satisfied, since the scales used are different. Scale-independence
means the selected outcome do not depend of the scale used.

• Zero-independence (ZI) — suppose robot 1 has range [0, . . . , 0] for his utility,
while robot 2 has range [1, . . . , 10]. The designer may decide to simply add 1 to
the utility of robot 1, so as to have both robots share the same range. A transaction is
zero independent iff it is possible to add or retract a constant to the utility function
of one of the agent without affecting the outcome of negotiation.

Now denote s0 the conflict point, that is the current, default, situation which will
occur if the negotiation fails. The two agents have respective utility u1(s0) and u2(s0)
in this situation (note that this may not be symmetric). What Nash (1950) showed
is that any transaction procedure satisfying the aforementioned axioms (as well as
some others, more technical) would have to pick the outcome maximizing value

(u1(si ) − u1(s0)) × (u2(si ) − u2(s0))

In our example, option o1 would thus be selected. It is noteworthy that SI alone
constrains heavily the set of possible outcomes. More generally, if utilities have a
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common scale, we can admit they are pairwise comparable. In this case, when an
agent has utility higher than that of another agent, this means that this agent is more
satisfied than the other one. If we can assume this (which is the case in particular
in TOD where utility are identical), then the last two axioms are useless, and we
can look for other solutions. For instance, we may seek the transaction which will
maximize the utilitarian social welfare, in the sense of the sum of agents’ utilities.
This solutionwill only satisfy in general RS, PO, andZI (IR is thus not guaranteed any
longer). If we are concerned with fairness notions, then we may consider egalitarian
social welfare, which guarantees that the worst-off agent is as satisfied as possible.
Unfortunately this solution does not satisfy any of the axioms. It should be noted
that Nash was not the only one to adopt an axiomatic perspective on this problem.
Most notably, Kalai and Smorodinsky (1975) came up with an alternative solution
by considering a slightly different set of axioms.

Example 2 Let us now consider a transaction about minerals m1 and m2. The utility
of agents is depicted in the following table:

u1 u2
∅ 0 0

{m1} 2 4
{m2} 4 2

{m1,m2} 9 9

In situation s0, agent 1 holds item m1 and robot 2 item m2, and they both have the
same amount ofmoney.Let s1 be the situationwhere both agents have exchanged their
items wrt s0. Let s2 be the situation where one of the robot holds both goods. Notice
that u1(s0) + u2(s0) = 4, that u1(s1) + u2(s1) = 8, and that u1(s2) + u2(s2) = 9.
When no money is involved, s2 is maximizing utilitarian social welfare, but it is not
egalitarian optimal, and does not satisfy the Nash criteria. Furthermore, a transaction
from s0 to s2 does not satisfy IR. These limitations can be circumvented when money
is involved in the transaction. Indeed, the transaction from s0 to s2 induces a gain of
utility of 5 (9 − 4). This constitutes the surplus generated by the transaction, which
can be redistributed by the beneficiary agent to the agent whose utility decreases to
compensate the loss of utility. More precisely, if we define s2′ as the situation where
items are allocated similarly, but in which an amount of 4.5 is given by the robot
holding both items to the agent with no item. Let us compare s2′ to s0 and s2.

u1 u2 u1 + u2 min {u1, u2} u1 × u2
s0 2 2 4 2 4
s2 9 0 9 0 0
s′
2 9 − 4.5 = 4.5 0 + 4.5 = 4.5 9 4.5 20.25



Negotiation and Persuasion Among Agents 657

Thanks to money transfer, the state s2′ is now the best possible in the sense of
Nash, as well as for the utilitarian and egalitarian social welfare. Here the surplus
has been evenly divided among agents, which maximizes both efficiency and equity.

3.2 Protocols and Strategies for Bilateral Negotiation

3.2.1 Negotiation Under Complete Information

In this section, we assume agents that may have different preferences, but still full
knowledge of all other agent’s preferences (this setting is not realistic in a competitive
scenario).

Example 3 Consider again a multi-robot problem in which a set of locations have
to be visited by robots (see Fig. 1) now starting from different locations. Robots are
not required to return to their initial location once their mission is over. Following
Rosenschein and Zlotkin (1994), the utility a robot assigns to a bundle of locations
will be the difference between the cost of visiting all locations alone for this robot,
minus the cost of visiting locations in that bundle.

Possible allocations (assuming each location is visited exactly once) are (with
the utility vectors for r1 et r2): o1 : 〈∅, {a, b, c}〉 = 〈9, 0〉, o2 : 〈{a}, {b, c}〉 = 〈7, 3〉,
o3 : 〈{b}, {a, c}〉 = 〈5, 4〉, o4 : 〈{c}, {a, b}〉 = 〈4, 2〉, o5 : 〈{a, b}, {c}〉 = 〈2, 7〉, o6 :
〈{a, c}, {b}〉 = 〈4, 7〉, o7 : 〈{b, c}, {a}〉 = 〈1, 4〉, et o8 : 〈{a, b, c},∅}〉 = 〈0, 9〉. We
observe that outcomes o4, o5, and o7 are Pareto dominated. The negotiation will take
place on the remaining outcomes.

Let us start with a simple but interesting protocol, described in many AI text-
books: the monotonic negotiation protocol. This description follows the ones from
Rosenschein and Zlotkin (1994), Wooldridge (2009), and Vidal (2007). The protocol
is based on a sequence of simultaneous offers made by the agents. At each round t ,
two offers oti and otj are made, respectively by agent i and agent j . If one offer is

r1 A

B

C

r2

2

4

2

5 2

3
sites cost r1 cost r2 u1 u2

99000/
{a} 2 5 7 4
{b} 4 2 5 7
{c} 5 2 4 7
{a,b} 7 7 2 2
{a,c} 5 5 4 4
{b,c} 8 6 1 3
{a,b,c} 9 9 0 0

Fig. 1 Two robots r1 et r2 and three locations A, B, C
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satisfactory for the other agent (in other words, if this offer is at least as good for him
as what he is himself offering), the protocol stops on an agreement.

ui (o
t
j ) ≥ ui (o

t
i ) or u j (o

t
i ) ≥ u j (o

t
j ) (1)

Otherwise, another round starts, and each agent is required either to propose the same
offer (stick), or to concede (in other words to make an offer providing a better utility
to his partner than the previous offer). If no agent concedes, the protocol ends on a
conflict. We assume that in this case, the utility of the agents is the one given at the
conflict point oc.

A possible strategy, in this setting, is suggested by Zeuthen (1930). Intuitively,
this strategy consists in assessing the risk of not conceding at some time of the
negotiation, by computing the ratio between the loss in utility when conceding (and
acception the other agent’s offer), and not conceding (and possibly heading towards
a conflict). Technically, the propensity of agent i for risking conflict during round t
of protocol (noted Zt

i ) is:

Zt
i =

{
1 if ui (oti ) = 0
ui (oti )−ui (otj )

ui (oti )−ui (oc)
else

Each agent is able to compute its propensity for risking conflict, as well as that
of its partner. A value close to 1 indicates intuitively that the agent has not much to
lose with the conflict, and a value close to 0 shows that the agent fears conflict. The
agent which will concede will be the one with the lowest value (or both agents, if
their value is the same). The concession to make has to be as small as possible, but
high enough to make the other agent concede during next round.

Example 4 Let us go back to our example:

round offer from r1 offer from r2 u1(otr1 ), u1(o
t
r2 ) u2(otr1 ), u2(o

t
r2 ) Z1 Z2

1 〈∅, {a, b, c}〉 〈{a, b, c},∅〉 9, 0 0, 9 1 1
2 〈{a}, {b, c}〉 〈{a, c}, {b}〉 7, 4 3, 7 3

7
4
7

3 〈{a, c}, {b}〉 〈{a, c}, {b}〉 4, 4 7, 7 stop stop

During first round, both agents concede. At second round, the value Z1 is lower than
Z2, so r1 will concede. This last offer is the same as the offer r2 made, but the latter
did not concede. In that case, the condition (1) is satisfied for both agents (which is
not necessarily the case in general). We observe on this example that the negotiation
stops on an offer which maximizes the sum and the product of both utilities. It is also
the optimal egalitarian outcome.

However, it is simple to see that the sum of utilities will not always be maximized.
Thus, if the two robotsmust visit two remote sites (see Fig. 2, taken fromRosenschein
and Zlotkin 1994), the protocol will lead to a solution where each site will visit a site
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Fig. 2 Two robots r1 et r2,
with the sites A et B

r1,r2

A B

10 10

5

and return. In this case, as mentioned previously, it would be useful to use money to
transfer utility to the agent which made the whole tour.

What are the good properties of this protocol (used in combination with this
strategy), in the light of the axiomatic discussion of Sect. 3? Harsanyi (1956) proved
that two agents following this protocol will converge to a solution maximizing the
product of utilities.However,Nash’s axiomatic result assumes thenegotiationdomain
to be convex. Starting from this observation, Zhang (2009) proposes an axiomatic
study of TODs: more precisely, he proposes an alternative axiomatization (using
additional axioms), which characterize in particular the egalitarian and Nash product
solution.

There are of course other protocols to handle bilateral negotiations. In particular,
Rubinstein (1982) proposed and analyzed the sequential alternating offers protocol
where each agent, in turn, either accepts the previous offer of the other agent, or
makes a counter-proposal.

3.2.2 Negotiation Under Incomplete Information

In a number of applications (in particular in applications involving self-interested
agents), agents can only be assumed to know partially (sometimes, not at all) the
preferences of the others. If an a priori distribution can be assumed to be known,
then some game-theoretical tools are still available, like for instance the notion of
Bayes-Nash equilibrium (we point the reader to Shoham and Leyton-Brown 2009
for a detailed exposure of this and other relevant notions). When it is not the case,
the behaviour of the agent must be based on heuristics, ad-hoc strategies which are
typically empirically assessed. For instance, it is possible to define different classes
of strategies depending on how agents behave as a function of time: a conceder agent
will be more likely to concede in the first round of negotiation, whereas a boulware
agent is instead inclined to postpone concessions.

The problem is difficult in particular in multi-issue domains, where agents may
have different preferences regarding the different issues at stake. Faratin et al. (1998)
distinguish response strategies and compensation strategies. Responses strategies
allow to concede on a single issue (but lead to solution which can be far from
being Pareto-optimal). Compensation strategies allow to concede on an issue while
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maintaining an overall equivalent utility overall. However, in such settings, an agent
cannot even be sure of what constitutes a concession for the other agent. To increase
the likelihood of an offer being accepted by the other, an agent should maintain a
model of his opponent. One simple intuitive heuristic approach is to seek an offer
which is in some sense similar to an offer made by the other agent in the pre-
vious round (Faratin et al. 2002). More generally, opponent modeling faces three
(related) questions (Baarslag et al. 2016): preference estimation, strategy prediction,
and opponent classification. For instance, analyzing the opponent’s history of con-
cessions may provide valuable information to learn which issues are more important
to him (a classical assumption can be that the opponent should concede less easily
on these issues). A recent survey discussing the state-of-the-art techniques of the
field can be found in Baarslag et al. (2016). Finally, in recent years, the Trading
Agent Competition allows agents to compete in a controlled environment, and pro-
vides researchers insightful findings regarding heuristics which are most efficient in
practice (Wellman et al. 2007).

4 Multilateral Negotiation

We now discuss the case of multilateral settings, where more than two agents are
involved in the allocation process. Let us first mention a well-known centralized
approach,which relies onauctionmechanisms. In the application presented inKoenig
et al. (2006), a team of robots have to allocate sites to visit, as in our examples. In that
case, agents can place bids on sites to visit, depending on the cost induced for them.
Several types of auctions can be conceived. In principle, each agent could bid on
sets of sites to visit. However, observe that the center agent should then solve a com-
binatorial auction (see chapter “Collective Decision Making” of this volume), and
perhaps even more problematically, that each agent must solve a Traveler Salesman
Problem (TSP) to only evaluate the value of each single set of sites. To circumvent
this problem, the authors propose to use sequential auctions instead, and show that
some performance guarantees can be obtained (Koenig et al. 2006). Even though
such protocols are centralized, they can be distributed by letting each agent play the
role of the auctioneer, at the price of an overhead of communication. In the rest of
this section, we shall discuss other approaches based on negotiation.

4.1 Coordinating Negotiation with a Mediator

A possible approach is to delegate part of the coordination to a designated agent,
without requiring this mediator to actually compute the optimal allocation. In the
single text mediated protocol (Raiffa 1982), the mediator is simply required to make
an initial offer (in a multi-issue domain, typically), on which each agent must vote
to either accept or refuse the offer. If all of the agents accept, the offer is tagged as
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accepted (but the protocol still continues), otherwise it is labelled as rejected. Then the
mediator looks for another offer, and this process repeats a number of times. Hence,
agents never reveal directly anything about their preferences, contrary to an auction.
On the other hand, it is clear that without any further information, themediator will be
bound to search blindly in the space of possible outcomes. Each new accepted offer
is a Pareto-improvement over the previous one. However, another obvious issue with
this protocol is that it doesn’t give any guarantee in terms of social welfare. Several
works attempt to circumvent these issues, either by employing techniques allowing
to escape local optima, like simulated annealing (Klein et al. 2003), or by exploiting
the history of interactions, so as to build preference models of the agents, and hence
guide the search process (Aydogan et al. 2012).

Another mediated protocol of interest is fallback bargaining (Brams and Kilgour
2001), which only assume ordinal preferences over outcomes. In the first round,
agents report their preferred outcome to the mediator. If the outcome is the same
for everyone, it is chosen. Otherwise, agents report their next preferred outcome,
and so on. The protocol stops, at round k, when an outcome at least occurs in the
top-k preference of every agent. The outcome is not only Pareto-optimal, but it also
provides guarantees in terms of its rank for the least satisfied agent.

4.2 Extending Bilateral Protocols to the Multilateral Setting

A natural question is whether bilateral approaches can naturally be extended to the
multilateral case. In particular, let us consider the monotonic concession protocol
taken together with the Zeuthen strategy, and see how it can adapted, following
Endriss (2006). First, the condition under which the protocol terminates successfully
is easily adapted: an agreement is found when an agent makes an offer which at least
as good than their current offer, for all the other agents. However, things get more
complicated when we turn to the definition of what should count as a concession.
Indeed, several definitions can be conceived. We may require a concession to be
strictly better for all the other agents (strong concession), or better for at least one
agent (weak concession), or increase the sum of utilities of the other agents (utili-
tarian concession), to cite a few examples. Interestingly, these different definitions
yield protocols with different properties. For instance, it may not always be possible
to avoid deadlock situations, in the sense that no agent can make any concession,
whereas the outcome is neither an agreement or a conflict.

Example 5 To illustrate that strong concessions can yield deadlock situations, sup-
pose there are only three possible outcomes o1, o2 and o3, yielding the following
utilities:
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u1 u2 u3
o1 2 1 3
o2 3 2 1
o3 1 3 2

Take the situation where agents i make offer oi . Nomore concessions are possible
(all agents enjoy utility 2 in their current offer, so any other makes one of themworse
off). Still, no agreement is reached.

4.3 Multilateral Negotiation by Local Deals

Another approach is based on the idea of the Contract Net protocol (Smith 1980).
Each agent can, depending on the considered task, act as amanager and propose other
agents other tasks to be executed. The central idea is thus to allow agents to contract
local deals, involving typically a small number of agents. For instance, we may
assume each local deal to be bilateral, and thus use different techniques mentioned
in this chapter. What can be guaranteed at the global level for such dynamics of local
deals? Can we make sure that the system will converge at some point? If so, will
the outcome be satisfying? We mention some typical results, based on the work of
Sandholm (1998), Dunne et al. (2005), and Chevaleyre et al. (2010). Assuming that
agents do not plan ahead, let us assume that deals must be IR. Sandholm (1998)
distinguishes in particular the following types of local deals:

• simple deals: a single resource is being traded, from one agent to another agent;
• swap deals: a resource is swapped against another resource;
• bilateral deals: no restriction on resources traded, but involving only two agents.

Bilateral deals thus encompass both simple and swap deals, but are more general.
Of course, the complexity of deals can be arbitrarily large. It can be shown that in
modular domains, any sequence of simple deals (with money transfer is allowed)
is guaranteed to reach an outcome maximizing utilitarian social welfare (Endriss
et al. 2006). This result is positive in the sense that the class of deals is very simple,
but of course modularity remains a strong assumption to be made on the structure of
agents’ preferences, since it forbids any synergies between resources. In our example
involving robots, the condition is unlikely to be satisfied, unless the setting imposes
severe restrictions on the possible moves that robots can make: this would be the
case if robots were due to return to their initial location after visiting each site. It
is thus natural to ask whether any guarantee can be offered on a larger domain. A
negative answer can be given, in the following sense: no domain including modular
functions can provide the same guarantee on the quality of the outcome. Themodular
domain is said to bemaximal for the class of bilateral deals (Chevaleyre et al. 2010).
In practice, this means that a designer wishing to use only bilateral deals cannot
provide any guarantee unless the domain is certainly modular.
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r1A B

C

r2 r3
5

10

52 2

Fig. 3 Robots must take stones from A and B and bring it to C

Example 6 Let us consider three robots r1, r2, et r3. Robot r1 has a large basket,
but r2 and r3 both have a small basket. Figure3 describes the initial situation. Some
stones has been discovered on sites A and B, and must be moved to site C . The
initial allocation assigns r2 to A and r3 to B (total cost 17 + 17 = 34). Because of
their small basket, robots r2 and r3 will have to unload the cart to be able to take the
stones to the other site (cost: 37). The following allocation would be optimal for the
utilitarian social welfare: r1 should do the whole tour. However, no bilateral deal is
possible, since visiting only one of the site is more costly for r1. Thus, the payment
that r2 or r3 would require would be too high. This offer can only be reached via a
simultaneous deal involving all the robots.

Let us now study the speed of convergence of such a protocol, or, to put it dif-
ferently, the number of deals required to reach an optimal outcome (Endriss and
Maudet 2005; Dunne 2005). As a first observation, note that |O||A | is certainly
an upper bound, since there are that many allocations, and each deal induces a
strict improvement of utilitarian social welafre, which prevents from visiting twice
the same allocation. In fact, even restricting the class of deals to single deals does
not prevent sequences from being of exponential length (Dunne 2005). However,
if we restrict our attention to modular domains, each resource can only visit each
other agent (beyond the one which holds it initially): hence we get convergence in
|O| × |A | deals in the worst case.

Several other extensions have been studied: other optimality criteria
(Dunne 2005), protocols involving richer class of deals (Zheng and Koenig 2009;
Chevaleyre et al. 2005), other types of resources (Airiau and Endriss 2010), dealing
with underlying graph topology constraining the deals (Nongaillard and Mathieu
2011; de Weerdt et al. 2012; Chevaleyre et al. 2017; Gourvès et al. 2017), or pro-
tocols accounting for the limited knowledge agents may have on the preferences of
others (Saha and Sen 2007; An et al. 2007).

Finally, a difficulty not mentioned yet is the asynchronous nature of such systems.
Indeed, agents can be locked if different deals take place in parallel. In this case, an
agent can be tempted to accept a new offer while negotiating with another agent. A
proposal to extend the Contract-Net protocol to this setting can be found in Aknine
et al. (2004). Another concrete example of this approach can be found in An et al.
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(2009): the idea is here to use alternating offers so as to allow parallel negotiations.
More generally, Sanholm and Lesser (1996) propose to see protocols with limited
commitment (uncommitment is allowed, but agents incur a cost when they do) as a
manner to allow backtracking in the distributed search performed by a multiagent
system.

5 Persuasion-Based Negotiation

Argumentation is a verbal and social activity of reason aimed at increasing (or
decreasing) the acceptability of a controversial standpoint for the listener or reader,
by putting forward a constellation of propositions intended to justify (or refute) the
standpoint before a rational judge. It is also considered as a reasoning model based
on the construction and the evaluation of interacting arguments. Those arguments
are intended to support statements that can be decisions, opinions, etc (see chapter
“Argumentation and Inconsistency-Tolerant Reasoning” of this volume).

Argumentation has developed into an important area of study in artificial intel-
ligence over the last fifteen years, especially in sub-fields such as nonmonotonic
reasoning (e.g. Bondarenko et al. 1997; Chesnevar et al. 2000; Dung 1995; Prakken
and Vreeswijk 2002; Vreeswijk 1997), multiple-source information systems (e.g.
Amgoud and Kaci 2007; Amgoud and Parsons 2002) and decision making (e.g.
Amgoud and Prade 2009; Bonet and Geffner 1996; Fox and Parsons 1997). Argu-
mentation has also been extensively used for modeling different kinds of dialogues,
in particular persuasion (e.g. Amgoud et al. 2000a; Gordon 1993; Prakken 2005) and
inquiry dialogues (e.g. Black and Hunter 2007).

In the nineties, Sycara has emphasized the importance of using argumentation
techniques even in negotiation dialogues (Sycara 1990). Since there, several works
on argumentation-based negotiation have been done including work by Parsons and
Jennings (1996), Reed (1998), Kraus et al. (1998), Tohmé (1997), Amgoud et al.
(2000b; 2004), and Kakas and Moraitis (2014; 2006). The basic idea behind an
argumentation-based approach for negotiation is to allow agents not only to exchange
offers but also reasons that support these offers in order to mutually influence their
preferences over offers, and consequently the outcome of the dialogue. Integrating
argumentation theory in negotiation provides a good means for supplying additional
information and helps agents to convince each other by adequate arguments during
a negotiation dialogue. Indeed, an offer supported by a good argument has a better
chance to be accepted by an agent, and can also make her reveal her goals or give
up some of them. The basic idea behind an argumentation-based approach is that by
exchanging arguments, the theories of the agents (i.e. their mental states) may evolve,
and consequently, the status of offers may change. For instance, an agent may reject
an offer because it is not acceptable, then it changes her mind if she receives a strong
argument in favor of this offer.

In the literature, there are two categories of works on argumentation-based nego-
tiation. The first category studies the role of argumentation in negotiation. It was
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shown in Amgoud and Vesic (2012) that argumentation may improve the quality
of solutions reached in negotiation. The same conclusion was also revealed by an
empirical study done in Pasquier et al. (2010), where the results of a negotiation
model are compared when arguments are exchanged and when they are not allowed.

The second category of works defines concrete negotiation models (Amgoud
et al. 2000b; Kakas and Moraitis 2006; Kraus et al. 1998; Parsons and Jennings
1996; Reed 1998; Tohmé 1997). Each model shows how arguments are built from
knowledge bases (containing the mental states of agents), and how these arguments
are evaluated and then exchanged using a protocol. For instance, the alternating
offers protocol proposed by Rubinstein (1982) for bargaining between agents was
extended in Hadidi et al. (2010) for considering arguments. In what follows, we
do not focus on a particular protocol, but rather present the main ideas behind a
argumentation-based negotiation model.

5.1 Agent Theory

In what follows,L will denote a logical language, and ≡ is an equivalence relation
associated with L , and θ a symbol not appearing in L . From L , a finite set O of
distinct offers is identified (i.e., �o, o′ ∈ O such that o ≡ o′).

Different arguments can be built fromL . The set Args(L )will contain all those
arguments (see chapter “Argumentation and Inconsistency-Tolerant Reasoning” of
this volume for a formal definition of argument). The selection of the best offer to
propose at a given step of the dialogue is a decision problem. In Amgoud and Prade
(2009), it has been shown that in an argumentation-based approach for decision
making, two kinds of arguments are distinguished: arguments supporting choices (or
decisions), and arguments supporting beliefs. Moreover, it has been acknowledged
that the two categories of arguments are formally defined in different ways, and they
play different roles. Indeed, an argument in favor of a decision, built both on an agent’s
beliefs and goals, tries to justify the choice; whereas an argument in favor of a belief,
built only frombeliefs, tries to destroy the decision arguments, in particular the beliefs
part of those decision arguments. Consequently, in a negotiation dialogue, those two
kinds of arguments are generally exchanged between agents. In what follows, the
set Args(L ) is then divided into two subsets: a subset Argso(L ) of arguments
supporting offers, and a subset Argsb(L ) of arguments supporting beliefs. Thus,
Args(L ) = Argso(L ) ∪ Argsb(L ) and Argso(L ) ∩ Argsb(L ) = ∅.

Since knowledge bases from which arguments are built may be inconsistent,
arguments may be conflicting too. In what follows, those conflicts will be captured
by the binary relationRL , i.e.RL ⊆ Args(L ) × Args(L ). Two assumptions are
made on this relation: First the arguments supporting different offers are conflicting.
The idea behind this assumption is that since offers are exclusive, an agent has to
choose only one at a given step of a dialogue. Note that, the relation RL is not
necessarily symmetric between the arguments of Argsb(L ). The second condition
does not allow an argument in favor of an offer to attack an argument supporting a
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belief. This avoids wishful thinking. Formally: RL ⊆ Args(L ) × Args(L ) is a
binary relation such that:

• ∀a, b ∈ Argso(L ) such that a �= b, (a, b) ∈ RL .
• �(a, b) ∈ RL such that a ∈ Argso(L ) and b ∈ Argsb(L ).

An agent involved in a negotiation, called negotiating agent, has a theory. It
is made of a finite set of arguments, a conflict relation among those arguments,
a preference relation between the arguments, and a function that specifies which
arguments support offers of the setO . In the literature, an agent is always assumed to
be aware of all the arguments of the set Args(L ). The agent is even able to express
preference � between any pair of arguments, where a � b means that a is at least
as preferred as b. The relation � is a (partial or total) preorder, i.e., reflexive and
transitive. Its strict version is denoted by �. Note that the fact that � is defined over
Args(L ) does not mean that the agent will use all the arguments of Args(L ). The
assumption rather encodes the fact that when an agent receives an argument from
another agent, it can interpret it correctly, and compare it with her own arguments.
Similarly, each agent is supposed to be aware of the conflicts between arguments.

Definition 1 A negotiating agent theory is a tupleT = 〈O,A ,F ,�, R〉 such that:
• O a finite set of offers.
• A is a finite subset of Args(L ).
• F : O → 2A such that ∀o, o′ ∈ O with o �≡ o′,F (o) ∩ F (o′) = ∅.
• � ⊆ Args(L ) × Args(L ) is a (partial or total) preorder.
• R = {(a, b) ∈ RL | (a, b) ∈ A × A }.

The functionF returns the set of arguments supporting a given offer. Arguments
are evaluated using any acceptability semantics from the literature. In what follows,
we illustrate a negotiation framework using the stable semantics proposed by Dung
(1995).

Definition 2 A set E ⊆ A is a stable extension of a theoryT = 〈O,A ,F ,�, R〉
iff i)�a, b ∈ E such that (a, b) ∈ R, and ii)∀a ∈ A \ E ,∃b ∈ E such that (b, a) ∈ R
and not(a � b). Let Ext(T ) denote the set of all stable extensions of the theoryT .

Note that under stable semantics, a theory may have zero, one, or more extensions.
From the extensions, a qualitative status is assigned to each argument.

Definition 3 LetT = 〈O,A ,F ,�, R〉 be an agent theory, and a ∈ A . IfExt(T )

= ∅, then a is undecided, otherwise:

• a is accepted iff a ∈ ⋂

E ∈Ext(T )

E ,

• a is rejected iff a /∈ ⋃

E ∈Ext(T )

E ,

• a is undecided iff ∃E ,E ′ ∈ Ext(T ) such that a ∈ E and a /∈ E ′.

Note that A = {a|a is accepted} ∪ {a|a is rejected} ∪ {a|a is undecided}. From the
statuses of arguments, a qualitative status is also assigned to each offer.
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Definition 4 LetT = 〈O,A ,F ,�, R〉 be an agent theory, and o ∈ O . IfF (o) =
∅, then o is non-supported, otherwise:

• o is acceptable iff ∃a ∈ F (o) such that a is accepted.
• o is rejected iff ∀ a ∈ F (o), a is rejected.
• o is negotiable iff ∀a ∈ F (o), a is undecided.

Let Oa(T ) (respectively Or (T ), On(T ), Ons(T )) denote the set of acceptable
(respectively rejected, negotiable, non-supported) offers in theory T .

Obviously, the above definition provides a partition of the set O of offers.
Indeed, O = Oa(T ) ∪ Or (T ) ∪ On(T ) ∪ Ons(T ). A preference relation on O is
also defined. The idea is that any acceptable offer is strictly preferred to anynegotiable
offer, which in turn is more acceptable than any non-supported offer. Non-supported
offers are strictly preferred to any rejected one. Let X and Y be two subsets of O .
X � Y means that any offer in X is strictly preferred to any offer in the set Y . We can
write also for two offers o, o′, o � o′ iff o ∈ X , o′ ∈ Y and X � Y .

Definition 5 Let T = 〈O,A ,F ,�, R〉 be an agent theory. The following holds:
Oa(T ) � On(T ) � Ons(T ) � Or (T ).

5.2 Negotiation Dialogues

A negotiation takes generally place between two or more agents. For simplicity
reasons, we assume only two agents P and C . Each agent i ∈ {P,C} is equipped
with a theory Ti = (O,Ai ,Fi ,�i , Ri ) which is used for computing the preference
relation �i on the set O of offers. During a dialogue, the two agents exchange offers
and arguments. In what follows, we present a very general definition of dialogue
which can then be extended by the rules of any protocol.

Definition 6 A negotiation dialogue between two agents P,C over a setO of offers
is a finite sequence of moves d = 〈m1, . . . ,ml〉 such that mi = 〈xi , yi , zi 〉, where
xi ∈ {P,C}, yi ∈ Args(L ) ∪ {θ}, and zi ∈ O ∪ {θ}. If ∀i = 1, . . . , l, yi = θ , then
d is said non-argumentative. It is argumentative otherwise.

At each step t of a dialogue, the theory of each agent may evolve. The original
set of arguments is augmented by new ones received from the other party, and the
attack relation is modified consequently. Let T t

i = (O,A t
i ,F t

i ,�t
i , Rt

i ) denote the
theory of agent i ∈ {P,C} at a step t of a dialogue d = 〈m1, . . . ,ml〉 and T 0

i her
theory before the dialogue. Obviously, the theories of the two agents do not change
in case d is non-argumentative.

Property 1 If a dialogue d = 〈m1, . . . ,ml〉 is non-argumentative, then∀i ∈ {P,C},
∀ j ∈ {1, . . . , l}, it holds that T j

i = T 0
i .
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Let us now analyze the different solutions of a negotiation dialogue. The best solu-
tion for an agent at a given step of a dialogue is that which suits best her preferences,
i.e., an acceptable offer in her own theory. However, an offer may be accepted for
one agent but not for the other. Such offer is not suitable as a solution of the dialogue.
A local solution at a given step is an offer which is accepted for both agents at that
step. We use the term “local” because such an offer is accepted locally in time – it
may have been rejected before, or may become rejected after several steps. Such a
solution does not always exist.

Definition 7 An offer o ∈ O is a local solution at step t of a negotiation dialogue d
iff o ∈ Oa(T

t
P) ∩ Oa(T

t
C ).

A local solution is not necessarily a dialogue outcome since the two agents may
miss it. In order to be so, an efficient protocol should be used. Furthermore, it is
time-dependent. An offer may, for instance, be a local solution at step t but not at
step t + 1. In what follows, we define two other solutions (one for a single agent
and one for a dialogue) which are not time-dependent. They represent respectively
the optimal solution for an agent and the ideal solution of a dialogue. An offer is an
optimal solution for an agent iff she would choose that offer if she had access to all
arguments owned by all agents.

Definition 8 An offer o ∈ O is an optimal solution for agent i ∈ {P,C} iff o ∈
Oa(Ti ) where Ti = (O,A 0

P ∪ A 0
C ,Fi ,�i , Ri ) with Ri ⊆ (A 0

P ∪ A 0
C ) × (A 0

P ∪
A 0

C ).

The following property shows that if an offer is optimal for an agent, then there
exists a dialogue in which that solution is accepted for that agent at a given step.

Property 2 If o is an optimal solution for an agent, then there exists a dialogue d
such that o is accepted for that agent at step t.

If both agents agree when all information has been exchanged, they can obtain an
ideal solution.

Definition 9 An offer o ∈ O is an ideal solution iff o ∈ Oa(TP) ∩ Oa(TC) where
TP = 〈O,A 0

P ∪ A 0
C ,F 0

P ,�P , R0
P〉 and TC = 〈O,A 0

P ∪ A 0
C ,F 0

C ,�2, R0
C 〉.

The next property shows that if an ideal solution exists, then it is a local solution
for a dialogue.

Property 3 If o is an ideal solution then there exists a dialogue d = (m1, . . . ,ml)

such that o is a local solution at step l.

It is natural to expect that for two agents with same beliefs and goals an exchange
of arguments can improve the chance of finding a solution.
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6 Conclusion

This chapter briefly presented distributed procedures based on negotiation for reach-
ing agreement, for instance regarding task or resource allocation. The reader inter-
ested in the robotic scenario used for illustration purpose may find a more exhaustive
survey in Dias et al. (2006). Several other applications could have been used to
illustrate such distributed approaches: negotiations in smart grids (Vytelingum et al.
2010), or task allocation in the medical domain (Paulussen et al. 2003; Vermeulen
et al. 2007). Again, many aspects of negotiations have been left aside. To take a single
example, we only briefly mentioned challenges of multi-attribute negotiation, which
led to recent theoretical and empirical developments (Fatima et al. 2006, 2014; Lai
et al. 2008).
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Diagnosis and Supervision: Model-Based
Approaches

Marie-Odile Cordier, Philippe Dague, Yannick Pencolé
and Louise Travé-Massuyès

Abstract This chapter is devoted to diagnosis and supervision. It is organized as
follows: after a section dedicated to the logical formalization of model-based diag-
nosis, the focus is made on diagnosis of discrete event systemsmodeled by automata.
In the last section, one presents more succinctly the works that allowed to make the
bridge between the approaches proposed by the Artificial Intelligence community
and those proposed by the Automatic Control community.

1 Introduction

Diagnosis consists in observing a system (often by using sensors), in detecting from
these observations possible dysfunctions or mode change (from normal to abnormal)
and in identifying the fault(s) they evoke. Diagnosis can be carried out in the medical
field but also in the industrial field or even the environmental, economic ones, etc.
The first works in Artificial Intelligence (AI) dealing with diagnosis were, in the
1980s, the expert systems based approaches, which appeared with the application
to medical diagnosis and the Mycin system. These approaches relied on general on
production rules whose condition part describes observable signs and symptoms and
conclusion part the diagnoses they evoke. These associative approaches for diagno-
sis have continued and gave rise to case-based reasoning approaches (see chapter
“Case-Based Reasoning, Analogical Reasoning, and Interpolation” of this volume)
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and, for dynamical systems, to chronicles (or scenarios) recognition approaches,
where one associates to a set of temporally constrained events the diagnostic situa-
tion to which these events correspond.

Despite their success, it has been often reproached associative approaches for cod-
ing reasoning shortcuts, left without explanations capabilities relying on the function-
ing of the system to be diagnosed. This motivated the introduction of model-based
approaches, which rely on a description of the behavior of the supervised system,
this model being possibly limited to the behavior of the so-called normal behavior
of the system studied. It will be seen in the following that it is often relevant to join
it, when available, fault models, describing also the behaviors resulting from the
occurrence of a fault. One can distinguish between predictive models, which allow
prediction of the system’s behavior, in particular the values observed by the sensors,
and explanatory models, which allow explanation of observations resulting from the
faults that occurred.

Diagnosis problem interested a lot researchers in AI. It actually associates a mod-
eling problem, therefore the choice of a formalism (based on logic, graphs or con-
straints) for behavior representation of the system studied with its uncertainty and
complexity, a diagnoses characterization problem and a heuristic algorithmic prob-
lem for solving with satisfactory efficiency a task, which is most of the time NP-hard.
And this field by the way influenced considerably AI research, since expert systems,
default logic, fuzzy logic and non monotonic logics, constraints, causal graphs, qual-
itative reasoning had often their first applications in this framework. As it will seen
in this chapter, this field motivated also largely researchers in the Automatic Control
field who, firstly more focused on control, expanded their interest to search of the
causes of the dysfunctions detected.

It can be finally noticed that diagnosis is not in general an end per se and that
the issue is to “repair” the monitored system, which relates it directly to research in
decision theory (see chapters “Multicriteria Decision Making” and “Decision Under
Uncertainty” of this volume) and in planning (see chapter “Planning in Artificial
Intelligence” of Volume 2). Last, diagnosis depends very directly on the means
available for observing the system and research in diagnosis has direct links with
systems design and observability and also their repairability if one is interested, as it
is most often the case currently, in the design of autonomous and embedded systems,
as well with their hardware features as their software ones.

2 Logical Framework for Diagnosis

The formalization of the theory of diagnosis at the end of the eighties has been
firstly introduced separately regarding consistency-based diagnosis and regarding
abductive diagnosis. In the first case, one requires only for a diagnosis, i.e., an
assignment of behavioral modes – normal or abnormal – to each component of the
system, to be consistent with the system model and the observations. In the second
case, one requires additionally for a diagnosis to “explain”, jointly with the system
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model, all or some of the observations. Initially, this second case was most often
handled in the framework of “naturally abductive” models such as causal graphs or
Bayesian models and called on concepts of set covering. It is only a bit later that
both approaches converged, the logical framework allowing thewhole spectrum from
simple consistency to whole abductive to be expressed.

2.1 Consistency-Based Logical Approach

The theory of consistency-based diagnosis was expressed for the first time in a logical
framework, which will no longer vary afterwards, in Reiter (1987). This framework
claims to be valid for any system structurally described in terms of components, the
model of the system being assumed to be given by a first-order theory. One assumes
likewise to have available a (sound and complete) first-order solver for checking
inconsistency, which, in its whole generality, can be only a semi-algorithm as first-
order theory is undecidable. The theory developed is completely independent from
the choice of this solver, that we can suppose adapted to such and such actual systems
modeling formalism according to their characteristics (but the practical tasks of aid to
modeling and to inference algorithms specification are not tackled in this framework).
On the other hand, the expression and the computation of diagnoses themselves from
the results of the solver come under propositional logic, as the target vocabulary –
components normality or abnormality – is propositional.

Definition 1 A system is a pair (SD,COMPS)where SD, the system description, is a
finite set of first-order sentences (with equality) andCOMPS, the system components,
is a finite set of constants.

An observations set OBS is a finite set of first-order sentences (with equality).
An observed system is a triple (SD,COMPS,OBS) where (SD,COMPS) is a

system and OBS an observations set.

The elements of COMPS, which are the subjects of the diagnosis, appear in SD
and possibly inOBS. The behavioral mode or diagnostic status of each component is
represented by a distinguished unary predicate AB(.), historically borrowed from the
circonscription theory (McCarthy1986),which is interpreted as signifyingabnormal.
The assumptions about componentsmodes,which determine their behaviors, are thus
made explicit in SD (nothing forbids AB(.) to appear also inOBS, but in practice it is
always possible to transfer such an occurrence into SD). Typically, SD formulas code
from one side the behavioral models of the generic components (library reusable for
any system using the same components), in the form:

COMPONENT_TYPE(x) ∧ ¬AB(x) ⇒ Correct_model(x)
/* correct functioning mode */

COMPONENT_TYPE(x) ∧ AB(x) ⇒
Fault_model_1(x)∨ ... ∨ Fault_model_n(x) ∨ U(x)
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/* Fault modes */
¬Correct_model(x) ∨ ¬Fault_model_1(x), …,
¬Fault_model_1(x) ∨ ¬Fault_model_2(x), …

/* exclusion in twos of the different behaviors*/

and from the other side the structural description of the system into its components
in the form of ground formulas:

INVERTER(C1), OR_GATE(C2), =(output(C1), input1(C2))
RESISTOR(C3), =(resistance(C3),150).

Correct_model(x) is a formula that expresses the normal behavior of com-
ponent x, while Fault_model_i(x) is a formula that expresses the behavior
of component x for the fault mode i. The predicate U(x) is added to represent
the unknown fault mode, thus not accompanied by any model, in order to express
that the knowledge of the fault modes cannot claim in general to be exhaustive. It
is important to notice that, as the theoretical framework does not assume anything
about the nature of the formulas in SD, nothing requires modeling faults and one can
be satisfied with the only correct functioning models. By the way, it is this idea that
prevailed at the origin of model-based diagnosis: show that, unlike all the previous
approaches (in particular expert systems) based on the knowledge of the faults and
their effects, it was possible to do diagnosis without any prior knowledge of faults
and symptoms.

As for the formulas inOBS, they describemeasurements and are in general ground
(but this is not mandatory), for example: =(port2(C3),2.63).

A diagnosis is amode assignment, normal or abnormal, to each component, which
is consistent with both the system description and the observations. According to the
context, a diagnosis will be identified either to a subset Δ of components (those that
are abnormal) or to a conjunction D(Δ) of AB-literals, where the correspondence
between Δ ⊆ COMPS and D(Δ) is defined by:

D(Δ) = (∧AB(C)|C ∈ Δ) ∧ (∧¬AB(C)|C ∈ COMPS \ Δ).

Definition 2 A diagnosis for (SD,COMPS,OBS) is a D(Δ) with Δ ⊆ COMPS
such that: SD ∪ OBS ∪ {D(Δ)} �|= ⊥.

As there are potentially 2|COMPS| possible diagnoses, one is often led to apply a
parsimony principle and to be interested only in those diagnoses which are minimal
for set inclusion (the subset of minimal size diagnoses may also be considered, but
it is not in general the relevant concept).

Definition 3 A minimal diagnosis is a diagnosis D(Δ) such that ∀Δ′ ⊂ Δ, D(Δ′)
is not a diagnosis.
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Remark 1 A diagnosis for (SD,COMPS,OBS) exists if and only if SD ∪ OBS is
satisfiable, which will be always assumed in the following (otherwise, it means the
model has to be revised). ∅ (i.e., (∧¬AB(C)|C ∈ COMPS)) is a diagnosis (and the
only minimal diagnosis) if and only if the observations are consistent with the correct
functioning of all the components. Therefore fault detection occurswhen∅ is nomore
a diagnosis.

In order to locate the fault(s) after detection, it is natural to be interested in subsets
of components – theminimal ones for set inclusion if possible – whose correct modes
are by themselves (independently of themodes of the other components) inconsistent
with the system model and the observations.

Definition 4 A conflict set for (SD,COMPS,OBS) is a set C ⊆ COMPS such that
SD ∪ OBS ∪ {¬AB(C)|C ∈ C } |= ⊥. A minimal conflict set is a conflict set C such
that ∀C ′ ⊂ C , C ′ is not a conflict set.

Each conflict set contains thus at least one abnormal component. Consequently
a diagnosis Δ must have a nonempty intersection with each conflict set (one can
restrain oneself to minimal ones).

Definition 5 LetK be a sets collection. A hitting set forK is a setI ⊆ ∪E ∈K E
such that ∀E ∈ K ,I ∩ E �= ∅. A minimal hitting set is a hitting set I such that
∀I ′ ⊂ I , I ′ is not a hitting set.

Theorem 1 (Characterization of minimal diagnoses) Δ ⊆ COMPS is a minimal
diagnosis for (SD,COMPS,OBS) if and only if Δ is a minimal hitting set for the
collection K of minimal conflict sets for (SD, COMPS, OBS).

Theorem 1 provides an operational method for computing minimal diagnoses:
one begins by computing all minimal conflict sets, then one computes the minimal
hitting sets of the collection obtained in this way. An algorithm has been proposed
by Reiter (1987) and corrected by Greiner et al. (1989), based on the construction
and pruning of an acyclic direct graph (whose nodes are elements ofK and labels of
paths from the root to the leaves are the minimal hitting sets). As for the computation
of all minimal conflict sets that involves an unsatisfiability test, it is in all generality
a problem which is only semi-decidable; in practice, for real systems models, one
deals with decidable fragments but the complexity class is in general NP-hard. An
obvious but very inefficient algorithm would be to generate potential conflict sets
candidates by a breadth first search of the lattice of subsets of COMPS, beginning by
COMPS (detecting a fault boils down to show that COMPS is a conflict set and thus
that ∅ is not a diagnosis), and continue by exploring the subsets of a set each time it
has been proved to be a conflict set. This algorithm is improved by coupling conflict
sets generation and minimal hitting sets computation: the call to the unsatisfiability
checking solver is done at each node of the graph being developed by passing it as
argument the conflict set candidate made up of the components that do not appear in
the label of the path from the root to the node in question. One takes also advantage
of the fact that the solvers (e.g., the resolution-based refutation method) may return,
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in case of unsatisfiability, the support of a refutation in the form of a conflict set that
is in general strictly included into the conflict set passed as argument, which is used
to label the node in question.

Actually, the most popular diagnostic architecture adopted by the majority of real
implementations is the GDE (General Diagnostic Engine), introduced in De Kleer
and Williams (1987) (simultaneously and independently from Reiter 1987). It rests
on the coupling of a problem solver and an ATMS (Assumption-based Truth Main-
tenance System). Generally, the solver is based on constraints propagation: it prop-
agates the values provided by OBS through the constraints expressing the system
model SD (such a representation in the form of constraints, in particular equations
from physics, is closer from models found in engineering than a first-order logic
representation); that way it computes the output values of a component from its
behavioral model equations and its input values. In this case the justifications trans-
mitted to theATMSareHorn clauses and theATMShandles assumptions (namely the
modes AB(C) or ¬AB(C) of each component) management by computing the labels
(disjunctions of environments, where each environment is a conjunction of assump-
tions), supports of each statement inferred by the solver, in particular the nogoods,
those environments that are the supports of⊥, i.e., the inconsistent assumptions sets.
The framework of De Kleer and Williams (1987) is limited to the exclusive use of
correct functioning modes: in the absence of faults modes, the assumptions are thus
all of the type ¬AB(C), which can be simply encoded by the propositional symbol
C. In this framework and with this representation of assumptions, one obtains thus
an equivalence between nogoods and conflict sets.

Property 1 If only behaviors expressing necessary conditions of correct functioning
are modeled in SD and the assumptions ¬AB(C) are coded by the symbols C, then
the minimal nogoods computed by an ATMS are exactly the minimal conflict sets.

Moreover, in the absence of faults modes, one observes that changing, inside a
minimal diagnosis Δ, the status ¬AB(C) of a component C in COMPS \ Δ into
AB(C) cannot create any inconsistency, as no inference can be done from AB(C).
One obtains thus in this case a complete characterization of the set of diagnoses from
the set of minimal diagnoses.

Property 2 If only behaviors expressing necessary conditions of correct functioning
are modeled in SD, then any superset of a diagnosis is a diagnosis. The diagnoses
are thus exactly all supersets of the minimal diagnoses.

In general, propagation is not a complete algorithm and one has to resort to more
general constraints solvers, which lead to justifications that are no longer necessarily
Horn clauses. In this case, and also for the explicit handling of the negation in the
assumptions if faults modes are considered, an ATMS is no more sufficient and one
has to use a CMS (Clause Management System) and to adapt the computation of the
hitting sets.

To go further in the characterization of the set of diagnoses in the presence of faults
modes, the concept of conflict set has to be generalized. For this, it is beneficial to
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move from a set representation of a conflict to a logical representation in the form of
a clause, more precisely a positive AB-clause (disjonction of positive AB-literals).

Remark 2 Aconflict set for (SD,COMPS,OBS) identifies with a positiveAB-clause
∨C∈COMPSAB(C) entailed by SD ∪ OBS:

SD ∪ OBS |= ∨C∈COMPSAB(C).

Hence the immediate generalization:

Definition 6 A conflict for (SD,COMPS,OBS) is an AB-clause entailed by SD ∪
OBS, i.e., an AB-clause which is an implicate of SD ∪ OBS. A positive conflict is a
conflict whose all literals are positive. A minimal conflict is a prime implicate, i.e.,
a conflict whose no proper sub-clause is a conflict.

With this definition, the (minimal) conflict sets identify with the (minimal) pos-
itive conflicts. Thus the (minimal) hitting sets for the collection of minimal conflict
sets identify with the (prime) implicants of the collection of minimal positive con-
flicts: one just has to identify the hitting set Δ with the AB-conjunction ∧C∈ΔAB(C).
Moving from the set representation to the logical representation theorem 1 rephrases
thus as:

Theorem 2 D(Δ) is a minimal diagnosis for (SD,COMPS,OBS) if and only if
∧C∈ΔAB(C) is a prime implicant of the collection of positive minimal conflicts for
(SD,COMPS,OBS).

It is important to notice that as andwhen new observations appear, i.e., the setOBS
is growing, the collection of positive conflicts increases as well and as a result some
prime implicants do not remain any more in general. That is to say that some mini-
mal diagnoses disappear and are replaced by other ones (involving more abnormal
components). This means that the diagnostic process is non-monotonic as a function
of the observations. This non-monotony is essential and actually it exists a close
relationship between the diagnosis theory and the default logic (see chapter “Knowl-
edge Representation: Modalities, Conditionals, and Nonmonotonic Reasoning” of
this volume): one expresses that the components are correct in the form of (normal)
defaults and one obtains a bijection between minimal diagnoses and extensions of
the default theory built in this way.

Property 3 Let (SD,COMPS,OBS) be an observed system. LetDT be the following
default theory: DT = ({: ¬AB(C)/¬AB(C)|C ∈ COMPS}, SD ∪ OBS). Then E is
an extension of DT if and only if E = {π |SD ∪ OBS ∪ D(Δ) |= π} where D(Δ) is a
minimal diagnosis for (SD,COMPS,OBS).

The logical generalization of the concept of conflict allows one to characterize
the set of all diagnoses, and not only of minimal diagnoses. One begins by defining
a compact representation of the diagnoses, by considering the partial modes assign-
ments to part of the components, such that all their extensions (by the modes normal
or abnormal indifferently) to the rest of the components are diagnoses.
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Definition 7 A partial diagnosis for (SD,COMPS,OBS) is a satisfiable conjunction
P of AB-literals such that, for any satisfiable conjunction P′ of AB-literals containing
P as a sub-conjunction, SD ∪ OBS ∪ {P′} �|= ⊥. A kernel diagnosis is a minimal
partial diagnosis, i.e., none of its proper sub-conjunctions is a partial diagnosis.

With this definition, the kernel diagnoses provide a compact representation of all
the diagnoses, these ones being exactly the total extensions of the kernel diagnoses.

Property 4 (Characterization of the diagnoses) D(Δ) is a diagnosis if and only if it
exists a sub-conjunction of D(Δ) which is a kernel diagnosis.

Theorem 2 that characterizes the minimal diagnoses in terms of the positive con-
flicts is generalized as a characterization of the kernel diagnoses (and thus of all the
diagnoses) in terms of the conflicts.

Theorem 3 (Characterization of the partial and kernel diagnoses) The partial diag-
noses (resp. kernel diagnoses) for (SD,COMPS,OBS) are the implicants (resp.
prime implicants) of the collection of minimal conflicts for (SD,COMPS,OBS).

Note that this theorem shows that the collection (in the disjunctive sense) of the
kernel diagnoses, as a disjunctive normal form, is analogous to the collection (in the
conjunctive sense) of the minimal conflicts, as a conjunctive normal form.

A sufficient condition guaranteeing that any superset of a diagnosis is a diagnosis
has been given by the Property 2. Theorems 1 and 3 allow one to clarify the rela-
tionship between this property of closure of the diagnoses collection by the superset
operation, and thus the complete characterization of diagnoses in terms of minimal
diagnoses, and the nature of the conflicts.

Property 5 There is a one-to-one correspondence between the kernel diagnoses and
the minimal diagnoses (by extending any kernel diagnosis by the normal mode of
all the components that it does not contain) if and only if all minimal conflicts are
positive. More precisely, the two following statements are equivalent:

1. any superset of a minimal diagnosis is a diagnosis, i.e., if D(Δ) is a minimal
diagnosis then ∀Δ’ such that Δ ⊆ Δ′ ⊆ COMPS, D(Δ′) is a diagnosis;

2. all minimal conflicts for (SD,COMPS,OBS) are positive.

Unfortunately one does not know an equivalent of the second statement of this
property in terms of a syntactic characterization of SD ∪ OBS. Only sufficient con-
ditions guaranteeing the positivity of the minimal conflicts do exist, in the form of
restrictions on SD ∪ OBS. The most obvious one is to impose that any occurrence
of an AB-literal in SD ∪ OBS, put in conjunctive normal form, be positive. It is sat-
isfied as soon as only the correct behavior of components is modeled, in the form of
necessary conditions, which is the assumption of the Property 2.

Let add that in practice one limits oneself to compute the preferred diagnoses,
according to a given criterion. It can be for example a probabilistic criterion if
prior probabilities of the components behavioral modes are available. Diagnoses can
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thus be generated in decreasing probability rank by using Bayes rule for evaluating
conditional probabilities after each observation. One can use quantitative probabili-
ties but also content oneself with relative orders of magnitude between probabilities.
It can be also an explanatory criterion (see Sect. 2.2). Most of the time the preferred
diagnoses are minimal and the selection according to the chosen preference criterion
is thus done among minimal diagnoses, even for a model for which it is known that
minimal diagnoses are not enough to characterize all diagnoses.

2.2 Abductive Approach

Graphs Based Approach

The very first approaches for diagnosis relied on causal models (see chapter “A
Glance at Causality Theories for Artificial Intelligence” of this volume) representing
in the form of arcs the causal relationships between the faults situations (D, for
defects) that could affect the system and their effects, in particular their observable
ones (M, for manifestations). Among these works, one can quote those from Reggia
et al. (1983), Peng andReggia (1990)which propose to use the covering sets theory to
characterize the diagnoses. Arcs and nodes are associated to conditional probabilities
and a plausibility measure is computed to rank the diagnoses.

Abductive Logical Approach

A limitation of the diagnosis approaches that are exclusively abductive is that they
suppose a priori the “completeness” of the causal model, which has to describe all
the faults and all the manifestations of these faults. An attempt to overcome this
limitation is to take into account uncertain causal relationships by distinguishing
strong causal link and weak causal link. Another one is, after having analyzed the
differences between abductive and consistency-based approaches (Poole 1989), to
try to reconcile them (Console and Torasso 1990). The idea is to distinguish among
the observations those that the model has to explain (for example, the abnormal
observations) from those whose only the consistency with the model is required (for
example the exogenous or normal observations). It is examined in the papers (Console
andTorasso1991;TenTeije andVanHarmelen1994)whichpropose a synthesis of the
various definitions that may result from it. This can be expressed in the same logical
framework than previously by a logical diagnosis theory extending consistency-based
diagnosis by abductive diagnosis. Similarly to Sect. 2.1, the following definitions,
properties and theorems are obtained.

Definition 8 Let (SD,COMPS,OBS) be an observed system and OBS = I ∪ O a
partition ofOBS, whereO are those observations one wants to explain. An abductive
diagnosis for (SD,COMPS, I ∪ O) is a D(Δ) with Δ ⊆ COMPS such that: SD ∪
I ∪ {D(Δ)} �|= ⊥ and SD ∪ I ∪ {D(Δ)} |= O.
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Definition 9 A partial abductive diagnosis for (SD,COMPS, I ∪ O) is a satisfiable
conjunctionP ofAB-literals such that, for any satisfiable conjunctionP′ ofAB-literals
containing P as a sub-conjunction, SD ∪ I ∪ {P′} �|= ⊥ and SD ∪ I ∪ {P′} |= O. A
kernel abductive diagnosis is a minimal partial abductive diagnosis, i.e., such that
none of its proper sub-disjunctions is a partial abductive diagnosis.

Property 6 (Characterization of the abductive diagnoses) D(Δ) is an abductive
diagnosis if and only if it exists a sub-conjunction ofD(Δ)which is a kernel abductive
diagnosis.

Theorem 4 (Characterization of the kernel abductive diagnoses) Assume that SD,
I and O are finite sets of formulas (each one being thus represented by a unique for-
mula resulting from the conjunction of its elements). The kernel abductive diagnoses
for (SD,COMPS, I ∪ O) are the prime implicants of � ∧ {(SD ∧ I) ⇒ O}, where
� is the conjunction of the minimal conflicts for (SD,COMPS, I ∪ O).

Notice that the logical concept of observations entailment used by the abductive
diagnosis is unsuitable as soon as the observations are more precise than the predic-
tions made from the models: one has in this case to resort to an abstraction of the
observations (Cordier 1998; Besnard and Cordier 1994), represented by an observa-
tions lattice, and extend the definition of abductive diagnosis to that of explanatory
diagnosis (explaining at best the observations).

2.3 Extensions

After having presented the formal framework of logical diagnosis, we quote rapidly
below the issues that gave rise to later works.

When the number of diagnosis candidates is too large, it is important to use
preference criteria to rank them. It is thus possible to generate the most probable
diagnoses, from the prior faults probabilities (possibly qualitative) and use of Bayes
rule (De Kleer 1992, 2006). One may also turn towards the sequential diagnosis,
which consists in taking advantage of a succession of observations for reducing
gradually the number of diagnoses. Some works had for purpose the choice of the
best (in the sense of information theory, i.e., minimizing an entropy function) next
observation in the framework of the sequential diagnosis. This issue meets the one
of active testing (Feldman et al. 2009; Siddiqi and Huang 2010).

The diagnosis definitions and particularly the preferences (such as the proba-
bilities) used to rank diagnoses are based in general on the assumption of faults
independence. Some works are interested in the case of dependent faults such as
cascading faults. A category of faults particularly difficult to diagnose is made up
of faults affecting the structure (connectivity) of the system. Appear in this category
the shortcuts between connections of a printed circuit board that result in hidden
interactions (because not taken into account a priori in the model).
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Rather early, when the application of the theory to real cases has been undertaken,
arose the problem of handling uncertainty, both at the level of the model and at the
level of the observations. It is especially important as the theory of consistency-based
diagnosis only detects and makes explicit the causes of an inconsistency between
the model of the system and the real system: inferring from that a malfunction of the
system rests thus entirely on the correction of the model. Uncertainty is generally
handled by resorting to an abstraction (Torta and Torasso 2003; Chittaro and Ranon
2004), or by qualitative models (that come under another important field in AI, the
qualitative reasoning (see chapter “Qualitative Reasoning about Time and Space”
of this volume)), or by expressing the values of the model parameters and of the
observations by numerical intervals. According to the case, qualitative simulation or
interval-based CSP are used as solvers (Dague et al. 1990).

Two research issues that emerged only at a later stage after the seminal works in
the domain and are among the most active presently are diagnosability analysis and
decentralized diagnostic architectures. The first, diagnosability, appeared around
twenty years ago, arises from the assessment that the problem of designing and
deploying a diagnostic architecture for a system must be tackled in advance at the
very moment of the system design and not once the system has been produced and
choices critical for the diagnosis, such as the number and the location of the sensors
and thus the observation capacity of the system, have been fixed. For a given set of
anticipated faults modeled in addition of the correct functioning of the system and a
given set of observable quantities or events, the diagnosability analysis of the model
answers the question to know if any occurrence of one of the faults will be always
unambiguously identifiable in a finite time thanks to the observations only. Research
in the field focusedmainly on discrete event systems, modeled by transitions systems
such as automata or Petri nets (see Sect. 3.6).

The second, more recent, concerns the diagnostic architectures either decentral-
ized (local diagnosers communicating with a diagnostic supervisor in charge of pro-
viding the global diagnosis) or distributed (local diagnosers communicating between
them for finding the global diagnosis), essential in particular for diagnosing systems
that are by nature distributed (peer-to-peer networks, composite web services, etc.)
but also systems made up of proprietary subsystems whose models are private for
confidentiality reasons. Distribution may be related to the model, the observations,
the algorithms, the software and hardware diagnostic architecture. Such architectures
are presented in the case of discrete event systems in the Sect. 3.5.

Among the important problems, one can quote the preventive diagnosis, which
consists in being able to detect a problem to come, before it occurs. This issue received
attention later, probably because of the difficulty to get predictive models (such as
wear models). Approaches different from model-based ones will have probably to
be used in this case.

The issue of a tight coupling between diagnosis and repair or reconfiguration,
critical in particular for autonomous systems, has been studied by using planning
techniques (Sun and Weld 1993; Nejdl and Bachmayer 1993; Friedrich et al. 1994).

A last, important and difficult, problem is taking time into account. It is presented
in the Sect. 3.1 and illustrated by the discrete event systems in the Sect. 3.2.
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3 Diagnosis of Discrete Event Systems

3.1 Temporal Representation and Diagnosis

The previous section presents a theory that does not handle the representation of
time and temporal reasoning. From this theory some extensions have been proposed
that deal with several dimensions about time. Brusoni et al. propose in their paper
A spectrum of definitions for temporal model-based diagnosis (Brusoni et al. 1998)
a classification of these different extensions which take into account situations and
successive observations as time-varying contexts; the system can also evolve between
the production of two sets of observations (it is a time-varying behavior); faults can
also produce observable effects after a given finite duration that can be represented as
causal graphs (temporal behavior). Most of the time, these extensions can be repre-
sented by adding a time variable in the SD formulas associated with time constraints.
Time is therefore reified. In practice, given a representation of the problem, it is
necessary to look for compatible solvers that can manage inference and consistency
tests by dealing with the selected representation of time (continuous, discrete or even
both in hybrid systems).

Time variations in physical systems that are only due to system inputs do not
add any new difficulty as this case can be interpreted as a discretized sequence of
statical diagnosis problems. However, most of the systems are actually dynamical,
they have internal states that memorize the past so that the behavior of the system
not only depends on its current inputs but also on its current state. Time can be
represented in a discretized way as a sequence of instantaneous events, in this case,
the system is modeled as a discrete event system (see Sect. 3.2). Time can also
be seen as a continuous variable that is described in differential equations, typically
studied by the control theory community (FDI, see Sect. 4): AI and FDImethods have
actually been compared (see Sect. 4). Based on the time granularity that is chosen in
a model, continuous time can be symbolically abstracted as a set of instants that can
be partially ordered, as time intervals, or as sequences of dates. In this last case, if
the space of physical quantities is discrete, a concise representation of the temporal
behavior can be done as a set of episodes, otherwise sequence of numerical intervals
can be used. Some ATMS extensions are proposed to efficiently deal with these time
data structures. It is possible to use the generic diagnosis theory that is described
above by using an explicit variable that encodes time. However, the complexity
of the model to acquire and the complexity of the inference and consistency test
algorithms drastically increase. This theoretical framework can still be applied as
long as the faults within the system are permanent (always present). If faults occur
at the supervision time and if their effect is permanent after their occurrence, there
is no fundamental changes as the evolution of the conflict sets is still monotonic.
Dealing with intermittent faults is more difficult and is possible only if the evolution
of such intermittent faults is slower than the evolution of the system itself and the
speed of observation acquisition.
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Most of the contributions, even the ones dealing with time, aim at solving the
diagnosis problem based on observation logs after the system has stopped: this is the
off-line diagnosis problem. Then the AI and FDI communities independently started
to develop some works about on-line diagnosis. The system is observed at operating
time in order to react (repair, control) when a discrepancy with the expected behavior
is detected and maintain an operating state that is as satisfactory as possible.

Two types of methods can be distinguished.

1. In chronicle recognition methods, the objective is to recognize, within the flow
of observations, some observable patterns that characterize faulty situations. A
chronicle is a set of events associatedwith time constraints. Specialized algorithms
perform on-line chronicle recognition so that a decision about how to react after
a fault has been diagnosed can still be made at operating time (Dousson 1996;
Carle et al. 2011).

2. The second type of methods, that is typically model-based, relies on the behav-
ioral description of the system but has to deal with the on-line observation flow
incrementally. Assuming that only one fault has occurred or is permanent within
the supervision time is not realistic as the supervision time is long. Moreover it
must be considered that some faults are repaired during the supervision.

In the next sub-section, we focus on the methods where the system is modeled as
a discrete event system (DES). This type of models is particularly relevant when the
underlying system reacts to events (reactive systems), such that the opening/closing
of a valve, the reception of messages, the occurrence of a fault. This type of mod-
els can also be relevant even if the system is continuous but can be discretized as
a DES (Lunze 1994). From the initial work from Sampath et al. (1996), a set of
contributions are proposed about the diagnosis of discrete event systems in the AI
community as well as in the FDI community.

3.2 Models of Discrete Event Systems

A DES is a dynamical system whose state can be described by state variables and
the domain of each variable is discrete. The behavior of the DES is characterized
by the occurrence of discrete events that instantaneously modify the internal state of
the DES. This representation is obviously well-suited to describe systems that are
naturally discrete, such as communication networks that aim at receiving, sending
messages, automated production line systems that produce objects step by step, etc.
But this representation is alsowell-suited for systems that can be discretized, resulting
for example from a qualitative reasoningmethod (Travé-Massuyès andDague 2003).

To model DES, several formalisms from the language theory can be used such
as the process algebra, Petri nets and automata. With the help of these formalisms,
the behavioral language of the DES can be represented in a concise manner. In
order to present and illustrate the diagnosis problem of DES, we use here the
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formalism of transition system/automaton (see chapter “Theoretical Computer
Science: Computational Complexity” of Volume 3) which has been used in most
of the seminal works of the field.

Definition 10 An automaton A is a 5-tuple 〈Q,E,T , I ,F〉 such that

• Q is a finite set of states,
• E is a finite set of events,
• T ⊆ Q × E × Q is a finite set of transitions 〈q, e, q′〉,
• I ⊆ Q is a set of initial states,
• F ⊆ Q is a set of final states.

The event e over the transition t = 〈q, e, q′〉 triggers the transition. The language
L(A) ⊆ E� generated by the automaton A is the set of event sequences from E which
can be associated with a transition path in A from an initial state q0 of I to a final
state of F , such a path is also called a trajectory.

Definition 11 A trajectory of an automaton A = 〈Q,E,T , I ,F〉 is a sequence of
transitions traj = q0

e1→ . . .
em→ qm such that: q0 ∈ I , qm ∈ F , and ∀i ∈ {1, . . . ,m},

〈qi−1, ei, qi〉 ∈ T . A trajectory can also be denoted as 〈(q0, . . . , qm), (e1, . . . , em)〉.
The set of possible behaviors of a system is represented as an automaton SD, each

behavior being characterized as a trajectory in SD.

Definition 12 The model of the system is an automaton

SD = 〈QSD,ESD,TSD, I SD,FSD〉.

As any trajectory q0
e1→ . . .

em→ qm of the system depends on a previous trajectory

of the system q0
e1→ . . .

em−1→ qm−1, the SD automaton can then be such thatFSD = QSD

(any state is final). In other words, the language L(SD) is prefix-closed.
In general, a DES can be modeled in a modular way as a set of n components

COMPS = {C1, . . . ,Cn} that define the structural model of the supervised system.
Each componentCi is modeled as an automaton SDi = (Qi,Ei,Ti, Ii,Fi). Themodel
of the system is obtained by applying a synchronized product on the automata
(SDi)i={1,...,n}. The product relies on a set of synchronisation relations Sync that are
generally a set of constraints ei = ej that model the fact that the event ei ofCi and the
event ej of Cj must always occur at the same time. The global model SD is obtained
by computing the subset of trajectories from the Cartesian product

∏n
i=1 SDi that is

restricted to the trajectories when all the constraints of Sync are satisfied. This syn-
chronized product is denoted⊗Sync or simply⊗when the synchronisation constraints
are defined without ambiguity. From this, it follows:

SD = SD1 ⊗ · · · ⊗ SDn.
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3.3 Faults, Observations and Diagnosis of DES

The automaton SD that represents the system, actually models its normal and
abnormal behaviors, and especially the behaviors of interest in the monitoring
task. The abnormal behaviors are modeled by labeling transitions with fault events
ef ∈ F ⊆ ESD that represent the fact that the system starts to be faulty.

Any diagnosis reasoning requires the observation of the system. In the context of
the DES, observations are events, usually resulting from the generation of a piece
of information from sensors. In a DES, there are observable events ESD

OBS ⊆ ESD and
non-observable events ESD

¬OBS ⊆ ESD. Among the non-observable events, there are
the fault events. Any trajectory τ of the system is then associated with its observable
trace σ(τ) that is defined as the sequence of observable events that is produced when
τ is indeed the trajectory realized by the system (projection of τ on the observable
events ESD

OBS).
If it is assumed that the observations of the system are perfectly known (no uncer-

tainty about the observed event types and the observed dates), the observation of the
system is then defined as a sequence of observable events.

Definition 13 The observation of the system, denoted OBS, is the sequence of
observable events that is produced by the system within the time frame of the diag-
nosis reasoning.

The diagnosis task consists in comparing the effective observation of the system
with the prediction of the model as the possible set of observable traces, and then to
determine the set of non-observable events (especially the fault events) that explain
the current state of the system (Cordier and Thiébaux 1994).

Definition 14 A diagnosis problem is described as a 3-uple (SD,OBS,F) where
SD is the model of the system, OBS is the observation of the system and F is a set
of fault events.

In order to determine the faults, it is firstly necessary to search for the set of
system’s trajectories in the model SD whose observable trace matches OBS exactly.

Definition 15 (Trajectory Diagnosis) A diagnosis Δ for the problem (SD,OBS,F)

is a trajectory of SD whose observable trace σ(Δ) is exactly OBS.

With this definition, the diagnosis problem does not depend on faults (it can be
defined as a couple (SD,OBS)). However, the diagnosis can also be defined in a
more concise way as a set of faults. This second definition is closely related to the
one for statical systems.

Definition 16 (Fault Diagnosis) A diagnosis Δ of the problem (SD,OBS,F) is a
set of faultsΔ ⊆ F such that there exists a trajectory τ from SD that exactly contains
the set of fault events Δ and its observable trace σ(τ) is exactly OBS.

It can be noticed that the set of trajectory diagnoses of a system can also be repre-
sented as an automaton, more precisely it is a sub-automaton of SD, each trajectory
in it has an observable trace that is exactly OBS.
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Fig. 1 Model of the system, ob, oc, r are the observable events
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Fig. 2 Diagnoses of the system (Fig. 1) given the observed sequence OBS1 = (oc, ob)

Example 1 Figure 1 illustrates a system with a set of observable events ob, oc and
r. If the observed sequence is OBS1 = (oc, ob), the set of diagnoses are the ones
presented as an automaton in Fig. 2, the fault f is not certain and the possible states
of the system are 4, 5, 6. If the observed sequence is OBS2 = (oc, oc), the unique
diagnosis is presented in Fig. 3: the occurrence of the fault f is indeed certain and
the unique possible state is 7.

An observation OBS consisting of a sequence of observed events can also be rep-
resented as an automaton with one initial state and one final state. The diagnosis can
then be computed by performing a synchronized product ⊗ between the automaton
SD and the one that describesOBS. The synchronization constraints Sync are applied
on the observable events: an observable event o must occur in SD and in OBS in the
same order. Representing OBS this way is interesting as it can be extended to repre-
sent uncertain observations. In this case the automaton OBS does not represent one
sequence of observable events only but several possible sequences (Grastien et al.
2005). From this follows the next theorem:

Theorem 5 The automaton SD ⊗ OBS describes the set of trajectory diagnoses
from the problem (SD,OBS).

1 2 4 5 7
f oc e oc

Fig. 3 Diagnosis of the system (Fig. 1) given the observed sequence OBS2 = (oc, oc)
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Fig. 4 The global model SD
(with ESD

OBS = {o1, o2} and
F = {f1, f2}) (Top) and its
diagnoser (Down). Label N
(normal) means the absence
of any fault
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3.4 Diagnoser Approach and Other Centralized Approaches

Oneof the seminalworks to compute diagnosis onDES is in Sampath et al. (1996) and
is based on the computation of a diagnoser (see Fig. 4). A diagnoser is a deterministic
automaton that describes the set of observable behaviors of the system in a similar
way as an observer would do. It is built by ε-reduction from the automaton SD
where ε represents any non-observable event of SD. A diagnoser transition is labeled
with an observable event. A state of a diagnoser describes the set of states of SD
that are reachable from its initial states and that are reachable by trajectories that
produce the observable sequence. Associated with each state of SD the diagnoser
state also records sets of fault events that have occurred on such trajectories. For
a given sequence of observable events, the diagnoser state thus describes the set
of possible reached states and the set of possible faults that have occurred before
reaching one of these states.

The diagnoser is a finite state machine that results from the off-line compilation
of the diagnosis problem and its use for on-line diagnosis is performed by a simple
algorithm. Indeed, the on-line algorithm consists in triggering the observed events
ofOBS in sequence and the result of the algorithm is contained in the diagnoser state
that is reached. The problem of this method is about the time/space complexity of
the computation of the diagnoser. In Marchand and Rozé (2002), Schumann et al.
(2004), other computation methods have been proposed to improve the efficiency
on average of the diagnoser computation. These methods rely on binary decision
diagrams (BDD).

Other methods use different formalisms to build an equivalent diagnoser such
as communicating automata, Petri nets, process algebra (Rozé and Cordier 2002;
Jiroveanu and Boel 2006; Console et al. 2002). Other works (Lamperti and Zanella
2003) propose specialized data structures and specific algorithms to solve the diag-
nosis problem. On the other hand, Grastien and Anbulagan (2013) propose the use
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of generic SAT techniques and translate the diagnosis problem into a succession of
propositional formulas (CNF). It is also possible to use probabilistic models that can
model the likelihood of transitions between states. One preference criteria is then
to keep the transitions that are the most probable, this can be done for instance by
applying the Viterbi algorithm such as in Aghasaryan et al. (1997).

Three extensions of the classical diagnosis problemhavebeenmainly investigated.
In the first one, the hypothesis that OBS is certain is removed (Lamperti and Zanella
2003; Grastien et al. 2005). It is, in this case, impossible to assert that there is a
unique sequence of observations, either because the knowledge about the real order
of the observed events is not perfect or because events can be lost or corrupted (noise).
This might be due to imprecise or even faulty sensors, or the communication network
between the sensors and the diagnoser. One solution then consists in representing the
observations as an automaton that contains the set of possible observed trajectories.
Then Theorem 5 can be used as in Grastien et al. (2005). The second extension of the
problem is about on-line diagnosis that is well-suited for the on-line monitoring of
dynamical systems such as communication networks. In this context, OBS is partly
known (a prefix of OBS is known). On-line diagnosis then leads to incremental
diagnosis that consists in updating the diagnosis from a previous diagnosis in a new
time window when new observed events are available (Pencolé and Cordier 2005;
Grastien et al. 2005). Incremental diagnosis has also be extended to deal with large
scale systems where it is not possible to efficiently update the diagnosis with the flow
of observations. In Su andGrastien (2013), the principle is to compute a diagnosis for
a given time window independently from any other time window and Su et al. (2014)
analyses the minimal amount of information to retain between time window to assert
the diagnosis is correct along the time. Finally, a more recent extension is about the
diagnosis of behavioral patterns (Jéron et al. 2006; Pencolé and Subias 2018). In the
classical problem, themodel represents faults as the occurrence of single events.With
behavioral patterns, it is also possible to represent in the model a set of events that
might not be considered independently as faulty but some specific ordering of their
occurrence can still be abnormal (for instance, in traffic light systems, the sequence
of green, yellow, red is normal while green, red, yellow is not).

3.5 Distributed and Decentralized Approaches

Most of the systems that are monitored and diagnosed have a large size so that a
centralized method, as described in the previous sub-section, is not efficient enough.
To illustrate this inefficiency, it can be noticed that the synchronized product over
the components’models is in O(2n) where n is the number of components. This
complexity makes a centralized approach impossible to implement on a realistic
system. Based on the distributed nature of a system as a network of components,
it is then possible to design decentralized or even distributed diagnosis methods
that are more scalable. The model is then described as a set of components’models
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and a set of connections and the global model is not explicitly computed. Several
formalisms have been proposed to model the system in a distributed way: automata
where the connections are represented by shared events, communicating automata
where the connections are represented by messages on input/output ports (Pencolé
and Cordier 2005), Petri nets where interactions are modeled by shared transitions or
places (Fabre et al. 2005; Jiroveanu and Boel 2006), process algebra (Console et al.
2002) where the synchronization is represented as a cooperation operator.

There exist several methods implementing the collaboration of several local diag-
nosers to solve a diagnosis problem. Several types of methods can be distinguished
depending on the supervision architecture. In a so-called coordinated architecture,
each diagnoser is in charge of observing local sites and determining a global diagno-
sis based on its observation sites. Then a coordinator analyzes the global diagnoses
of each diagnoser and provides a unique and coordinated one (Debouk et al. 2002).
In this type of architecture, local diagnosers must still know the global model of the
system so such an architecture has a scalability issue. A second architecture where
the local diagnosers do not need to know the global model is the decentralized archi-
tecture. As opposed to the coordinated architecture, local diagnosers only have a
local knowledge about the system (a subset of components, also called a cluster).
Local diagnosers perform diagnosis only over the components they know. The local
diagnoses, once computed by the local diagnosers, are sent to a global diagnoser
that is in charge of checking the global consistency of the local diagnoses (Pencolé
and Cordier 2005; Lamperti and Zanella 2003; Grastien et al. 2005; Pencolé et al.
2018) by checking whether the local diagnosed trajectories are globally synchoniz-
able (Fig. 5). The last investigated architecture is the distributed architecture. The
main difference with the decentralized architecture is that there is no global diag-
noser. The result of the diagnosis is not global but only local. Each local diagnoser
is in charge of handling the global consistency of its diagnosis by interacting with
other local diagnosers (Fabre et al. 2005). The diagnosis algorithms then depend
on the selected architecture. Computing a global diagnosis might be a necessity to
decide about a global repair or a global reconfiguration of the system, in this case,
coordinated or decentralized methods should be used. If the decision is local then a
distributed architecture is sufficient.

In the case of distributed or decentralized architectures, the complexity of
the algorithms mainly depends on checking the global consistency of the local
diagnoses that depends on the number of involved components. To improve this
global consistency checking, a BDD-based synchronization algorithm is proposed in
Schumann et al. (2010). Another way to increase the average efficiency of the algo-
rithms is to analyze off-line the structural model of the system (the topology) to
precompile basic synchronization strategies that can be then applied on-line. For
instance in KanJohn and Grastien (2008), this analysis is based on junction trees.
In Pencolé et al. (2006), the analysis consists in determining off-line clusters of
components based on which a local diagnoser is always accurate: it is certain to
always have a global consistent diagnosis without any synchronization with other
components out of the given cluster.
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Fig. 5 Principle of a
decentralized diagnosis
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3.6 Diagnosability

The off-line analyses of DES properties related to the diagnosis problem is essential
to implement efficient on-line diagnosis algorithms (such properties like diagnosis
accuracy of clusters, topology properties as cited in the sub-section above). Among
these properties, diagnosability is the most studied one (see Sect. 2.3).

Intuitively, in the context of DES, a system is diagnosable if, in case of an ambigu-
ous diagnosis (faulty or not) at a given time, it is always sufficient to wait for a new
finite set of observations to refine the diagnosis and prune the ambiguity and obtain
a diagnosis that is certain. The first formal definitions of this property are proposed
in Sampath et al. (1995). Several extensions have then been defined, by consider-
ing intermittent faults (Contant et al. 2004), or by extending faults to behavioral
patterns (Jéron et al. 2006; Gougam et al. 2017; Ye and Dague 2017). A definition
that unifies the ones for continuous systems and the DES is proposed in Cordier
et al. (2006). Checking the diagnosability is a complex problem. The first solution
is presented in Sampath et al. (1995) and consists in checking in the diagnoser (see
Fig. 4) whether there is no indeterminate cycles (cycles of states where the diagnosis
is ambiguous). Then another solution that is polynomial in the number of states in
the global model is based on the synchronization of the model with itself (some twin
models) where the synchronizations are performed on the observable events only. It
consists in checking in this product for infinite sequence of critical pairs (a sequence
that represents a faulty sequence in one twin and a non-faulty sequence in the other
one) (Jiang et al. 2001; Yoo and Lafortune 2002). Other algorithms improving the
efficiency of this method can also be found in Cimatti et al. (2003), Schumann and
Pencolé (2007).

One of the objectives of checking diagnosability is to provide a feedback to the
design of the system, by essentially adding new sensors (Travé-Massuyès et al. 2001;
Ribot et al. 2008), or by respecifying communication protocols between components
of the system (Pencolé and Cordier 2005). Some extensions about the diagnosability
of distributed systems are also proposed in Provan (2002), Pencolé (2004), Ye and
Dague (2012). One method also extends the diagnosability problem to deal with
uncertain observations (Su et al. 2016). Another extension is about self-healability
that combines diagnosability and repairability. A system is said to be self-healing if
it is able to perceive its own faults and, without any human intervention to perform
necessary actions to recover. Self-healability can hold in a system even if the system
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is not fully diagnosable and not fully repairable. The required level of diagnosability
is the one that can always make the repair decision certain. In (Cordier et al. 2007),
this level of diagnosability is based on a selection ofmacrofaults that are diagnosable
and repairable.

4 Bridge Between Model-Based Diagnosis Rooted in AI
and in Automatic Control

In the field of DES, the AI community (known as DX community) and the Automatic
Control community (knownasFDI–FaultDetectionand Isolation–community) have
converged from the start on the same formalisms and jointly developed diagnosis
methods. On the contrary, for continuous systems, these communities haveworked in
parallel for a long time, ignoring their respective results. Although there are common
principles, each community has developed its own concepts and methods, guided by
different modeling approaches, and relying on analytical models and linear algebra
for the first and on logical formalisms for the latter. However, in the 2000s, under the
impetus of the BRIDGE group “Bridging AI and Control Engineering model based
diagnosis approaches” within the Network of Excellence MONET II and its French
counterpart, the IMALAIA group “Integration of Methods Combining Automatic
Control and AI” linked to GDR I3, the French Association for Artificial Intelligence
AFIA, and GDR MACS, an increasing number of researchers from these two com-
munities have sought to understand and integrate approaches of their respective fields
to provide more effective diagnostic systems (Travé-Massuyès 2014).

First of all, we draw up a panorama of the approaches proposed by the FDI
community, and then present a comparative analysis of the concepts and techniques
used in the two communities in Sect. 4.2, followed by the works which integrate
techniques of both communities in Sect. 4.3.

4.1 FDI Community and Approaches for Continuous
Systems: Quick Panorama

Like themethods of the DX community (cf. Sect. 2), the fault detection and diagnosis
methods of the FDI community are based on behavioral models that establish the
constraints between the system inputs and outputs, i.e., the set of measured variables
Z , as well as the internal states, i.e., the set of unknown variables X . The variables
z ∈ Z and the variables x ∈ X are functions of time. These models are formulated
either in the time domain (then known as state space models) or in the frequency
domain (then known as transfer functions in the linear case).



694 M.-O. Cordier et al.

The books (Gertler 1998; Blanke et al. 2003, 2015; Dubuisson 2001) are very
good reviews that include the references to original papers, to which the reader can
refer.

The central concept of FDI methods is that of residual and one of the main
problems is the generation of residuals. Consider the model of a system under the
form of a set of differential and/or algebraic equations SM (z, x) with variables z and
x. SM (z, x) is said to be consistent with the observed trajectory z, if there exists a
trajectory of x such that the equations of SM (z, x) are satisfied.

Definition 17 (Residual generator for SM (z, x)) A system that takes as input
a subset of measured variables Z̃ ⊆ Z and generates as output a scalar r, is a
residual generator for the model SM (z, x) if for all z consistent with SM (z, x),
limt→∞ r(t) = 0.

When the measurements are consistent with the system model, the residuals tend
to zero as t tends to infinity, otherwise some residuals may be different from zero.
Evaluating the residuals and assigning them a Boolean value – 0 or non-0 – requires
statistical tests that account for the statistical characteristics of noises (Dubuisson
2001; Gao et al. 2015). There are three main families of methods for generating
residuals.

• The methods based on testable relations rely on unknown variables elimination.
These methods generate residuals from relations inferred from the model which
only involve measured variables and their derivatives. These relations are called
Analytical Redundancy Relations (ARRs). For linear systems, the so-called parity
space approach is used to eliminate unknown state variables and obtain ARRs
by projection onto a particular space called the parity space (Chow and Will-
sky 1984). Extensions of this approach to nonlinear systems have been proposed
(Staroswiecki and Comtet-Varga 2001). The structural approach (Armengol et al.
2009) allows one to obtain the just determined equation sets of amodel fromwhich
ARRs can be inferred (Krysander et al. 2008).

• The methods based on state estimation are based on estimating unknown vari-
ables. They take the form of observers or optimized filters, such that the Kalman
filter, and provide an estimation of the state of the system and its outputs. Numer-
ous diagnosis solutions rely on state estimation, particularly for hybrid systems
(cf. Sect. 4.3). In this case, the continuous state is augmented by a discrete state that
corresponds to the operation mode (normal or faulty) of the system components.

• The methods based on parameter estimation focus on the value of the parameters
which directly represent physical characteristics. Fault detection is performed by
comparing the estimated value of the parameters to their nominal value. These
methods are used for both linear and nonlinear systems.

Note that in the linear case, the equivalence between observers, parity space and
parameter estimation has been established (Patton and Chen 1991).
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4.2 Comparative Analysis and Concept Mapping
for the Model-Based Logical Diagnosis Approach
and the Analytical Redundancy Approach

The correspondences in terms of principles, concepts, and assumptions between
the model-based diagnostic methods from Automatic Control and those from AI
were showed by the French community, concretized by the IMALAIA group men-
tioned above. This work is recorded in the collective paper (Cordier et al. 2004). The
comparative analysis is based on the comparison of the so-called structured resid-
uals approach, or parity space approach (Chow and Willsky 1984), and the logical
theory of diagnosis as proposed by Reiter (1987), Kleer et al. (1992) and presented
in Sect. 2.

The parity space approach is based on the off-line computation of a set of ARRs
from a model SM decomposed in a behavior model BM and an observation model
OM . The equations of the model SM are constraints which can be associated with
components but this information is not represented explicitly.

The ARRs define constraints for the observable variables O of the system, that
is to say the input and output variables, and are obtained by techniques allowing to
eliminate state variables that are unknown. Each ARR can be put in the form r = 0,
where r is called residual.

Definition 18 (ARR for SM (z, x)) A relation of the form r(z, ż, z̈, . . . ) = 0 is an
ARR for the model SM (z, x) if for all z consistent with SM (z, x), the relation is
satisfied.

If the behavior of the system satisfies the constraints of the model, then the residu-
als are zero because the ARRs are satisfied, otherwise some of themmay be different
from zero and the corresponding ARRs are said violated. Each fault Fj has an asso-
ciated theoretical signature FSj = [s1j, s2j, . . . , snj] given by the binary evaluation
(0 or not 0) of each of the residuals. We can then define the signature matrix FS.

Definition 19 (Signature Matrix) Given a set of n ARRs, the signature matrix FS
associated to a set of nf faults F = [F1,F2, . . . ,Fnf ] is the matrix that crosses ARRs
as rows and faults as columns, and whose columns are given by the theoretical
signatures of the faults.

Diagnosis consists in the online comparison of the “observed signature”, vector
of the residuals evaluated with the observations, and the theoretical signatures of the
nf anticipated faults. In the logical theory of diagnosis, the description of the system
is component oriented and rests on first order logic in its original version. This has
been discussed in detail in Sect. 2.1.

A diagnosis for the system (SD,COMPS,OBS) is a set Δ ⊆ COMPS such that
the assumption that the components of Δ are the only ones to be faulty is consistent
with the observations and the description of the system, that is SD ∪ OBS ∪ {AB(C) |
C ∈ Δ} ∪ {¬AB(C) | C ∈ COMPS \ Δ} is satisfiable.
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Most FDI works do not explicitly use the concept of component given that the
behaviormodelBM represents the global system.Whenmodels based on the concept
of component are used, topological knowledge is implicitly represented by shared
variables. Conversely, the DX approach explicitly represents the topology of the
system and the behavior models of the components. The main difference is that
the hypothesis of correct behavior of a component, which underlies its model, is
represented explicitly by the predicate AB. IfF is a formula representing the correct
behavior of a component C, SM contains only F while SD contains the formula
¬AB(C) ⇒ F .

To compare the approaches, the system representation equivalence (SRE) property
resulting in the fact that SM is obtained from SD by substituting all the occurrences
of the predicate AB(.) by ⊥ is considered true. It is also assumed that the same
observation language OBS is used, constituted by a conjunction of equality relations
that assign a value v to each observable variable. Finally, the faults relate to the same
entities considered as components, without loss of generality. The comparison is
based on a theoretical framework to precisely establish the correspondence between
the different concepts. This framework is provided by the signature matrix FS, for
which each row is associated with an ARR and each column with a component
(under the assumption that the faults relate to components). It relies on the concept
of support of an ARR:

Definition 20 (ARR Support) The support of an ARR ARRi, noted supp(ARRi), is
the set of components whose columns in the signature matrix FS have a non zero
element on the ARRi row.

In addition, the following two properties are added:

Property 7 ARR–d–completeness A set E of ARRs is said to be d-complete if:

• E is finite;
• ∀OBS, if SM ∪ OBS |=⊥, then ∃ARRi ∈ E such that {ARRi} ∪ OBS |=⊥.

Property 8 (ARR–i–completeness) A set E of ARRs is said to be i-complete if:

• E is finite;
• ∀C , set of components such that C ⊆ COMPS, and ∀OBS, if SM (C ) ∪
OBS |=⊥, then ∃ARRi ∈ E such that supp(ARRi) is included in C and
{ARRi} ∪ OBS |=⊥.

We then obtain the following result:

Property 9 Assuming the SRE property and that OBS is the set of observations for
the system given by SM (or SD), then:

1. If ARRi is violated by OBS, then supp(ARRi) is a conflict set;
2. Given E a set of ARRs:

• If E is d-complete, and if there exists a conflict set for (SD,COMPS,OBS),
then there exists ARRi ∈ E violated by OBS;



Diagnosis and Supervision: Model-Based Approaches 697

• If E is i-complete, then given a conflict set C for (SD,COMPS,OBS), there
exists ARRi ∈ E violated by OBS such that supp(ARRi) is included in C .

Thefirst result can be intuitively explained by the fact that inconsistencies between
model and observations, appraised by the conflicts in the DX approach, are appre-
hended by ARRs violated by OBS in the FDI approach. In consequence, the support
of an ARR can be defined as a potential conflict. This result echoes the notion of
possible conflict proposed by Pulido and Gonzalez (2004). The second result pro-
vides existence and completeness results, the first referring to detectability and the
second to isolability.

We then show below that in the presence of the same assumptions about the man-
ifestation of faults (their observability), commonly called exoneration assumptions,
and in particular the absence of ARR-exoneration, a result linking the diagnoses on
both sides can be obtained.

Definition 21 (ARR-exoneration) Given OBS, any component in the support of an
ARR satisfied by OBS is exonerated, i.e., considered as normal.

This assumption states that faults having no observable manifestation through a
non-zero residual are exonerated.

Theorem 6 Under the i-completeness assumption, the diagnoses obtained by the
FDI approach in the case of no ARR-exoneration are identical to the (non empty)
diagnoses obtained by the DX approach.

Let us note that the assumptions generally adopted by the two communities are
different, the FDI community implicitly adopting the ARR-exoneration assumption.
In addition, the computation of fault signatures limits the number of anticipated
faults. Conventionally, only single faults are considered. Conversely, in the logical
diagnosis theory, no assumption is made a priori about the number of faults, even if
preferences can be introduced to privilege minimal or highest probability diagnoses.
This ensures logically correct results. It can also be noted that in the FDI approach,
computation of ARRs and fault signatures is done offline and only a consistency
test is required online. This can be advantageous if computational time constraints
come into play. In the logical theory diagnosis, all the processing is done online,
the advantage being that only the models are to be updated if the system undergoes
changes. Note that the two approaches can be combined to take advantage of both.
One can cite DX works which adopt the FDI idea of offline generation of the RRAs
(Loiez and Taillibert 1997; Washio et al. 1999; Pulido and Gonzalez 2004). One can
also cite the works, presented in more detail in Sect. 4.3, which take advantage of
explicitly representing the causal influences underlying the model of the system and
those concerned with diagnosis of hybrid systems.
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4.3 Approaches Taking Advantage of Techniques of Both
Fields

Diagnosis Based on Influence Graphs/Causal Graphs

In the 1990s, the synergies between the Qualitative Reasoning community
(Travé-Massuyès andDague 2003;Weld andDeKleer 1989) (see also chapter “Qual-
itative Reasoning about Time and Space” of this volume) and theModel-BasedDiag-
nosis community concretized in a set of works proposing to use causal models for
diagnosis reasoning (see chapter “A Glance at Causality Theories for Artificial Intel-
ligence” of this volume). Unlike causal graphs pointed in Sect. 2.2, influence graphs
rely on a structure expressing the dependencies between variables in the model of the
system explicitly, known as influences thus making it possible to provide explana-
tions as to why normal or abnormal values of variables. This structure is commonly
called a causal graph. Dependencies are obtained directly from expert knowledge
(Gentil et al. 2004) or from causal ordering techniques (Travé-Massuyès et al. 2001;
Pons et al. 2015) or also from bond graphmodels (Dague and Travé-Massuyès 2004;
Chatti et al. 2014).

The very first workswere limited to labeling the causal influences by the signs giv-
ing the direction of variation of the cause variable with respect to the effect variable,
thus obtaining a signed oriented graph (Kramer and Palowitch 1987). Subsequently,
the parametrization of influences was sophisticated as they were labeled by quanti-
tative local models, such as those used by the FDI community.

By way of example, the principles of the causal fault detection and isola-
tion method CaEn2 (Travé-Massuyès et al. 2001; Travé-Massuyès and Calderon-
Espinoza 2007) are given below. Fault detection is an online process that assesses
the consistency of sensor measures with respect to the behavioral model of the sys-
tem. The detection of a variable as abnormal is interpreted as the violation of the
influences implied in the estimation of the variable, i.e., the ascending influences
in the causal graph. Each influence being associated with a component, this allows
one to characterize a set of components constituting a conflict set. The influences
of CaEn2 have a “delay” attribute corresponding to a pure delay in the input-output
function associated with the influence. This information is used to generate conflict
sets whose components are labeled by a time label indicating the date at the latest
at which the fault occurred on the component. Diagnoses are obtained from conflict
sets by an incremental algorithm that generates hitting sets while managing time
labels (Travé-Massuyès and Calderon-Espinoza 2007).

Diagnosis of Hybrid Systems

The works on hybrid systems have been steadily increasing since the pioneering
works in the early 2000s (McIlraith et al. 2000). Hybrid systems make it possible
to represent double continuous and discrete dynamics that cohabit in many modern
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systems. Most systems are indeed made up of a set of heterogeneous interconnected
components, orchestrated by a supervisor whose commands, of discrete nature,
induce different operation modes. Hybrid system modeling as well as associated
diagnosis algorithms use continuous and discrete mathematics, so that hybrid sys-
tems open a predilection area for integrating methods from the two FDI and DX
communities.

The NASA Livingstone diagnosis engine (Williams and Nayak 1996), which
flew onboard the DS-1 probe, was one of the first to qualify as hybrid. This engine
was rooted in the AI model-based diagnosis framework, relying on a model written
in propositional logic, and behavioral equations accounting for continuous aspects
abstracted in the form of logical relations (qualitative constraints). However, quali-
tative abstraction imposed monitors between the sensors and the model to interpret
the actual continuous signals in terms of discrete modalities. The difficulty in decid-
ing proper thresholds and the poor sensitivity of the fault detection procedure led
subsequent works to consider true hybrid models, associating differential equation
and discrete event models. As proposed in (Bayoudh et al. 2008a; Bayoudh and
Travé-Massuyès 2014) a hybrid model can be represented in the form of a 6-tuple:

S = (ζ,Q,E,T ,K, (q0, ζ0))

where:

• ζ is the vector of continuous variables;
• Q is the set of discrete system states, each representing an operating mode of the
system;

• E is the set of events corresponding to discrete commands, autonomous mode
transitions, or occurrence of faults; events corresponding to autonomous mode
transitions are subject to guards that depend on continuous variables;

• T ⊆ Q × E → Q is the transition function; it is possible to attach probabilities to
the transitions;

• K = ∪Ki is the set of constraints linking the continuous variables, taking the form
of differential and possibly algebraic equations modeling the continuous behavior
of the system in the different modes qi ∈ Q;

• (ζ0, q0) ∈ ζ × Q is the initial condition of the hybrid system.

In the hybrid state (ζ,Q), only the discrete state qi ∈ Q is representative of the
operating mode of the system and provides the diagnosis. However, the evolution
of the discrete state is interlinked to the evolution of the continuous state, which is
why the problem of diagnosis is often brought back to the problem of estimating the
complete hybrid state.

In theory, hybrid estimation presupposes to consider all the sequences of possible
modes with the continuous evolution associated with them, which results in expo-
nential complexity. Consequently, many suboptimal methods have been proposed
for which we can distinguish the three following families:
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• Methods based on multimode filtering, rather anchored in the Automatic Control
field (Blom and Bar-Shalom 1988; Hofbaur and Williams 2004; Benazera and
Travé-Massuyès 2009), are formulated in a probabilistic framework. They track
the different “hypotheses”, that is to say the sequences of modes and their associ-
ated continuous evolution, over a limited time window and merge the continuous
estimates according to a likelihood measure resulting in a belief state in the form
of a probability distribution over the states at the current time.

• Methods based on particle filtering (Arulampalam et al. 2002) are based on sam-
pling and rely on a Bayesian update of the belief state. With enough samples,
they approximate the optimal Bayesian estimate but are not well adapted to the
problem of the diagnosis because the probabilities of faults are generally very low
in comparison with the probabilities of the nominal states of the system.

• Methods that address hybrid aspects in a dedicated manner adopt strategies to
retrieve the trajectory of the system when it has been discarded due to the approx-
imation of the estimation method (Nayak and Kurien 2000; Benazera and Travé-
Massuyès 2003).

Let us note that (Bayoudh et al. 2008b; Vento et al. 2015; Sarrate et al. 2018)
propose an alternative approach to complete hybrid diagnosis that only estimates the
discrete state, i.e. the operatingmode. It combines the parity space approach based on
ARRs as defined in Sect. 4.2 for processing the information provided by continuous
dynamics with the DES diagnoser method as presented in Sect. 3.4 (Sampath et al.
1995).

Recent works address hybrid system diagnosability integrating a twin plant
approach as presented in Sect. 3.6 for DES with mode distinguishability methods
coming from the FDI community (Grastien et al. 2017). This work is based on
abstracting the hybrid automaton model. The continuous dynamics are abstracted
remembering only two pieces of information: discernability between modes (when
they are guaranteed to generate different observations) and ephemerality (when the
system cannot stay forever in a given set of modes). Iterative abstractions can be
checked for diagnosability with the standard DES twin plant method that provides
a counterexample in case of non-diagnosability. The absence of such a counterex-
ample proves the diagnosability of the original hybrid system. In the opposite case,
the counterexample is analyzed to refine the DES. This procedure is referred as a
counterexample guided abstraction refinement (CEGAR) scheme. It supports the
proposals of Zaatiti et al. (2017, 2018) in which Qualitative Reasoning (see chapter
“Qualitative Reasoning about Time and Space” of this volume) is used to compute
discrete abstractions. Abstractions as timed automata allow one to handle time con-
straints that can be captured at a qualitative level.
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5 Conclusion

Model-based diagnosis found its formal bases in the 1980s for static systems and
in the 1990s with regard to dynamic systems. Since then, developments have been
constant and promising, and have in fact become industrialized in several industrial
domains such as automotive, aeronautics, space. An important point for the French
diagnosis community is the real collaboration of the Automatic Control and AI
communities, which brought their respective approaches close together by showing
their proximity and their specificities. This has been quite productive on both sides.
In the domain of dynamic systems, interest has developed over the last few years
on hybrid systems, making it possible to deal with double dynamics, discrete and
continuous, and to account for the heterogeneity of current systems. It is a privileged
area for the collaborations between the two communities.

One of the current topics is the improvement of the efficiency of existing algo-
rithms to scale up and approach large systems such as those proposed by theDX com-
petition, for instance electronic circuits comprising several thousand components.
This involves the use of data structures like BDDs or very efficient algorithms like
SAT, taking into account the structure of the systems. This also involves distributed
approaches that divide the problem in a set of problems that are as independent as
possible.

Another major pathway concerns the properties of the systems from the diag-
nosis point of view, namely the in depth study of diagnosability, observability, and
repairability for enabling the design of systems which can be monitored, diagnosed
and repaired optimally. A last line of work concerns the monitoring of distributed
systems for which detection, diagnosis, and return to nominal operating conditions
requires good collaboration between methods and tools proposed by the FDI and AI
communities. This is also true for planning and decision making.

Finally, as in any situation where model and real world coexist, attention must be
paid to the problems linked to the quality and precision of the model, compared to
the quality of the information (accuracy, precision, etc.) gathered on the real system,
through sensors that canbe imperfect and subject to faults. For all these developments,
it can be noted that this involves dialogue and co-operation with researchers from
many fields, in particular those from the AI community. This is obviously a challenge
but also an opportunity for reciprocal fertilization.

For detailed references on the topic of diagnosis, it is best to consult the pro-
ceedings of the international conference DX (Principles of diagnosis), which brings
together every year researchers in the field (DX 2018).
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Validation and Explanation

Laurent Charnay, Juliette Dibie and Stéphane Loiseau

Abstract Knowledge Based systems (KBS) that succeeded to expert systems are
used nowadays to face different decision problems. Their architecture separates the
modular and declarative knowledge of an application domain from its control using
inference algorithms. This architecture requires a specific validation approach. KBS
have been also the basis of many systems for which the explanation of computed
results are almost as important as the results themselves. The aim of this chapter is
to show the issues and the solutions to valid KBS and their use to explain reasoning.

1 Introduction

The first Knowledge Based systems approaches were developed fourthly years ago
(Feigenbaum et al. 1971; Minsky 1975; Shortliffe 1976). These systems were essen-
tially characterized by their application domains and their implementation language.
These systems, called expert system, were made to replace human experts. The
languages used to implement these systems were high level languages; they were
supposed to ease computer coding by providing a formalism easily understandable
by a non computer scientist. These high level languages enabled knowledge to be
expressed in a Knowledge Base (KB) of which the use was controlled by an infer-
ence engine. The knowledge was traditionally characterized by its modularity, the
declarativity of its information and its semantics. That means that each piece of
knowledge was independent, easy to understand, and had a clear – often logical –
associated semantics. The inference engine relied on algorithms, most of the time
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logical deduction algorithms, which were independent of any application domains
and based on the knowledge semantics.

These characteristics of knowledge (i.e.modularity, declarativity and clear seman-
tics) enabled on the one hand the expert knowledge acquisition to be simplified and so
the KBS construction, validation andmaintenance and, on the other hand, the knowl-
edge easily use not only to solve problems but also to explain the computed results.
A revolutionwas expected: computer systemsmade to solve problems should become
with KBS a way to propose solutions to end-users and to explain these solutions.
Regarding validation, the knowledge declarativity made the difference between the
domain knowledge and the implemented knowledge thin, so the knowledge valida-
tion in the KBS should be easy for a domain expert or a KBS computer developer.
The knowledge modularity provided a useful help to find potential invalidities and
correct them. Regarding explanation, the knowledge declarativity enabled each piece
of knowledge used during the problem resolution to become a good candidate to par-
tially explain the solutions: every end-user could understand a piece of knowledge.
Furthermore, thanks to the knowledge modularity, each piece of knowledge used in
the problem resolution could be cleverly combined to provide a relevant explanation
to the end-user. So, a trace, i.e. a set of pieces of knowledge produced by the KBS
to identify a problem or to obtain a solution, appeared to be a useful way to validate
a KB and explain the solution. Many of these KBS were based on a knowledge rep-
resentation language using rules (Farreny 1985). These rule based systems are the
core of numerous KBS today. In this chapter, the basic mechanisms used to validate
such rule based systems and to explain computed results are presented.

Nevertheless, new needs, resulting from the reflexion about the small use of expert
system, appeared at the end of the twentieth century. Four tendencies then emerged
in the KBS researches. First, the separation between knowledge and control showed
its limits: the control could not always be conceived independently from the system
knowledge. Some meta-knowledge were therefore provided to direct the control,
but this questions the knowledge modularity. Second, the knowledge representation
in real life system showed new semantics needs: taking into account knowledge
uncertainty (e.g. he will probably win the game), knowledge imprecision (e.g. he
has about 40 degrees fever) and knowledge context (e.g. assume that he has fever, he
has the flu). The pragmatic approaches derived from systems such as the “certainty
factors” of MYCIN (Shortliffe 1976) or the theoretical improvements (Sombe 1988)
about non classical logics, enabled the KBS reasoning to be improved but at the
expense of the KBS readability and understanding which questions their validation
and explanation. Third, several problems needed to take into account different kinds
of knowledge with different semantics – such as rules, classes, ontology, networks
– to build KBS. To face this, second generation expert systems (Steels 1985; David
1995) were conceived. Four, the interactions between different kinds of knowledge
and between knowledge and the human took a crucial importance in the systems
design. Several works on human and intelligent machine interactionwere done. They
proposed new models of resolution, explanation, interaction and dialog. Nowadays
new researches about the explanation appear, for instance on intelligent interactive
learning environment. Moreover, the explosion of works on the semantic web and
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the web of data questions the validation and explanation methods. In this chapter, we
show how those new needs require new approaches of validation and explanation.

This chapter is composed of three sections. Section2 deals with validation. The
principles of KB validation are presented; their applications to rule bases and knowl-
edge models are detailed; the use of explanation to refine knowledge is discussed.
Section3 deals with explanation. The principles of explanation in rule based systems
are presented; the notions of reactive explanation and explanation dialog are detailed.
Section4 provides an overview of current issues in validation and explanation in sys-
tems engineering, semantic web and ontology.

2 Validation: Issues and Solutions

Researchworks onKBS validation aim to formalizewith properties what KB validity
means and to provide algorithms to prove those properties. Those properties depend
upon the studied knowledge base or model. Once a KB is proved to be invalid, it must
be corrected, i.e. refined. Most of the KBS are rule based systems. A rule has the
following form “Ri : If conditions Then conclusion”. In a first approach, that means
that if the set of all the conditions are true, then the system can deduce by inference
that the conclusion is true. For simplicity reason, we suppose that conditions and
conclusion are facts.

This section is divided into four subsections. Section2.1 presents different vali-
dation approaches in the literature, illustrated by simple examples on a propositional
rule base. Section2.2 presents the KB coherence; a classical KB validity property is
proposed and implemented on rule bases. Section2.3 presents a solution to valid a
knowledge model that is not a rule base. Section2.4 deals with the KB refinement,
relying on the explanation notion.

2.1 Different Validation Approaches

The first research works showed that there exist different kinds of anomaly in a KB:
the redundancy, the incompleteness and the incoherence (Nguyen et al. 1985). For
each anomaly, formal definitions were proposed: (i) a KB is redundant if the same
computed result can be deduced from the KB and a unique valid input, (ii) a KB is
incomplete if the expected computed result of a valid input cannot be deduced from
theKBand this valid input, (iii) aKB is incoherent if a contradictory computed results
can be deduced from theKB and a valid input. Redundancy is ambivalent, it can high-
light either problems in the KB or some robustness. Incompleteness focuses on the
necessity to complete/enrich the knowledge, which is a difficult problem often stud-
ied during the knowledge acquisition phase (see chapter “Knowledge Engineering”
of this volume). Incoherence is of great interest because it can prove the invalidity
of a KB. Most of the works on validation has consisted in defining one of these
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anomalies for a kind of KBS with a formal property and also in giving algorithms to
check the property truth. Incoherency was especially studied in the literature.

Example 1 Let us consider the following rule bases RB where Tall is supposed to
be a valid input:

1. RB = {r1, r2, r3} where r1 : If Tall Then Strong; r2 : If Strong Then GoodLooking;
r3 : If Tall Then GoodLooking
RB is redundant: GoodLooking can be deduced by two distinct ways from RB
and the valid input Tall.

2. RB = {r1} where r1 : If Tall Then Strong
If a test states that someone who is Tall must be GoodLooking, then RB is
incomplete.

3. RB = {r1, r2} where r1 : If Tall Then Strong; r2 : If Tall Then ¬Strong
RB is incoherent: a Tall person will be in the same time Strong et ¬Strong.

Two kinds of solutions were studied to define good properties to validate a KB.
The first solution, called local solution, consists in comparing the knowledge two by
two. This local solution highlights only superficial anomalies: it does not take into
account all the knowledge and the deductive capability of the inference engine. The
second solution, called global solution, takes into account all the set of knowledge
and the semantics of the deductive inference.

Example 2 Let us consider the following rule bases RB where Tall is supposed to
be a valid input:

1. RB = {r1, r2} where r1 : If Tall Then Strong; r2 : If Tall Then ¬Strong
RB is locally incoherent.

2. RB = {r1, r2, r3} where r1 : If Tall Then Strong; r2 : If Strong Then GoodLooking;
r3 : If Tall Then ¬GoodLooking
RB is locally coherent, nevertheless the facts GoodLooking and ¬GoodLooking
can be deduced from RB and the fact base {Tall}.
The local approach shows its limits: it cannot detect the incoherence, whereas the
global approach gives a solution to detect it.

In the validation of a KB, the KB “test” is often distinguished from its “verifica-
tion”. Testing a KB consists in applying test cases, provided by the KB designer, on
the KB and checking if the computed results are valid or not. A test case represents
a valid input often associated with its expected output. It is considered as a reli-
able knowledge. Verifying a KB is performed without test cases; its main difficulty
consists in computing valid inputs for the verification.

Example 3 Let us consider the following rule bases RB where Tall is supposed to
be a valid input:

1. RB = {r1} where r1 : If Tall Then Strong
If a test case states that someone who is Tall must be GoodLooking, then RB is
coherent but incomplete. This is a KB test.
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2. RB = {r1, r2, r3} where r1 : If Tall Then Strong; r2 : If Strong Then GoodLooking;
r3 : If Tall Then ¬GoodLooking
RB is globally incoherent. This approach does not use test cases: it is a KB
verification.

The validation approaches that require specific knowledge for validation are dis-
tinguished from the ones that enable a validation without any other supplementary
knowledge. The first validation approach is called “semantic validation”; the specific
validation knowledge is provided in a set of specifications. These specifications are
reliable knowledge given as reference, generally test cases or integrity constraints.
The second validation approach is called “syntactic validation”.

Example 4 In the first point of Example 3, the proposed approach is semantics
because it uses a test case.
Let us now consider the following rule bases RB= {r1, r2} where Tall is supposed
to be a valid input, r1 : If Tall Then Strong and r2 : If Tall Then GoodLooking. Let
us also consider the following validation constraint: If Strong And GoodLooking
Then ⊥, where ⊥ means a contradiction. The semantics validation of RB shows an
incoherence.

2.2 Knowledge Base Coherence

Numerous works studied rule bases coherence properties. To be valid, a rule based
system (RBS) must have a coherent rule base. The different kinds of existing rule
bases and their different semantics make a unique RBS coherency definition quite
difficult to obtain. Nevertheless a lot of researches (Loiseau 1998; Pipard 1987;
Ginsberg 1988; Rousset 1988; Ayel and Rousset 1990; Beauvieux and Dague 1990;
Bouali 1996;Rousset andLevy1996) considered (i) that rules are logical implications
ofwhich the condition part is composed of a conjunction of literals and the conclusion
part of a unique literal, and (ii) that the inference engine is an algorithm which
implements a modus ponens deduction, denoted |=, that is data driven.

Let us assume that a KB is incoherent if a contradictory computed results can
be deduced from the KB and a valid input, which is a generalization of existing
works definitions. Two difficulties must be emphasized to propose a corresponding
formal definition. The first difficulty is to characterize what is a valid input; the
second one is to deduce the computed results for each valid input.

In this chapter, a valid input is an input that checks a set of constraints. These con-
straints, explicitly given, can be test cases reformulated in rule or integrity constraints
describing contradictory solutions, denoted by ⊥.

Definition 1 Let KB be a knowledge base and Kb a constraints subset of KB. An
input I checks the constraints of Kb If I ∪ Kb �|= ⊥. Such an input I is called a valid
input.
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It is important to notice that an input is conventionally a subset of an input literals
set given by the RBS designer.

Example 5 Let consider the rule base RB={r1, r2, r3, r4, r5, R6, R7} where:
r1 : If WageEarner ∩ Manager Then ¬FreeTime
r2 : If ¬FreeTime Then ¬VoluntaryHelper
r3 : If PartialTime Then VoluntaryHelper
r4 : If StayAtHomeParent Then VoluntaryHelper
r5 : If ¬FreeTime Then ¬Sportif
R6 : If StayAtHomeParent ∩ WageEarner Then ⊥
R7 : If StayAtHomeParent ∩ HasBaby Then ¬VoluntaryHelper
Let us consider the constraints subsets Rb= { R6, R7} where R6 is an integrity con-
straints and R7 a test case.
Let IL = {WageEarner, Manager, PartialTime, HouseWife, HasBaby} be a set of
input literals given by the RBS designer.
Then, we have the two following input fact bases checking the constraints of Rb:
FB1 = {WageEarner, Manager, PartialTime}. As a matter of fact, {WageEarner,
Manager, PartialTime} ∪ { R6, R7} does not allow a contradiction to be deduced.
FB2 = {StayAtHomeParent, HasBaby}.
Let us notice that there exist several other input fact bases that check the
constraints. We are interested in FB1 and FB2 for which there exist incoheren-
cies (cf. Example 6).

A KB is coherent if no contradictory computed results can be deduced from the
KB and any valid input checking the given constraints.

Definition 2 Let KB be a knowledge base, Kb being a constraints subset of KB. KB
is Vcoherent if for each input I checking the constraints Kb, I ∪ KB �|= ⊥.

Example 6 Let consider FB1 of Example 5 a valid input fact bases, we have FB1 ∪
{r1, r2, r3} |= ⊥ and so RB is Vincoherent. We also have FB2 ∪ {r4, R7} |= ⊥.

Different solutions were proposed to prove the Vcoherence of a KB. In a propo-
sitional formalism, a solution is to generate all the input fact bases FBi that check
the constraints, and then to compute for each of them the possible deductions FBi
∪ RB to check whether a contradiction can be deduced. Such an approach is cost
computed because the number of fact bases may be exponential. The computation
can be restricted to the maximal valid fact bases. A valid fact base is maximal if
it is not the subset of another maximal valid fact base. Such a solution is also cost
computed.

Other methods were proposed. Some use Petri nets, others Clause Management
Systems (CMS). CMS provides an elegant solution to obtain, under assumption
labels, the minimal fact bases that are sufficient to deduce ⊥. The first CMS (Reiter
and de Kleer 1987) were restricted to propositional rule bases. The examples given
above are propositional examples: the condition and conclusion are composed of
literals which are true or false. In such examples, rules can be seen as logical impli-
cations. These approaches were extended to attribute/value rules then to first order
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rules, i.e. DATALOG rules. The attribute/value rules are rules of which literals can
take any value, not only the true or false values like in propositional rules. The
DATALOG rules are rules that use predicates and variables, a subset of Prolog syn-
tax; they are logical implication of predicate logic.

Two reasons can explain the Vincoherence of a KB: either integrity constraints
are missing or knowledge of the KB includes contradictions. Let us notice that the
Vcoherence definition has two limits. On the one hand, a KB can be Vincoherent
despite it is coherent and, on the other hand, a KB can be incoherent despite it is
Vcoherent. The first limit, although theoretically awkward, can be balanced by the
fact that when a KB is Vincoherent, it can be refined by adding missing integrity
constraints such that the input that show the Vincoherence become invalid: the con-
straints subset Kb was therefore only incomplete. Regarding the second limit, it is
impossible to have a perfect formal definition of KB coherence, except if there exists
a complete and coherent formal model of the knowledge, which is most of the time
unrealistic. The incoherence of a Vcoherent KB can be explained by its incomplete-
ness. So, the Vcoherence of a KB is only a partial guarantee of its coherence and so
validity.

2.3 Models Validation

Beside numerous works on RBS, some research works focused on models validation
(Haouche and Charlet 1996; Lee et al. 2002; Shanks et al. 2003; MoDeVA 2009)
and on semantic networks validation (Hors and Rousset 1996; Rousset and Levy
1998; Dibie-Barthélemy et al. 2006). In this subsection, we show how the validation
principles presented above can be applied to conceptual graphs models (Sowa 1984;
Mugnier and Chein 1996) (see chapter “Reasoning with Ontologies” of this volume).

The conceptual graph model makes a clear distinction between the terminologi-
cal knowledge (i.e. the support) and the assertional knowledge (i.e. the conceptual
graphs).The “syntactic validation” allows one to check that the KB was well built.
The “semantic validation” allows the coherence and the completeness of the KB to
be checked using constraints. Such a semantic validation is partial since it depends
upon the positive and negative constraints given by the KB designer. A KB is said
Vcoherent if it satisfies all the input negative constraints, which represent the knowl-
edge that must not be in the KB. A KB is said CP-complete if it satisfies all the input
positive constraints which represent the knowledge that must be in the KB.

Example 7 Let us consider the KB of Fig. 1 composed of the conceptual graph G. It
is incoherent: it does not satisfy the negative constraint NC which means that a cat
must not paint. It is also incomplete: it does not satisfy the positive constraint PC
which means that a painter must paint at least a painting (e.g. Picasso does not paint
a painting).
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Fig. 1 A conceptual graph
G, a negative constraint NC
and a positive constraint PC

2.4 Validation, Refinement and Incoherencies Explanation

When using aKBS, an input is given and results are computed using some knowledge
of the KB. The trace which enables to follow the reasoning that was made is a couple
composed of the input and the used pieces of knowledge. Such a trace is used in
explanation as well as in validation to refine a KB. The refinement aims to modify an
incoherent KB in order to restore its coherence. To do so, first the different possible
reasoning traces which enable the KB incoherence to be proven are computed, then
possible explanations of the KB incoherence are build. An explanation is composed
of a set of elements, each element being extracted from each computed trace such
that it is able to explain the incoherence identified in the trace.

Definition 3 Let KB be a knowledge base, I a valid input and O a valid output such
that I ∪ KB |= O. A trace of O is composed of a couple (I’, KB’), with I’ a part of
I, KB’ a subset of KB which checks I’ ∪ KB’ |= O. A trace (I’, KB’) is minimal if
there does not exist another trace (I”, KB”) of O such that I” |= I’ and KB” ⊆ KB’.

The previous definition is not a priori restricted to rule base.

Example 8 GivenExample5, aminimal trace of¬VoluntaryHelper is ({WageEarner,
Manager}, {r1, r2}).

As seen in Sect. 2.2, a KB is Vincoherent either because some constraints are
missing in the KB or because some knowledge of the KB are invalid and so must be
corrected. The traces can be a powerful help to the designer, allowing him to find the
missing constraints to add or the pieces of knowledge to remove or correct.

Example 9 Given Example 5, T1=({WageEarner, Manager, PartialTime}, {r1, r2,
r3}) and T2 = ({StayAtHomeParent, HasBaby}, {r4, R7}) are the unique minimal
traces of a contradiction.

An explanation of the KBVincoherence is composed of a set of inputs and a set of
invalid pieces of knowledge, such that when each input is added in the condition part
of an integrity constraint and each piece of knowledge is removed, the KB becomes
Vcoherent.
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Definition 4 Let KB be a knowledge base and IT the set of minimal traces of ⊥
characterizing the Vincoherence. An explanation of IT is a couple (I, K) where I is
a set of inputs and K a set of knowledge such that ∀(It, Kt) ∈ IT, ∃ Ii de I | It |= Ii or
K ∩ Kt �= ∅.

To restore theKBcoherence, onlyminimal explanations that donot contain useless
information are considered. The concept of “strong minimality” relies on the fact
that constraints are supposed to be reliable and consequently cannot be deleted and
cannot contain an invalid condition part. Such assumptions are often made by works
on validation to avoid non relevant solutions to be obtained.

Definition 5 Let KB be a knowledge base and Kb a constraints subset of KB. An
explanation (I, K) is minimal if there does not exist another explanation (I’, K’)
such that K’ ⊂ K or such that K’=K and ∀Ii ’ of I’, ∃I j of I such that Ii ’ |= I j . An
explanation (I, K) is strongly minimal if I ∩ Kb = ∅ and ∀Ii of I, � a constraint “If
Conditions Then...” | Conditions |= Ii .

Example 10 There exist 12 minimal explanations and 4 strongly minimal explana-
tions of IT={T1, T2} in Example 5: ({WageEarner, Manager, PartialTime}}, {r4}),
({},{r1, r4}), ({}, {r2, r4}), ({}, {r3, r4}). The first explanation means that RB to
which is added the integrity constraint “If WageEarner ∩ Manager ∩ PartialTime
Then ⊥” and removed the rule r4 is Vcoherent. The second explanation means that
RB to which is removed the rules r1 and r4 is Vcoherent.

The traces computation can be performed in different manners; it can for instance
be obtained with a CMS. The explanations computation can be performed by
algorithms extending the hitting set algorithm (Reiter 1987).

3 Explanation: Issues and Solutions

First of all, let us notice that “explanation” in this section consists in justifying
the results of a KBS. Unlike the explanation of Vincoherence defined in the pre-
vious section, which is a part of a formal validation used by system’s designers,
the explanation can address various kinds of users – experts, professionals of the
domain, and even beginners – in various use cases: decision-making aid, co-design
or co-implementation, learning and teaching or coaching. The achievement of these
various objectives are based on the system capacity to explain its results and its
reasoning in an understandable and oriented way to any user, even interactive.

Expert Systems appeared at the end of the 1960s, but the problem of explanation
really emerged only in mid-1970s.

This section is composed of four subsections. Section3.1 describes how explana-
tion arose from the track of reasoning to gradually get loose from it and become, as
detailed in Sect. 3.2, a full task and consequently a research domain. Sect. 3.3 shows
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how the increasing consideration of the user in the construction of the explanation
raises leading to an explanatory dialogue. Finally, Sect. 3.4 deals with the limits
associated with such a complex task.

3.1 From the Track/log of Reasoning to the Explanation

The first Expert System to incorporate an explanatory capacity was MYCIN
(1972–1980) (Shortliffe 1976) in themedical domain. In 1973, Shortliffe implanted a
command “RULE” for the debugging. This caused the display in LISP of the last acti-
vated rule. He noticed that a translation in English would facilitate the understanding
and could bring information useful to a user who is not a computer specialist. This
way every MYCIN rule had a double representation: the coding in LISP used by
the inference engine and its translation into English, fit to be displayed to the user.
Afterward, Randy Davis endowed MYCIN of a tree of reasoning (“history tree”)
storing the sequences of activated rules, and he transformed the command “RULE”
in “WHY?”. A succession of “WHY?” allowed step by step backtracking in the rea-
soning tree. A “HOW?” command allowed the following of the various branches of
the reasoning tree after the resolution.

With MYCIN, the track of the reasoning becomes “explanatory” as reflection of
an understandable knowledge, expressed in the vocabulary of the user’s vocabulary.
The explanation module is independent from the domain and is relatively easy to
implement, because the knowledge of the system is represented in a uniform way
(e.g. “production rules”).

However, the use of MYCIN for learning and teaching Use Cases in the system
GUIDON (1977–1981) (Clancey 1986) had to show the “explanatory” limits of the
track of reasoning, even if GUIDONwas an elaborated system including educational
rules and a tutorial module.

The use of a uniform formalism (e.g. production rules) allows the capture of
the expertise of a domain under the shape of a set of “items of knowledge” easier
to exploit, but it has the inconvenience to translate uniformly in rules the various
underlying relations of the domain. Several types of knowledge, even implicit, coex-
ist within the KB: rules of identification, rules of common sense, causal rules. . .
Also, clauses which constitute the premises of rules may have different status: some
correspond to the context of rule activation and are present in several rules, others
are given to block the rule activation in certain situations, and only few clauses are
directly associated to the conclusion. Only these clauses really make sense according
to the domain of resolution.

In addition, a knowledge base handling a real domain contains hundreds even
thousands of rules which, during a resolution, activate thousands even hundreds of
thousand reasoning inferences. Browsing the steps of these inferences, logged in the
track of reasoning, lose any explanatory virtue, because the system does not know
how to highlight the key elements in its reasoning. The track is too voluminous and
flat as well. Also the activation order of rules depends on the resolution engine and
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on the KB organization (i.e. rules order in the base, and clauses order in the premises)
and does not follow the reasoning of a human expert, what makes it quite difficult to
understand and to accept especially for an experienced user.

Furthermore, the rule base specifies only knowledge used for resolution: underly-
ingmechanisms and relations of the domain are not explicit. For example, the rule “If
the patient is less than 8 years old Then not to prescribe tetracycline” doesn’t justify
this contraindication. The explanatory knowledge (Safar 1987) is indeed missing:
“use of tetracycline at the childhood → deposit of the drug on bones in development
→ definitive blackening of teeth → socially unwanted coloring → Do not use a
tetracycline for a child”.

These limits are specific to expert systems of first generation, ever since, research
efforts focus on creating explicit and organized knowledge, as well as elaborating
knowledge and specific reasoning in the production of explanation. The explanation
took then its autonomy towards the track of the reasoning to become a separate task.

3.2 Explanation as a Specific Task

Making the KB more explicit and better organized can increase its “understand-
ability”, and this way facilitates KB creation and update its explanation capacity.
These orientations founded the Second Generation of Expert Systems (SGES). Two
striking examples are NEOMYCIN (Clancey 1986) and CENTAUR (Aikins 1983).
The knowledge is typified and represented differently according to its role: strategic
knowledge which controls rules activation; domain heuristics; knowledge of support
which justifies heuristic rules. . .

As for the explanatory capacity, an additional line of research exists to improve
and/or to modify the track of reasoning to make it more relevant and to adapt it
according to the supposed level user expertise, for example in the systems BLAH
(Weiner 1980) and XPLAIN (Swartout 1983).

These research directions clarifying specific knowledge allow justifying the rea-
soning but also taking into account the user (i.e. his supposed level of knowledge) in
order to generate a structured explanation in natural language which doesn’t follow
the track of resolution anymore.

Meanwhile, other works focus on the automatic generation of textual descrip-
tions of domain complex concepts: example TEXT (McKeown 1985), which uses
rhetorical plans, or the TAILOR system, which may combine two plans in an expla-
nation (Paris and McKeown 1987) in order to produce a description adapted to the
interlocutors expertise level. These reasonings are essentially based on the domain
representation, as per the main goal to produce descriptions of specific concepts and
domain relations.

As shown in (Kassel 1987; Safar 1987) or (Wick and Thompson 1989), these
approaches are complementary to explain a reasoning: it is not only necessary to rea-
son on the resolution to produce a relevant synthesis or to answer negative questions
(“why not X?”), but the system has also to reason on the domain in order to explain to
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a good level of abstraction (e.g. by neglecting the basic concepts, making explicit the
links between concepts, or using analogy with scenarios of breakdown). This way,
explanations produced by the EES (Explanatory Expert Systems) are rather close to
“natural” explanations supplied by human experts, where line of explanation often
diverges from the line of reasoning.

For example, theREXsystem (“RECONSTRUCTIVEEXPLAINER”) (Wick and
Thompson 1989) can produce such explanation which seems however rather long:
“I attempted to find the cause of the excessive load of the concrete dam. Based on slow
drainage and high uplift pressures, I made a first hypothesis. In studying the causal
relationships, I found that settlement of the dam would cause the slow drainage
which would in turn create uplift pressures acting on the dam, thereby suggesting
settlement as the problem. However, based on the non-uniform damage of the broken
pipes in the foundation, I was able to refute this hypothesis. Again in looking at
causal processes I noted that settlement would cause crushed-like damage to the
drainage pipes whereas erosion of soil would cause the observed selective damage.
Therefore, I concluded erosion was causing the excessive load.”

In order to bring the flexibility to schema based explanation, (Cawsey 1990)
proposed the use of plans able to produce varied explanations on complex domains. In
such explanation grammars, texts patterns are attached to the leaves of the explanation
tree, and their concatenation produces the final explanatory content. These grammars
make explicit various hierarchical structural levels of the explanation and allow the
use of several strategies of explanation.But, on the other hand they are very dependent
on the domain to be explained.

These grammars of explanation launch an approach based on the planning of
the explanation which is particularly fruitful (see (Paris et al. 1990), pp. 1–226,
the EDGE system (Cawsey 1990), or (PenMan Hovy 1988)). Plans allow a dynamic
construction of the explanation by bringingmore flexibility than schemes. The hierar-
chical decomposition of plans produces an explicit representation of the explanation,
both on the informative level (i.e. contents) and the explanatory goals (e.g. define a
concept).

Among the researches implementing this planning approach, one of the most
striking is the EES project Explainable Expert Systems (Neches et al. 1985) in which
Cécile Paris and Johanna Moore developed an explanation planner module (Paris
et al. 1991). Their system, PEA (“Program Enhancement Advisor”), can answer pre-
defined set of demands concerning the reasoning itself, as well as a system reasoning
choice (e.g. rules), and its domain expertise. It is also able to manage justification
requests (why?), negative justification (why not?) or method choice (why M1 rather
than M2?). The plan contains successive communicative goals, but also rhetorical
relations between various elements of explanation translated by two types of plan
operators.

Using a deep structure in order to generate explanation in natural language is
still a “State-of-the-Art” methodology which can be used in various applications,
for example (Bader 2013) who use DRS (Discourse Representation Structure) to
produce relevant explanation in smart environment.
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Anewstagehas been archived thanks to this approach, because henceforth theEES
(Explanatory Expert systems) are not only able to produce complex and structured
explanations, but they also know why they produce these explanations thanks to the
explicit operators implementing the goals. They are then capable to explain “again”
and in a different manner if the user expresses a lack of understanding (e.g. it will
be clear from the feedback following the first explanation supplied by the SEE).
They will also be able to answer questions related to it (“follow-up questions”). The
explanation which becomes a full specific task appears in the interaction with the
user.

3.3 From Reactive Explanation to Explanatory Dialogue

We saw in the previous subsection how the reasoning could be elaborated allowing
the EES to plan an explanation. Nevertheless, as underlines (Swartout et al. 1991), it
remains complicated to supply, in every case, a “sufficient” explanation. The expla-
nation given by the system can leave unsatisfied needs and raise new needs (e.g.
follow-up questions). In the first case it will be necessary to re-explain differently,
in the second, to clarify or to bring the necessary precision. As a matter of fact,
explanation is an interactive process. Endow EES with capacity of an interactive
management of the explanation implies to converge two Domains of Research: the
Human Machine Dialogue (HMD) and the Explanation in KBS.

These two AI domains have been developed in parallel since the 60s without
explicit convergence. Thus, HMD Systems stay mainly dedicated to simple tasks
solving (e.g. Info retrieval) which do not require an explanation elaboration, and,
on other hand, KBS supply monolithic explanations and rudimentary interaction.
Nevertheless, with projects like EDGE and EES, or thanks to multidisciplinary
research groups like “GENE” (Generation of Negotiated Explanations (M.Baker
et al. 1995)) a real convergence begins to take shape and to become a reality because
of their “retrospectively obvious” complementarity (Charnay 1999).

These approaches are based on analysis of real conversations spontaneous or
finalized (i.e. oriented by the achievement of a task). The interlocutors can be either
human at the same level of expertise, or in situation of learning/teaching which
suggests knowledge transfer, or man-machine with the method of “Wizard of Oz”
often used during design phase of an HMD system, in which an expert uses a device
in order to simulate the targeted system without users knowing. The corpora of
collected dialogues allow various aspects of interaction to be analyzed and this way
many linguistic points of view (e.g. lexicons, typology of statements, management of
the exchanges, argumentation) as from the point of view of the expressed knowledge
and those implicit underlying asserted during the dialogue.

Besides, mutual understanding achievement is more important for the “success”
of an interactive explanation than a formal property that the explanation object would
satisfy. As a result, it becomes necessary to effectively produce such explanations
in order to validate the result of this research with real users, and consequently to
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develop testable EES. This brings the entire problem of the evaluation and validation
of interactive systems in natural language (Allemandou et al. 2007; Devillers et al.
2004).

These studies of human explanations corpus, also allow the definition of quality
criteria for the generation of an explanatory speech, as (Cawsey 1990): (i) cohesion
(i.e. surface) and coherence (i.e. semantics) of the text; (ii) adequacy to the com-
municative intention of the system; (iii) taking into account the knowledge and the
goals of the interlocutor; (iv) taking into account the context and the previous speech;
(v) interruptions management, the “relevant” questions, the acknowledgments and
explicit agreements.

The GENE GROUP (GEneration of Negotiated Explanation 1992–1999) was
a multi-disciplinary research group, developing different points of view about a
common object: linguistics and computational linguistics, AI, cognitive science,
NLP. By working together, trying to interconnect different models and converge
different approaches, they demonstrate that Explanatory Dialogue is the result of an
interactive co-construction process, in which each co-constructor has his/her own
knowledge and tries to achieve various goals. Some of them are shared explicitly or
not especially in collaborative dialogues. Sometimes goals of each participant are
in opposition, and then dialogue becomes more argumentative. Goals can also be
complementary, for example when dialogue deals with a documentary search in a
library or in training or teaching situation.

Each interlocutor builds a “model” of his/her interlocutor, including hypothesis
regarding his/her knowledge, goals, and psychological profile.

As far as each person has a relative level of expertise about the domain and the
task, argumentative phenomena often arise and can turn the dialogue into a real
argument. In a Human-Machine-Dialogue system perspective, such co-elaborated
explanatory dialogue suggests that the system is able to manage mixed initiative,
even if the dialog generally follows a main goal, which should be accomplished by
this dialogue (e.g. converge on a medical diagnosis).

Each participant involved in a discussion has knowledge on the domain (i.e.
“know-what” and “know-how”) which is partially shared but is not necessarily iden-
tical. In case of a dialogical explanation he/she pursues an elaborate plan dynamically
according to his/her purposes (common or individual) taking into account actions of
his/her interlocutor. It includes a set of information shared explicitly, as the processed
case, as well as the data necessary for the task (e.g. the clinical data for a medical
diagnosis), as well as everything mentioned in the dialogue. All these elements are
used for the interaction, but they can also become the object of the discussion. So, a
speaker may use a knowledge of the domain-object “theoretically”, thus considering
it as common to both interlocutors, or to attribute it to his/her interlocutor – “so
relegating” it to the rank of belief (e.g. by the use of expressions like “in your mind”,
“according to you” . . . ) –.

Being an observable phenomenon following rules (at least interactive) andmanip-
ulating data (knowledge) that is supposed to be formalized, the negotiated explanation
can be modeled. Even before being linguistic, it is a phenomenon of communication
and interaction. Thus we can design a model of interaction relatively independent
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from the medium of interaction (Natural Language, GUI), to obtain a deep repre-
sentation of the negotiated explanation, in a computing perspective by the system
as well as by the user. Such model, in an interactive way, intends to manage jointly
according to 3 dialogue plans, the argumentation and the explanation. A proposal of
modeling such a SEED (Dialogical Explanatory Expert System) has been made in
(Charnay 1999). Such deep modeling facilitates incorporating these functions in a
Graphical Interface, as shown in (Baker et al. 1996). Some recent works are follow-
ing this approach, such as (Walton 2007; Bex et al. 2012) and propose hybrid models
to distinguish argument and explanation.

As well as explanation, argumentation is seen here in its interactive dimension,
but the link can be made with “argumentative reasoning” as discussed in chapter
“Argumentation and Inconsistency-Tolerant Reasoning” of this volume. Such rea-
soning could contribute to the construction of arguments elaborated from the KB by
the system and by the contradictory knowledge brought by the user in the dialogue
(e.g. highlight factual elements from which we could deduce in a skeptical manner
or argumentative that they oppose to this contradiction).

Such multidisciplinary approach, with multiple perspectives models stay a fruit-
full paradigm, as shown in the AAAI/ECAI/IJCAI Workshops “ExaCt Explanation-
aware Computing” from 2005 to 2012 (Roth-Berghofer and Schulz 2005; Roth-
Berghofer et al. 2007, 2008, 2009, 2010, 2011, 2012).

3.4 The Dialogical Explanation: the Limits of One Paradigm

The increasing elaboration of models designed to manage interactive explanations
and even real explanatory dialogues, quickly confronts this research domain by the
end of the 1990s, with serious difficulties to acquire, model/design, and maintain
these knowledge. On the other hand, application fields in particular the medical
domain are confronted with the constant evolution of the knowledge, cf. (Bouaud
et al. 2008). Indeed, the simultaneous management of various aspects, each intrinsi-
cally complex, dramatically increase the necessary knowledge. Then, the typically
proposed multi-expert systems often stay for the greater part at the stage of model
or of “Proof of Concept”: the passage to the scale processing operationally a real
domain stumbles over the human and economic costs of such development.

The explanation intended for end-users can be indeed estimated and validated
only in real conditions of use, with real target users. This is even more complex
when it is about human-machine interaction (see (Allemandou et al. 2007) for which
reference data, i.e. the “good” dialogue to be accomplished, doesn’t exist). This
adds to the intrinsic complexities of the addressed problems. Paradigm of the classic
Explanation of the 70s in 90s probably reached its acquisition and representation
limits of various kinds of knowledge needed, as well as the operational validation of
interactive systems.

The search effort then refocused particularly on these problems of knowledge
engineering (i.e. acquisition, modeling and evolutionary maintenance of the KB, in
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particular ontologies as discussed in Sect. 4 and chapters “Reasoning with Ontolo-
gies” and “Knowledge Engineering” of this volume), also strengthened by new per-
spectives of knowledge sharing and Big Data.

It is however interesting to notice that research in explanation continued, in
particular in the psycholinguistics and cognitive sciences domains, to give rise to
purely explanatory models, either interactive phenomena (Dessalles 2008), or the
co-construction of the knowledge (Baker 2009). Such multi-dimensional and hybrid
approaches, mixing explanation and argumentation in dialogue, are still fruitful (see
(Bex-Walton 2016)).

In parallel ExaCt “Explanation-aware Computing”Workshops (2005-2012) show
various operational systems using explanation in interactive task combining GUI
and natural language (Roth-Berghofer and Schulz 2005; Roth-Berghofer et al. 2007,
2008, 2009, 2010, 2011, 2012).

4 Current Issues

The works on validation and explanation concern nowadays several different com-
puter research fields. Such a spread makes their identification harder but also shows
their crucial issues and interests in many different fields. This is due on the one
hand to the KBS increasing complexity which are composed of different kinds of
knowledge with different semantics and, on the other hand, to the emergence of new
issues around knowledge and data management on the semantic web (see chapter
“Knowledge Engineering” of this volume). This section gives an overview of valida-
tion and explanation current issues. Section4.1 presents briefly the validation issues
in systems engineering. Section4.2 addresses the validation and explanation issues
in semantic web. Finally, Sect. 4.3 deals with the validation and explanation issues
in ontology.

4.1 Validation and Systems Engineering

Thanks to the International Council on Systems Engineering (INCOSE1), systems
engineering is an interdisciplinary approach enabled to ensure the realization of suc-
cessful systems. It focuses on defining customer needs and required functionality
early in the development cycle, documenting requirements, then proceeding with
design synthesis and system validation. Its life cycle is usually comprised of the
following seven tasks: state the problem, investigate alternatives, model the sys-
tem, integrate, launch the system, assess performance, and re-evaluate (Bahill and
Gissing 1998) where ‘re-evaluate’ means observing outputs and use them in order to
improve the system, its inputs, the product and the process. The norm ISO/IEC/IEEE

1http://www.incose.org/AboutSE/WhatIsSE.

http://www.incose.org/AboutSE/WhatIsSE
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15288:2015 establishes a common framework of process descriptions for describing
the life cycle of systems created by humans.

If we focus on the re-evaluation task, the PMBOKguide (Institut 2013), a standard
adopted by IEEE, gives in its fourth edition the two following definitions:

• “Validation. the assurance that a product, service, or system meets the needs of
the customer and other identified stakeholders. It often involves acceptance and
suitability with external customers. Contrast with verification.”

• “Verification. The evaluation of whether or not a product, service, or system com-
plies with a regulation, requirement, specification, or imposed condition. It is often
an internal process. Contrast with validation.”

4.2 Validation, Explanation and Semantic Web

According to the World Wide Web Consortium (W3C),2 “the term Semantic Web
refers to W3C’s vision of the Web of linked data. The ultimate goal of the Web of
data is to enable computers to do more useful work and to develop systems that
can support trusted interactions over the network.” (see ChapterReasoning with
Ontologies of Volume 3). The validation issues in semantic web mainly concerns
the quality of the web of data and the trust of the web data sources. It supplements
the validation issues which could have been taken into account during the web data
sources building in a system engineering process. We first present the quality criteria
of the web of data and then the trust criteria of the web data sources. Finally, we
briefly discuss about the explanation issues in semantic web.

4.2.1 Web of Data Quality

The development and standardization of semantic web technologies has resulted in
an unprecedented volume of data being published on the web as Linked Data (LD)
which is, unfortunately, of variable quality. Zaveri et al. (2016) proposed a survey of
LD quality. Eighteen different data quality dimensions were identified and divided
into four main groups: (1) the accessibility dimensions, (2) the intrinsic dimensions,
(3) the contextual dimensions and (4) the representational dimensions. Thanks to our
validation preoccupation, we focus on the intrinsic dimensions which are indepen-
dent of the users context and study whether “information correctly (syntactically and
semantically), compactly and completely represents the realworld andwhether infor-
mation is logically consistent in itself”. Five intrinsic dimensions were identified:
syntactic validity, semantic accuracy, consistency, conciseness and completeness.
The syntactic validity is defined as “the degree to which an RDF document conforms
to the specification of the serialization format”. The metrics identified for syntactic

2https://www.w3.org/standards/semanticweb/.

https://www.w3.org/standards/semanticweb/
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validity can be for instance detecting syntax errors using validators,3,4 or detecting
whether the data conforms to the specific RDF pattern (Kontokostas et al. 2014). The
semantic accuracy is defined as “the degree to which data values correctly represent
the real world facts”. Themetrics identified for semantic accuracy can be for instance
detection of inaccurate values via crowd sourcing (Acosta et al. 2013). “Consistency
means that a knowledge base is free of (logical/formal) contradictions with respect to
particular knowledge representation and inference mechanisms”. The metrics identi-
fied for consistency is to load the knowledge base into a reasoner and check whether
it is consistent. Finally, “conciseness refers to the minimization of redundancy of
entities at the schema and the data level” and “completeness refers to the degree to
which all required information is present in a particular data set”.

In the LD quality preoccupation, the early draft about the Data Quality Vocabu-
lary5 proposed by the Data on the Web Best Practices Working Group of the W3C
provides a framework in which assertions can be made about a data set quality and
appropriateness for given tasks.

4.2.2 Web Data Sources Trust

Building a “web of trust” is a crucial issue of the semantic web: it is essential to build
a web that people can trust. Let us notice that the web data source trust corresponds to
the trustworthiness dimension of the context dimension group in (Zaveri et al. 2016)
defined as “the degree towhich the information is accepted to be correct, true, real and
credible”. The validation of theweb data source trust criteria consists in checking that
the web data source effectively contains what it pretends to and that its information
is reliable. This validation can for instance consists in judging the web data source
credibility (i.e. number and quality of input and output hyperlinks), checkingwhether
the web data source property is reliable thanks to its URI or merging and comparing
data from different web data sources. One of the most important metrics identified to
validate the web data source trust relies on data provenance for which many works
were done and led to the PROV model6 recommended by the W3C Provenance
Working Group, chartered to specify a representation of provenance to facilitate its
exchange over the Web (Moreau et al. 2015).

4.2.3 Explanation and Semantic Web

The semantic web can be seen on the one hand as a huge KB which allows the
development of question answering works (Corby et al. 2006; Lopez et al. 2013;
Unger et al. 2015) and, on the other hand, a way to dynamically discover new services

3http://w3c.github.io/developers/tools/.
4https://validator.w3.org/unicorn/.
5https://www.w3.org/TR/2015/WD-vocab-dqv-20150625/.
6https://www.w3.org/TR/2013/REC-prov-dm-20130430/.

http://w3c.github.io/developers/tools/
https://validator.w3.org/unicorn/
https://www.w3.org/TR/2015/WD-vocab-dqv-20150625/
https://www.w3.org/TR/2013/REC-prov-dm-20130430/
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by the composition of web published services (Rao and Su 2004; Sheng et al. 2014).
In the second point, autonomous artificial agents have to browse the web, according
to an end-user request, in order to compose relevant services to find the good answers
(e.g. a multi-steps and multi-modes travel with cost and date constraints). The web
semantic languages such as RDF-S or OWL (see chapter “SemanticWeb” of volume
3) allow causal rules and simple inferences to be expressed and are appropriate
to produce explanations required to justify the computed results to the end-user
(Haynes et al. 2009) or to the “trust negotiation” (Bonatti et al. 2006) between
intelligent agents on theweb.Moreover, as a hugeKB, the semanticweb is a powerful
means to enable argumentations that are of great interest in social web7 (Rahwan
et al. 2007; Schneider et al. 2013; Cabrio et al. 2013) and decision making contexts
(Thomopoulos et al. 2015). Decision-making often requires discussion not just of
agreement anddisagreement, but also the principles, reasons and explanations driving
the choices between particular options. This is also the preoccupation of works
on causality as discussed in chapter “A Glance at Causality Theories for Artificial
Intelligence” of this volume.

4.3 Validation and Ontology

The development of semantic web has resulted not only in an unprecedented volume
of published data but also in an increasing number of ontologies used to model and
enrich semantically these data. Such ontologies also appear as an inescapable means
for the data and knowledge exchange between the different web data sources (Staab
and Studer 2009). The quality of the published data therefore depends upon the
quality and validation of the ontologies bringing their semantic, which have become
a significant challenge.

The ontology engineering (Sure et al. 2009), inspired from the knowledge engi-
neering (see chapter “Knowledge Engineering” of this volume), is an active research
area which propose methods, tools and languages to build ontologies. It deals espe-
cially with development process of ontologies and their life cycle. The development
process of an ontology can follow a particular methodology like NeOn (Suárez-
Figueroa et al. 2015) where knowledge acquisition, documentation, configuration
management, evaluation, and assessment should be carried out during the whole
ontology network development. The life cycle contains in particular the evaluation
step of the ontology, which is composed of the sub steps verification and validation.
The verification sub step deals with the correct building of the ontology whereas the
validation ones with the building of the “good” ontology. Vrandecic (2009) provided
a panorama of current works on ontology verification and Obrst et al. (2007) on its
validation. The works on ontology evaluation are inspired from works on KB val-
idation. They study the same anomalies (cf. Sect. 2.1) that are the redundancy, the
incompleteness and the incoherence but also some new validation criteria such as the

7https://www.w3.org/2005/Incubator/socialweb/XGR-socialweb-20101206/.

https://www.w3.org/2005/Incubator/socialweb/XGR-socialweb-20101206/
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semantic validity of ontology according to the domain knowledge, its adaptability,
its clarity or its quality thanks to existing ontologies, especially studied in works
on ontology alignment (Euzenat and Shvaiko 2007) (see chapter “Semantic Web”
of volume 3). Most of the works on ontology evaluation defined a generic quality
evaluation framework (Gómez-Pérez 2004; Brewster et al. 2004; Brank et al. 2005;
Gangemi et al. 2006; Duque-Ramos et al. 2013; Poveda-Villalón et al. 2014), others
dealt with ontology verification such as (Guarino and Welty 2004; Schober et al.
2012) and in recent times methods pattern-based evaluation emerged (Gangemi and
Presutti 2009; Djedidi and Aufaure 2010; Presutti et al. 2012). Each work proposes
its own methods for evaluating the quality of an ontology and standards remain
unfulfilled.

The ontologies may also be used in the conformity control of a job domain and
therefore allow the end-user to better understand the reasons of an eventual non-
conformity of the system (Yurchyshyna et al. 2008) or enable to better manage the
evolution of the domain ontology (Djedidi and Aufaure 2009). It also provides a way
to give reasoning and explanation capabilities to intelligent agents, especially in sim-
ulation domain for conditioning learning (e.g. “serious game” in military domain or
crisis management). The ontologies then become an essential elements of immersive
ITS (Intelligent Tutoring Systems) (Lane et al. 2005; Nkambou et al. 2010).

The ontology validation requires nowadays to take into account the evolution-
ary, dynamic, interdependent and distributed character of the knowledge it models.
The ontology takes advantage of knowledge extracted from external sources which
constantly evolve and are interdependent (e.g. knowledge from the web of data or
social networks). Moreover the interoperability preoccupations of current systems
(e.g. exploitation of ontologies in networks, management of ontologies in distributed
or pair-to-pair systems) arise new problematics for the study of their coherence. The
ontology coherence cannot no more be studied independently, but has to be stud-
ied in an ontologies network, each ontology being independently built, taking into
account their reasoning power. Someworks (Chatalic et al. 2006; Nguyen et al. 2008)
proposed solutions using algorithms that reason with inconsistencies.

5 Conclusion

Whereas the software engineering has proposed a response to the crisis of software at
the end of the sixties, the knowledge engineering has proposed a response to the crisis
of expert systems at the end of the eighties. The validation researches onKBS are part
of the knowledge engineering researches. They benefit from the logical semantics
often associated with knowledge to provide elegant solutions to validation issues
that were studied for several years in software engineering. The final interactive
phase of validation to correct KBS, often called refinement phase, benefit from the
modularity and declarativity of knowledge to provide original solutions to explain,
at a high level, the system invalidities.
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The KBS were conceived (e.g. MYCIN) both as a resolution system to obtain
solutions and as a system to explain solutions, which opened new perspectives to
computer scienceworks. This preoccupations of having understandable and convinc-
ing computed results are also at the heart of decision making works at the frontier
of applied mathematics and psychology. The interactive tutoring systems and the
engineering of knowledge memory are two examples of numerous works requiring
further researches in explanation. The tomorrow computer science works will have
to act that several problems require the co-resolution of a computer and a human and
to think deeper about how computer and human can better exchange their knowledge
in a mutual comprehensive way.

Next to those traditional uses of KBS to explain solutions (Chen and Pu 2012;
Biran and Cotton 2017; Brinton 2017), a new domain of research, called explainable
artificial intelligence, is recently emerging in connectionwithmachine learningmod-
els. Its aim is to provide an “intelligence” that can be understood. Machine learning
researches focus mainly on how to obtain new knowledge, but the users need to be
convinced of the truth and accuracy of those knowledge to solve their problems.
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Knowledge Engineering

Nathalie Aussenac-Gilles, Jean Charlet and Chantal Reynaud

Abstract Knowledge engineering refers to all technical, scientific and social aspects
involved in designing, maintaining and using knowledge-based systems. Research
in this domain requires to develop studies on the nature of the knowledge and its
representation, either the users’ knowledge or the knowledge-based system’s knowl-
edge. It also requires the analysis of what type of knowledge sources is considered,
what human-machine interaction is envisaged and more generally the specific end
use. To that end, knowledge engineering needs to integrate innovation originating
from artificial intelligence, knowledge representation, software engineering as well
asmodelling. This integration enables both users and software systems tomanage and
use the knowledge for inference reasoning. Other advances are fuelling new meth-
ods, software tools and interfaces to support knowledge modelling that are enabled
by conceptual or formal knowledge representation languages. This chapter provides
an overview of the main issues and major results that are considered as milestones
in the domain, with a focus on recent advances marked by the raise of the semantic
web, of ontologies and the social web.

1 Introduction

Knowledge engineering (KE) became a research domain in the early 1980s, its
research object being designing, maintaining and using knowledge-based systems
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(KBS). Many of the early expert systems were developed using traditional software
engineering methods combined with rapid prototyping. In this context, building con-
ceptual models in the early stages of the process became a major and critical issue.
The further population of thesemodelswith the appropriate knowledge presented also
substantial challenges. The so-called knowledge acquisition bottleneck1 became the
subject of a large amount of research work, Ph.D. theses and international projects,
either with a cognitive and methodological perspective (Aussenac 1989) or targeting
the definition of new knowledge representations (Cordier and Reynaud 1991; Charlet
1991). In the late 1990s, the perspective broadened and gave birth to KE as a cross-
disciplinary research domain. Mainly located in the field of Artificial Intelligence
(AI), KE refers to all technical, scientific and social aspects involved in designing,
maintaining and using KBS. KE defines the concepts, methods, techniques and tools
to support knowledge acquisition, modelling and formalisation in organisations with
the aim of structuring the knowledge and making it operational.

KE is expected to address knowledge modelling and sharing issues when design-
ing any KBS that supports human activities and problem solving. Such knowledge
intensive applications include knowledge management (KM) systems, Information
Retrieval (IR) tools, both semantic or not, document or knowledge browsing, Infor-
mation Extraction (IE), decisionmaking or problem solving to name but a few.When
the Semantic Web (to which the chapter “Semantic Web” of Volume 3 of this book
is dedicated) emerged as a promising perspective to turn web data into knowledge
and to define more powerful web services, research in KE started waving close rela-
tions with this domain. Indeed, the Semantic Web overlaps KE in various ways, both
domains use the same languages, standards and tools like ontologies, knowledge
representation languages and inference engines.

In the rest of this chapter, we propose a chronological and historical presentation
of the major paradigms that marked milestones in KE during the last 25 years in
Sect. 2. Then in Sect. 3, we detail the main research issues that KE is dealing with.
Section4 offers a synthetic view of the remaining methodological and representation
challenges before we conclude in Sect. 5.

2 Knowledge Modelling

2.1 The Notion of Conceptual Model

Around the 1990s, KE methods proposed to design KBS starting with a knowl-
edge modelling stage that aimed to collect and describe the system knowledge in

1Knowledge acquisition refers to the process of gathering expert knowledge (called “knowledge
mining” at that time) and representing it in the form of rules and facts in the hope that the KBS
behaves like the expert would in a similar situation. The difficulty to precisely collect or capture
this knowledge, which is implicit and hard to elicit in many ways, reduces the amount and quality
of knowledge actually represented, as the term “bottleneck” illustrates.
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an operational form, regardless of the implementation. Knowledge representation
in the model was both abstract and with an applicative purpose. It was expected to
account for the multiple necessary knowledge features and types to meet the sys-
tem requirements. Practically, this representation formed the so-called conceptual
model. A conceptual model should fit the kind of knowledge to be described and
would then be formalised using the appropriate formalisms required by the KBS (i.e.
inference rules in many applications of the 1990s). Then, conceptual models became
key components in knowledge engineering and they significantly evolved over the
years to cover a large variety of models depending on the needs they should satisfy,
thus being adapted to new approaches and to every recent research work in the field.

The way in which knowledge is described and represented impacts the implemen-
tation of the targeted KBS, and even more, the ability to understand or explain its
behaviour. Knowledge acquisition and engineering have long referred to A. Newell’s
notion of Knowledge Level (1982). Newell was one of the first to establish a clear
separation between the knowledge to be used in a system to produce a behaviour
and its formal “in-use” representation in the system implementation. In other words,
Newell stressed the necessity to describe the system knowledge at a level that would
be independent from the symbols and structure of a programming language, level that
he called the Knowledge Level. At this level, the system is considered as a rational
agent that will use its knowledge to achieve some goals. Such system behaves in a
rational way because, thanks to its knowledge, he intends to select the best sequence
of actions leading to one of its goals as directly as possible. Newell’s Knowledge
Level not only prompted researchers to define conceptual models, but it also influ-
enced the structuring of these models in several layers corresponding to various
types of knowledge required to guarantee the system behaviour. In conceptual mod-
els, domain knowledge, that gathers entities or predicates and rules, is distinct from
problem solving knowledge that consists in actions and goalsmodelled usingmethods
and tasks.

2.2 Problem Solving Models

Problem solving models describe in an abstract way, using tasks and methods, the
reasoning process that the KBS must carry out. A task defines one or several goals
and sub-goals to be achieved by the system, and a method describes one of the ways
the task goals can be achieved. A task description also specifies the input and out-
put knowledge, constraints and resources required to perform the task. To describe
the way the system should behave to solve a problem, a hierarchy of tasks can be
defined, a general task being decomposed into several more specific tasks that specify
the sub-goals required to achieve the goal of the main task. Methods make explicit
how a goal can be reached thanks to an ordered sequence of operations. Methods
that decompose a task into sub-tasks are distinguished from methods that implement
a basic procedure to directly reach a particular goal. The distinction between tasks
and methods progressively emerged from research works after B. Chandrasekaran
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proposed the notion of Generic Task (1983) and L. Steels proposed a componential
modelling framework that included three types of components: tasks; methods and
domain data models (1990). This distinction has been adopted to account for the
reasoning process in many studies (Klinker et al. 1991; Puerta et al. 1992; Schreiber
et al. 1994; Tu et al. 1995) because it provides a separate description of the targeted
goal and the way to achieve it. Thus, several methods can be defined for one single
task, making it easier to explicitly represent alternative ways to reach the same goal.
This kind of model is similar to results established in task planning (Camilleri et al.
2008; Hendler et al. 1990) where planning systems implement problem solvingmod-
els thanks to operational methods and tasks, as it is suggested in the CommonKADS
methodology (Schreiber et al. 1999).

2.3 From Conceptual Models to Ontologies

Once solutions had been found to design explicit problem-solving models, build-
ing the full conceptual model of an application consisted in reusing and adapting
problem-solving components together with an abstract representation of domain data
and concepts. Then an analysis of the domain knowledge was needed to establish
a proper connection between each piece of the domain knowledge and the roles it
played in problem solving (Reynaud et al. 1997). Domain knowledgemodels include
two parts. The domain ontology forms the core part; it gathers concepts, i.e. class-
sets of domain entities in a class/sub-class hierarchy, and relations between these
classes, to which may be associated properties like constraints or rules. The second
part extends this core with instances or entities belonging to the concepts classes,
and relations between these entities. Thus an ontology defines a logical vocabulary
to express domain facts and knowledge, in a formal way so that a system can use it
for reasoning. Some concepts, called primitive concepts, are defined thanks to their
situation in the concept hierarchy and thanks to properties that form necessary con-
ditions for an entity to belong to this class. Other concepts, called defined concepts,
are defined as classes equivalent to necessary and sufficient conditions that refer to
properties and primitive concepts. The word ontology used to refer to a sub-field of
philosophy. It has been first used in computer science, and particularly in AI, after
the Knowledge Sharing Effort ARPA project (Neches et al. 1991) introduced it to
refer to a structure describing the domain knowledge in a KBS. A little later, Gruber
(1993) was the first to propose a definition of ontology in the field of KE. A more
recent definition, proposed in Studer et al. (1998), is currently the acknowledged
one:

An ontology is a formal, explicit specification of a shared conceptualisation.

Conceptualisation refers to an abstract model of some phenomenon in the world by having
identified the relevant concepts of that phenomenon. Explicit means that the type of concepts
used, and the constraints on their use are explicitly defined. Formal refers to the fact that
the ontology should be machine-readable.

Shared reflects the notion that an ontology captures consensual knowledge, that is, it is not
private of some individual, but accepted by a group.
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Fig. 1 High level concepts of an ontology used in the domain of electronic fault diagnosis

To sum up, ontologies meet complementary and symmetric requirements: (a) as
specifications, they define a formal semantics so that software tools may process
them; (b) as knowledge models, they reflect a – partial – point of view on a knowl-
edge domain, that designers try to build as consensual as possible, and they provide
semantic bridges that connect machine processable representations with their actual
meanings for humans – supportingwhatRastier calls interpretative semantics (2009).

The fact that an ontology be formal is both a strength because it enables to produce
inferences (e.g. entity classification) and a limitation, using a formal language for
its representation making it more difficulty to build. Figure 1 presents the main high
level concepts of an ontology designed for an IR system in the domain of electronic
fault diagnosis for cars. The symptom concept is defined by the identification of a
car component, that provides a service to the vehicle user, that has been affected
by a problem in a particular context. In the formal representation of this model,
cardinality constraints on the defByPb and defByServ relations contribute to
express that an instance of symptom cannot be identified unless a service and a
problem have been identified too.

According to how the ontology will be used, it needs to be more or less rich
in defined concepts and relations. For instance, if the ontology will be used in a
standard information retrieval system, its role will be to structure domain concepts
in a hierarchy and to provide labels (terms) for these concepts. This kind of ontology
is called a light-weight ontology: it contains a concept hierarchy (or taxonomy) and
very fewdefined concepts.When concept labels are representedwith a specific formal
class and properties, either called (formal) term or lexical entry, this kind of ontology
is called Lexical Ontology.2 If the ontology is to be used to produce inferences on
domain knowledge, it will generally be larger and it will contain more relations,
more axioms involved in the definition of defined concepts or any concept required
for reasoning. This second kind of ontology is called a heavy-weight ontology.

2Whereas the KE English-speaking community uses “lexical ontology”, many French research
groups refer to Termino-Ontological Resource (TOR) (Reymonet et al. 2007) for very similar
knowledge structures.



738 N. Aussenac-Gilles et al.

Due to their genericity and potentially high reusability, ontologies were expected
to be easy to design. Several research lines have tried to characterise which parts
of an ontology could be generic, and consequently reusable, on the one hand, and
which techniques and methods could support the design of the non-generic parts.
This distinction led to define the following typology of ontologies, which may also
correspond to knowledge levels in a single ontology:

• An upper level ontology or top-ontology is considered the highest level. It struc-
tures knowledge with very general and abstract categories that are supposed to
be universal and that are the fruit of philosophical studies on the nature of the
main knowledge categories when formally representing human thinking in any
domain. The major reference studies about top levels in ontologies are Sowa’s
top-level categories,3 SUMO,4 or DOLCE5 to name a few of them. As concluded
by the SUO6 working group and the joint communiqué from the Upper Ontology
Summit,7 trying to define a unique norm for high level categories is pointless as
long as various philosophical schools or trends propose distinct ways to categorise
the world entities. Top level ontologies are the anchor point of more specific lev-
els (core ontologies and domain knowledge), and they are generic enough to be
shared.

• A core ontology or upper domain ontology provides a domain description that
defines the main concepts of a particular domain, together with properties and
axioms applying on these concepts. For instance, a core ontology of medicine
would contain concepts such as diagnosis, sign, anatomic structure and relations
like localisation linking a pathology to the affected anatomic structure (cf. GFO-
Bio8); in Law, the LKIF-Core9 ontology offers notions like norm, legal action and
statutory role.

• A domain ontology describes the domain concepts practically handled by pro-
fessionals and experts in everyday activities. It is the most specific kind of a
knowledge model, and it becomes a knowledge base when instances of domain
specific concepts are represented. Nevertheless, there may be no clear frontier
between a core-ontology and an ontology of the same domain that includes the
core one when both of them are designed within the same process. The distinction
is more obvious when the domain ontology reuses and specialises an existing core
ontology. Domain ontologies or the domain level of ontologies can be designed
thanks to text-based approaches and reusing domain thesaurus or terminologies
(cf. Sect. 4.1).

3http://www.jfsowa.com/ontology/toplevel.htm.
4http://www.ontologyportal.org/.
5http://www.loa-cnr.it/DOLCE.html.
6http://suo.ieee.org/.
7http://ontolog.cim3.net/cgi-bin/wiki.pl?UpperOntologySummit/UosJointCommunique.
8http://www.onto-med.de/ontologies/gfo-bio/index.jsp.
9http://www.estrellaproject.org/lkif-core/.
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3 Issues and Major Results

Ifwe consider theKEevolution over the last 30 years, changes have been driven by the
diversification of what could be considered as a knowledge source for “intelligent”
or AI information systems. This wealth in knowledge sources came together with
changes in computers that impacted any software system: the amazing increase in
storage capacities and always higher computing performance of computers. Knowl-
edge source diversification offered the advantage to benefit from complementary
sources together with available techniques to analyse them. In the following we first
outline the various knowledge sources that KE has successively focused on over the
years, as well as the research issues raised by the passage from these sources to mod-
els. By model, we mean here the different types of knowledge models presented in
Sect. 2 used to represent either the knowledge in a KBS (conceptual models), some
problem-solving process (problem-solving models) or domain specific knowledge
(domain models). Then we show the research paradigms that deal with these issues,
as well as the variety of modelling methods and techniques produced in KE to over-
come them. We end with the presentation of major results about model reuse and
with the connection of this research with the one on knowledge representation.

3.1 Knowledge Sources

Historically, knowledge for KBS first referred to human expertise, for which the
knowledge base of expert systems should account according to a human-inspired
paradigm. Knowledge was thus both technical and specialised. It gathered high-
level skills and know-how that generally never had been verbalised before, and that
were hard to explicit. The expected role of expert systems was to capitalise and make
this expertise explicit so that it could be sustained and transferred to the KBS, or to
humans via the KBS. Knowledge was then represented with inference rules.10

In a second period, expert systems evolved and becameKnowledge-Based systems
because their role was no longer to replace the expert but rather to provide an intel-
ligent help to the end-user. Efficiency was privileged against the accuracy towards
human reasoning. Then reference knowledge became shared knowledge, that KBS
used for reasoning according to their own problem solving engines.

Today, many applications (i.e. spelling checkers, decision support systems, billing
systems, but also chest players or search engines) include some model-based mod-
ules. Their goal is to perform some of the system tasks either in an autonomous
way or in a cooperative way together with other modules or in cooperation with
the user, adapting to the use context and to users’ profiles. The knowledge required
for these support tasks to solve problems or to perform activities includes technical,

10For a historical outline on knowledge-based system, one can read Aussenac (1989), Stefik (1995),
Aussenac-Gilles et al. (1996), or Charlet et al. (2000).
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consensual and shared knowledge, that is modelled as rules or action maps, and as
structured and goal-oriented domain models.

The historical evolution of knowledge-based information systems highlights vari-
ous types of knowledge that were considered over the years: individual expert knowl-
edge, in-use knowledge related to practice, activities and individual usage; knowledge
about organisations, consensual and shared knowledge of an application field, com-
mon sense knowledge, knowledge related to knowledge integration or distributed
knowledge over the Web. It is to capture these various kinds of knowledge that new
knowledge sources have been taken into account. Thus, documents have played an
increasing role as more digital documents were available. Since the early works
on knowledge acquisition for expert systems, KE relies on documents, in particu-
lar textual documents, as they convey meaning and may contribute to reveal some
knowledge. Documents are exploited for the language and information they contain,
which is complementary or an alternative to interviews of domain experts or special-
ists. Data can also become knowledge sources thanks to knowledge or information
extraction processes from data or data mining. Last, components of existing knowl-
edge models can be reused when they convey consensual and shared knowledge.
These components can either be problem solving models, that can be reused across
various domains, like the library of problem solvingmethods in CommonKADS (this
library is one of the major results of the KADS and later CommonKADS11 European
projects Schreiber et al. 1999), or domain models, ontologies, semantic resources
like lexical data-bases or thesauri. Ontologies represent domain concept definitions
in a formal structure. A lexical data-bases like WordNet12 registers, classifies and
organises, according to semantic and lexical criteria, most of the vocabulary of the
English language. Thesauri collect normalised domain vocabularies as structured
sets of terms.

3.2 From Knowledge Sources to Models: Research Issues

One of the core and typical issues in KE is to provide or develop tools, techniques and
methods that support the transition from the knowledge sources listed in Sect. 3.1 to
the models presented in Sect. 2. These techniques not only rely on software systems
but also on analysis frameworks or observation grids borrowed to other disciplines.
Research in KE actually follows an engineering paradigm in the sense that it requires
innovation to design new tools, languages andmethods or to select and adapt existing
ones. It requires as much innovation to organise them in an appropriate way within
methodological guidelines and integrated or collaborative platforms. Expected inno-
vations concern the nature and development of these tools as well as the definition
of their use conditions, their synergy and interactions so that they could manage par-
ticular knowledge types at each stage of the development process of an application.

11http://www.commonkads.uva.nl/.
12http://wordnet.princeton.edu/wordnet/.

http://www.commonkads.uva.nl/
http://wordnet.princeton.edu/wordnet/
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For the last twenty years, methodological research in KE raised cross-functional
issues that have been reformulated and renewed when new knowledge sources were
addressed, new types of models were designed or new use-cases and problems had
to be solved using these models.

3.2.1 How to Design a Model?

Two complementary methodological streams first defined diverging stages and tech-
niques (Aussenac-Gilles et al. 1992).Bottom-upmethods privilege data analysis, first
driven by the identified users’ needs and later guided by the model structure and the
components to be filled. Bottom-up approaches focus on tools that support data col-
lection and mining, knowledge identification and extraction, and later on tools that
produce abstract representations of knowledge features (classification, structuring
and identification of methods and problem solving models). In contrast, the alterna-
tive process follows a top-down approach that privileges the reuse and adaptation of
existing knowledge components. Then knowledge gathering starts with the selection
of appropriate components, that further guides the extraction of new knowledge and
the model instantiation process. A unified view considers that modelling follows a
cyclic process where bottom-up and top-down stages alternate. The process moves
from stages dedicated to knowledge collection or reuse towards knowledge repre-
sentation stages using more and more formal languages. Most methods and tools
presented in Sect. 3.3 combine both processes, whereas we focus on results about
model reuse in Sect. 3.4.

3.2.2 How to Benefit from Complementary Knowledge Sources?

Diversifying knowledge sources and knowledge types is one of the solutions to get
more precise and richer models, or to automatically design a part of them. As a
consequence, KE methods start with the identification of appropriate knowledge
sources. They suggest also a set of relevant tools and techniques that explore and
efficiently process these sources.Most of all, they proposemethodological guidelines
to articulate the use of these tools in a coordinated way that ensures a complemen-
tary exploitation of their results to design an appropriate model. Results in Sect. 3.3
illustrate this process.

3.2.3 What Are Models Made of? What is the Optimal Formal Level?

Eachmodel combines various types of knowledge. In a similar way, each KEmethod
questions and makes suggestions on the nature of the models to be designed, on the
way to structure them and to collect the appropriate knowledge that feel them as well
as on the representation formalism to select, which can be more or less formal as
discussed in Sect. 3.5.



742 N. Aussenac-Gilles et al.

3.2.4 How Does Model Engineering Take into Account the Target Use
of a Model?

Several research studies have shown that conceptual models were all the more rele-
vant than they were dedicated to a specific range of systems. KE does not restrict its
scope to design models; it is highly concerned by their actual use because it is one of
the ways to validate the engineering process, and because it is this specific use that
determines the model content, its structure and, as a side effect, the way the model is
designed. In short, the targeted use of a model has a strong impact on methodological
options and on the selection of a knowledge representation in the model (Bourigault
et al. 2004).

3.2.5 How to Promote Model Reuse?

The reuse of structured knowledge fragments is often the best option to reduce the
cost of knowledgemodelling.However, reuse is not possible unless the principles that
guided themodel design are available, unlessmodels can be compared and combined,
and unless the selection of some of their components and their combination are
technically feasible and sound. These very same questions also arise in researchwork
about ontology or KB alignment, reuse and composition to build new knowledge
bases.

3.2.6 How to Ensure Model Evolution in Relation with the Use
Context?

The knowledge models used in KBS are involved in a life cycle that includes their
evolution. This parameter became increasingly significant as a consequence of the
evolution of the knowledge sources, of domain knowledge and users’ needs. Since
the early 2000s, ontology evolution is one of the major challenges to be solved to
promote their actual use. Various research studies define an evolution life-cycle,
several means to identify and to manage changes while keeping the model consistent
(Stojanovic 2004; Luong 2007).

3.3 Designing Models: Techniques, Methods and Tools

In order to make practical proposals in getting access to knowledge coming from
people or documents deemed to provide indications, KE has its own solutions: tech-
niques and tools that may be integrated into methodologies and frameworks. These
solutions are largely inspiredby close disciplines, dependingon the considered source
of knowledge, sequentially covering cognitive psychology, ergonomics, terminology
and corpus linguistics since KE emerged as a discipline.
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Designingmodels requires access to knowledge available throughvarious sources.
Access techniques depend on the nature of the sources, with potentially generation of
new knowledge that had not been made explicit before. Technique makes reference
here to operating modes requiring specific ways to choose or create knowledge
production or use situations, then ways to discover/collect/extract or analyse data,
and finally proposals to interpret, evaluate and structure the results of the analysis.
We focus on the two knowledge sources that have been most widely used in this
process: human expertise and textual documents.

3.3.1 Human Expertise as Knowledge Source

Regarding human expertise, research approaches have evolved from a cognitivist
perspective, assuming a possible relation between mental and computer representa-
tions, to constructivist approaches, considering that models as artifacts that enable
the system to behave as the human would, and then situated cognition, taking into
account a contextual or collective dimension. In the first case, the task is to locate,
make explicit and represent technical expertise. According to this view, which his-
torically lead to design expert systems, one or several human experts possess the
knowledge that has to be made explicit in order to design a system that produces
the same reasoning. Cognitive psychology has provided guidelines on how to carry
out interviews, on how to analyse them and gave the pros and cons of each form
of interview in relation to the study of human cognitive phenomena (Darses and
Montmollin 2006). These techniques have been adapted and then used to extract
knowledge from experts, as in the works of Aussenac (1989), Shadbolt et al. (1999)
or Dieng-Kuntz et al. (2005). We can distinguish the direct methods that consist in
querying the expert to get him to speak in a more or less guided way and the indirect
methods as repertory grids based on the interpretation of acquired elements as the
expert performs tasks using his expertise.

This cognitivist perspective has been increasingly brought into question to better
satisfy the situated aspect of the knowledge. As expertise is only accessible when
applied in problem solving situations, KE has taken up task and activity analysis
techniques from the area of ergonomics.

Onemain resultwas to lay the foundations of knowledge acquisition as a discipline
focusing on knowledge itself prior to considering its formalisation and its use within
a given system.Both adopting the constructivist view and taking into account existing
methods in software engineering then led to new methodological proposals guiding
the whole knowledge acquisition process. Several methods defined in important
projects, mainly European projects, are presented in Sect. 3.3.3.

Knowledge in software aims at better guiding users. By the way, it impacts their
working methods. So it raises the need to analyse their practices and the practices of
their collaborators, to study their activities and their use of support tools, to consider
their organisational context, which refers to ergonomics, sociological ormanagement
approaches. Results of such analyses were first returned in a static way, as models
(task, interaction and organisationmodels for instance inCommonKADS) (Schreiber
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et al. 1999). These models were made operational using task languages and methods
such as LISA, Task (Jacob-Delouis and Krivine 1995) or CML (Schreiber et al.
1994). The notion of trace of activities has then been widely explored to take into
account activities in a more in-depth way. Traces are integrated to provide users
with a precise and context sensitive help based on the knowledge of their behaviour.
Therefore, Laflaquiére et al. (2008) define the notion of trace for software use or
documentation system activities in order to be able to discover, represent, store traces
and then exploit and reuse them.

3.3.2 Textual Documents as Knowledge Sources

Regarding textual documents, whether technical, linked to an activity or to an appli-
cation domain, two problems arise when exploiting them as knowledge sources: their
selection and their analysis. Document analysis is mainly based on the natural lan-
guage in the text. Some approaches also exploit the text structure identified on the
paper or screen layout and electronically manageable thanks to tags or annotations
(Virbel andLuc 2001). The latter is generally referred as structured or semi-structured
documents (XML documents). We first describe the strengths of textual document
analysis, then the techniques and the tools used for that.

Strengths of Textual Document Analysis

Textual documents are rich knowledge sources. Text analysis has always been a part
of KE but the way to address it changed drastically after 1990.We do not try anymore
to recover automatically the understanding of a text by an individual (Aussenac-
Gilles et al. 1995). The increasing importance of textual analysis is a consequence
of the progress achieved by natural language processing (NLP), which has delivered
robust specialised software programs to process written language. NLP maturity
has been synchronous with ontology deployment. Designing ontologies and using
them to semantically annotate documents became two applications of the analysis of
written natural language. A strong assumption behind automatic text processing is
that text provide stable, consensual and shared knowledge of an application domain
(Bourigault and Slodzian 1999; Condamines 2002). However, this is not always the
case, and two key points influence the quality of the extracted data: first, the creation
of a relevant corpus early on in the process, then a regular contribution of domain
experts or experts in modelling for interpreting the results. Text analysis is used
to design ontologies and similar resources such as thesauri, indexes, glossaries or
terminological knowledge bases.

Techniques and Tools for Textual Analysis

The aim of textual analysis in KE is to discover, in an automatic or cooperative way,
linguistic elements and their interpretation and to help designing parts of conceptual
models.

Linguistic approaches are based onwordings in the text to identify knowledge rich
contexts (Barriere andAgbago 2006). Domain notions are expected to bementionned
using nominal or verbal phrases with a strong coherence. According to the way they
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are used, these phrases can be considered as terms denoting domain concepts or
relationships between domain concepts. Language may also provide clues with a
lower reliability, linking more diffuse knowledge elements. Then analysts have to
rebuild reference links in order to come up with knowledge-based elements, axioms
or rules. Results established by lexical semantics, terminology and corpus linguistics
research are set prior to the implementation of this kind of approach (Condamines
2002; Constant et al. 2008).

Statistical approaches process a text as a whole and take advantage of redun-
dancies, regularities, co-occurrences in order to discover idioms and terms, but also
words or sets of words (clusters) with a similar behaviour or linguistic context.
Several such techniques are described in the book Foundations of Statistical Natural
Language Processing from Manning and Schütze (1999).

In both cases, preliminary text analysis, as cutting a text into sentences and into
tokenwords or grammatical parsingofwords, is needed.Adescriptionof this research
work is given in chapter “Artificial Intelligence and Natural Language” of Volume 3.
The more sophisticated the pre-processing is (as complete syntactic analysis of sen-
tences), the easier it is to automatically define precise interpretation rules. Unfortu-
nately, software performing sophisticated analyses are often less robust, and they are
available in fewer languages, English being often favoured. Furthermore, resources
are sometimes needed (such as glossaries or semantic dictionaries) and few of them
are available in some languages.

When the structure of the documents is available as a result of explicit markers,
linguistic approaches can be combined with the exploitation of the structure in order
to benefit of their complementary semantics (Kamel and Aussenac-Gilles 2009).
The underlying idea is that structural cutting process of documents contributes to the
semantic characterisation of their content.

Regarding the design of ontologies, text analysis serves two purposes
(Maedche 2002; Cimiano et al. 2010): the identification of concepts with their prop-
erties and relationships, or ontology learning process; and the identification of con-
cept instances and relations holding between them, the ontology population process.
Similar tools can be used in both cases: text corpora have to be parsed in order to
discover linguistic knowledge-rich elements (Meyer 2000), linguistic clues that can
be interpreted as knowledge fragments.

Vocabulary modelling motivated the design of dedicated software tools that
provide higher level results than standard NLP tools. For instance, results such as
terms and clusters of synonym terms can then be integrated in a model.
Examples of such tools are term extractors – Terminoweb (Barriere and Agbago
2006), Syntex-Upery (Bourigault 2002),TermExtractor (Drouin2003) orTermRaider
in the GATE13 framework -; pattern-based relation extractors - Caméléon (Aussenac-
Gilles and Jacques 2008), RelExt (Schutz and Buitelaar 2005) or SPRAT (Maynard
et al. 2009) that implements three types of lexico-syntactic patterns (Hearst’s pat-
terns, patterns derived from Ontology design patterns and contextual patterns) in

13http://gate.ac.uk/.

http://gate.ac.uk/
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GATE; pattern-based languages like Jape in GATE, Nooj,14 Unitex15; named-entity
extractors (Poibeau and Kosseim 2000) that contribute to search for instances or rela-
tions between instances (as with the KIM platform16). To sum up, designing models
from texts has strongly benefited from NLP frameworks (GATE, Linguastream,17

UIMA18) that support the development of adapted processing chains. Finally, spe-
cific processing chains, as Text2Onto (Cimiano and Völker 2005), and the version
integrated by NeOn,19 have allowed an assessment of the strengths and limitations of
this approach by increasing automation and exploiting machine learning techniques.
Current research works combine text analysis, reuse of ontological components and
human interpretation. Cimiano et al. (2010) gives a reasonably full picture of these
works.

3.3.3 Modelling Frameworks

Modelling frameworks provide access to knowledge sources, or to their traces, to
knowledge extraction techniques and software tools, as well as to modelling tech-
niques and languages. They suggest a methodology that defines a processing chain
and guides the modelling task step by step. In the following Sub-section, we first
present the most significant results about problem-solving modelling in the early
1990s. Then we focus on methods and frameworks for ontology design which have
been developed in the last ten years.

Methods for Problem-Solving Modelling

Methodological guidelines have been established to better design large knowledge-
based system projects. Their principles are similar to those in software engineering
because of the importance assigned to modelling. In both cases, development cycles
have to be managed and one or several models of the system to be designed must be
built. The design of an application is considered as a model transformation process
with conceptual models defined in Sect. 2.1. This requires a set of epistemological
primitives that characterises at a high level (knowledge level) inference capabilities of
the system to be designed. These primitives define generic knowledge representation
structures that can be further instantiated.

In the early 1980s and 1990s the notion of conceptual model evolved with an
emphasis on problem-solving models, new related languages, inference and tasks
notions articulated. From a methodological viewpoint, the research showed that
modelling primitives provide a grid for collecting and interpreting knowledge; they
guide modelling. The utility of having elements coming from generic models and

14http://www.nooj4nlp.net/.
15http://www-igm.univ-mlv.fr/~unitex/.
16http://www.ontotext.com/kim/.
17http://linguastream.org/.
18http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html.
19http://www.neon-toolkit.org/.

http://www.nooj4nlp.net/
http://www-igm.univ-mlv.fr/~unitex/
http://www.ontotext.com/kim/
http://linguastream.org/
http://domino.research.ibm.com/comm/research_projects.nsf/pages/uima.index.html
http://www.neon-toolkit.org/
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of being able to reuse them by instantiation on a particular application has then
emerged, in particular from results on Generic Tasks from Chandrasekaran (1983).
Later, the CommonKADS methodology showed the interest of adaptable and mod-
ular elements. All these principles are general as they apply irrespective of the task,
the domain and the problem-solving method performed. Modelling techniques and
reusable components are integrated in frameworks including aswell expertise extrac-
tion techniques.

Following the work on Generic Task and role-limited methods (Marcus and
McDermott 1989), and the proposals made by L. Steels in the componentional COM-
MET approach and in the KREST framework (1990), several works distinguished
explicitly the notions of tasks and methods. This distinction has the advantage to
describe separately the goal to be reached from the way to reach it and it allows
for the explicit definition of several ways to reach a same goal by associating sev-
eral problem-solving methods to a same task. These works have been taken into
account by the European project KADS (Schreiber and Wielinga 1992), a pioneer
in KE, which has resulted in the most accomplished methodology and framework
CommonKADS (Schreiber et al. 1999).

CommonKADS allows for the construction of severalmodels related to each other
and required to specify a KBS with an organisational model reflecting in-use knowl-
edge. The expertise model of the system is now recognised as very different from
a cognitive model of a human expert. It is described according to three viewpoints:
tasks, domain models, methods. Each problem-solving method can be parametrised
and its adaptation is defined using a questionnaire guiding for the choice of one of
the solution methods corresponding to each main task of the reasoning process of a
specific application. Tasks describe what must be performed by the KBS. Domain
models describe the knowledge required for reasoning. Methods describe how the
knowledge is used to solve a task. A method can decompose a task into sub-tasks or
solve one or several task(s). The methodology suggests an iterative construction of
an application model according to the three different viewpoints. These perspectives
are all necessary and complementary. The choice of a domain model depends on the
selection of a problem-solving method as problem-solving methods define the role
of the knowledge to be filled. Specifically, methods largely define the nature of the
controlled sub-tasks. The aim of the methodology is thus to identify and model all
the relations between methods, tasks and domain models.

Methods and Frameworks for Designing Ontologies

The design process of ontologies took advantage of these methodologies. It started
when the reuse of domain models put forward the interest in high quality consensual
models designed according � good � principles facilitating reuse and adaptation.
The specific challenges encountered during the ontology design process are the fol-
lowings:

1. Define the ontology content and ensure its quality;
2. Exploit efficiently all available knowledge sources using, for instance, text anal-

ysis or ontology reuse processes;
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3. Facilitate the knowledge engineer design by providing specific tools; and
4. Define a methodological setting and the relevant approach to perform the various

tasks.

Ontology engineering frameworks are uniform and coherent environments sup-
porting the ontology design. They help achieve the different tasks by providing
various tools and supporting a methodology that guarantees that all tasks are run one
after the other.

Various methods can be used to design ontologies.20 In this paper, we present
three methodologies that are paying close attention to the quality of the ontology
content: OntoClean, ARCHONTE and OntoSpec.

The OntoClean methodology has been designed by Guarino and Welty (2004).
The first ideas were presented in a series of articles published in 2000, the OntoClean
name appeared in 2002. Inspired by the notion of formal ontology and by principles
of analytical philosophy, OntoClean made a significant contribution as the first for-
mal methodology in ontology engineering. It proposes to analyse ontologies and to
justify ontological choices using metaproperties of formal classes independent of all
application domains. These metaproperties were originally four (i.e. identity, unity,
rigidity and dependence).

The ARCHONTE (ARCHitecture for ONTological Elaborating) methodology,
designed by Bachimont et al. (2002), is a bottom-up methodology to design ontolo-
gies from domain texts in three steps. First, relevant domain terms are selected and
then semantically normalised as concepts by indicating the similarities and differ-
ences between each concept, its siblings and its father (principle ofdifferential seman-
tic). The second step consists in knowledge formalisation (ontological commitment).
The aim is to design a differential ontology by adding properties or annotations,
by defining domains and ranges of relationships. Finally, the third step consists in
ontology operationalisation using knowledge representation languages. This process
results in a computational ontology.

OntoSpec (Kassel 2002) is a semi-informal ontology specification methodology.
It finds its origins in the definitions that are associated in natural language with
conceptual entities which allow users to collaborate with knowledge engineers in
order to design ontologies. In addition, this methodology proposes a framework
including a typology of properties that can be used in the definition of concepts,
relationships or rules, in order to paraphrase properties using natural language. The
framework serves as a guide to model and facilitate the design of formal ontologies.

The main component of the frameworks used for designing ontologies is usu-
ally an ontology editor. Therefore, Protégé21 is an editor extensively used to cre-
ate or modify RDFS or OWL ontologies, and can be available as a web service
(Web-Protégé) which is particularly appropriate for cooperative ontology design.
Swoop22 has been designed for lightweight ontologies, whereas Hozo23’s original-

20For a survey of the main existing methodologies, see Fernández-López and Gómez-Pérez (2002).
21http://protege.stanford.edu/.
22http://code.google.com/p/swoop/.
23http://www.hozo.jp/ckc07demo/.

http://protege.stanford.edu/
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ity lies in the notion of role and the ability to distinguish concepts depending on
particular contexts from basic concepts to ensure an easier ontology reuse. Besides
this editing function, several other functionalities can be provided in ontology engi-
neering frameworks, such as Schema XML translating functions, graph display of
parts of the ontology, ontology modules management, ontology partition, transla-
tion of vocabularies, import functions of Web ontologies, access to ontology search
engines, text processing modules (like Tree-Tagger24 or Stanford Parsing tools), help
for personalizing ontologies, generating documentation, managing ontology evolu-
tion, ontology evaluation, ontology alignment, reasoning and inference services,
navigation assistance services, visualisation services, …As an illustration, most of
these functionalities are available as plug-ins in the Neon25 framework.

Some frameworks are designed to deal with a specific kind of data. Therefore,
Text2Onto, successor of TextToOnto, and DaFOE4App are specially designed to use
text documents and thesaurus as input knowledge sources. Text2Onto (Cimiano and
Völker 2005) includes a text mining software and modules that generate structured
information fromweakly structured documents. Text2Onto is associatedwithKAON
(Karlsruhe Ontology Management Infrastructure) framework (Oberle et al. 2004) in
order to design ontologies. DaFOE4App (Differential and Formal Ontology Editor
for Applications) (Szulman et al. 2009) focuses on the linguistic dimension while
its design uses some of the ARCHONTE methodology principles (Bachimont et al.
2002).DaFOE4App covers all stages fromcorpora analysis (using aNLP framework)
to the definition of a formal domain ontology. It guarantees persistence, traceability
and the dimensioning of models (several millions of concepts). The TERMINAE
framework (Aussenac-Gilles et al. 2008), designed before DaFOE4App, has evolved
with the specifications of DaFOE4App. TERMINAE26 was used and evaluated in
many projects. To end this non-exhaustive list, PlibEditor is more specially tailored
to databases. With PlibEditor, users can perform all the tasks required to design
ontologies, import or export ontologies as well as data. PlibEditor is complementary
to OntoDB, an ontology-based database system and it enables a database approach
based on domain ontologies (Fankam et al. 2009).

3.4 Model Reuse

Just as software engineering aims to reuse software components, knowledge acquisi-
tion promotes the reuse of knowledge components. This reusability can be achieved
in various ways.

Initially proposed in the settings of the KADS project, reuse of problem-solving
models consists in taking up task models expressed in a domain-independent ter-
minology and adapting them to specific tasks. This approach is attractive. However,

24http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.
25http://www.neon-toolkit.org/wiki/Neon_Plugins.
26http://lipn.univ-paris13.fr/terminae/.
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two specific problems are of paramount importancewhen adapting a problem-solving
model to a specific domain. First, an application often performs several types of rea-
soning, with several models associated to each of them that have to be distinguished
and combined. Second, the reuse and adaptation of predefined generic models to a
specific application is difficult and highly time consuming. Indeed, both the task to
be completed and the knowledge base of the system must be expressed in the terms
of the same application domain, whereas reusable methods coming from libraries,
are expressed using a generic vocabulary. Therefore, adapting problem-solving ele-
ments to an application is first andmainly a problem of termmatching. Consequently,
these challenges have led to more flexible approaches with reusable and adaptable
elements of a finer granularity. Such approaches imply reusing parts of reasoning
models instead of full generic problem-solving models.

Based on the KADS project’s outcome, some frameworks support the combi-
nation of generic components. They include rich libraries of components as well
as graphical editors dedicated to knowledge formalisation, task representation, and
the selection and configuration of the methods allowing to solve the tasks (Musen
et al. 1994). Solution to adapt generic models to a specific application are diverse,
ranging from manual instantiation procedures (Beys et al. 1996) to automated pro-
cesses including mechanisms that check the specification consistency (Fensel et al.
1996). The CommonKADS project settings led to the most successful results to
design problem-solving models. The CommonKADS expertise model can be built
by abstraction process or reusing components of problem-solving models. Its partic-
ular strength lies in the library of components with different granularities, and with a
reuse and adaptation process guided by a questions grid which ensures the relevancy
of designed model.

Ontology design is also shaped by the need to reuse existing models. The number
of domain ontologies has grown significantly, their popularity being explained in part
by the ability to reuse them from one information system to another. Specifically,
ontology reuse aims at reducing the difficulties in ex-nihilo developments that con-
stitute real obstacles to some applications. Issues raised by ontology reuse include:
the selection of reusable and relevant ontologies, the specific support required to
reuse large and complex ontologies that are hard to comprehend, and the integration
of various reused ontologies in the under development ontology.

Ontology reuse has motivated the design of ontology search engines such as
Watson,27 Swoogle,28 or OntoSearch.29 Using key words, these engines provide a
list of ontologies containing at least one concept, one relationship or another ele-
ment labelled or identified by one of the key words. Then selecting the most relevant
ontologies in this list requires that each ontology could be evaluated individually and
that ontologies could be compared to eachother according to various criteria. There-
fore, how to assess an ontology and to compare several ontologies is currently one
of the main challenges in the field. Various questions should be addressed in order

27http://kmi-web05.open.ac.uk/WatsonWUI/.
28http://swoogle.umbc.edu/.
29http://asaha.com/ebook/wNjE3MzI-/OntoSearch--An-Ontology-Search-Engine.pdf.
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to tackle this challenge: What criteria can be used? How to understand the mod-
elling perspective adopted in an ontology? How to merge two ontologies? To what
extend do two ontologies reflect the same conceptualisation of a given domain? Can
we describe the differences in relation to level of detail, compatibility, key concepts
and coverage? Are the differences artificial shifts (i.e. consequences of technical
or terminological choices) or profound semantic differences that reflect diverging
conceptualisations? A major area of research work focused on the development of
algorithms and tools to identify and solve differences between ontologies (i.e. anal-
ysis of differences between terms, concepts, definitions). Moreover, some research
studies bear on global ontologies comparison providing an overview on commonal-
ities and differences. One interesting research direction is to best exploit ontology
visualisation results. Visualisation software tools applied to large ontologies provide
global views and some of them specifically enable the identification of the ontology
main concepts.

The notion of knowledge pattern, directly based on the design patterns used in
software engineering, aims at reducing the significant difficulties occurring when
designing large ontologies or when adapting reusable ontologies. Knowledge pat-
tern has been introduced in Ontology Engineering by Clark et al. (2000) and then
in semantic web applications by Gangemi et al. (2004), Rector and Rogers (2004)
and Svatek (2004). Knowledge patterns are recurrent and shared representations of
knowledge, explicitly represented as generic models and validated through a cooper-
ative process by the research community. Therefore, they are easily reusable after a
further processing by symbolic relabelling required to obtain specific representations.
Knowledge patterns provide “building blocks” that ensure faster ontology design.30

Moreover, they lead to better results by solving, for instance, design problems and
content-related issues independently of the conceptualisation (Gangemi 2005). Addi-
tionally, patterns can facilitate the application of good modelling practices (Pan
et al. 2007). The “Semantic Web Best Practices and Deployment” W3C working
group promotes the use of ODPs to design ontologies. A library of knowledge pat-
terns is provided in the settings of the European NeOn project. It includes struc-
tural, correspondence, content, reasoning, presentation and lexico-syntactic patterns
(Presutti et al. 2008). The eXtreme Design (XD) methodology provides guidelines
for pattern-based ontology design (Daga et al. 2010).31

Reuse of knowledge models requires also to manage their integration within the
system under development in order to allow for an easy communication between the
reused model and the other models. Although ontologies aim at facilitating inter-
operability between applications they usually originate from different designers and
refer to variousmodelling perspectives. Therefore, their usewithin a same application
requires to solve specific issues associated with semantic heterogeneity. In practice,
the same terms may be used to label different concepts in each reused ontology
or ontology module; the same concepts may have different labels; and a particular
concept can be characterised by different features in each model. Facing this het-

30Referred to as Ontology Design Pattern or ODP.
31http://ontologydesignpatterns.org/wiki/Main_Page.

http://ontologydesignpatterns.org/wiki/Main_Page
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erogeneity, significant progress has been made on model reconciliation. Models can
be reconciled at two different levels. At the schema level, reconciliation consists in
identifying correspondences or mappings between semantically-related entities of
two ontologies. In the past years, considerable efforts have been made to build ontol-
ogy alignment tools (Euzenat and Shvaiko 2013), many of which are available on
the internet such as OnAGUI32 or TAXOMAP (Hamdi et al. 2009). Each year since
2004, OAEI international campaigns aim at comparing ontology matching systems.
At the data level, reconciliation consists in determining if two data descriptions refer
to the same entity of the real world (e.g. the same person or the same hotel). This
problem is referred to as reference reconciliation (Saïs et al. 2009) and it is close to
coreference resolution in NLP.

3.5 Knowledge Representation in Models

Even though designing knowledge representation languages is not KE’s main objec-
tive, researchers, when specifying knowledge and models, contribute to develop,
evaluate and evolve these languages within normalisation groups, such as W3C.
Knowledge representation languages as well as modelling languages were first dedi-
cated to problem-solving and reasoning. Then, they related to ontologies (cf. Sects. 2,
2.1, 2.2); nowadays knowledge representation languages are back hand in hand with
reasoning.

In the 1980s, ontology representation languages successfully took advantage of
logic and conceptual graphs (Sowa 1984). Conceptual graphs could provide both a
logic formalisation and a graphical symbolism when no powerful HMI was available
to display semantic networks or trees, and to deploy or close them upon request.
OWL was later developed as an evolution of DAML+OIL,33 a language resulting
from the merge of the DAML34 and OIL project outcomes (Fensel et al. 2001).
Drawn also on description logic (cf. Sect. I.5), and defined as a layer above XML,
OWL became stable and included three languages OWL Lite, OWL-DL, OWL-full
according to the W3C recommendations. Each of these three languages specificities
results from the trade-off representativity versus calculability. In 2007, OWL was
extended with new features. A new version, called OWL 2, was formally defined
in 2012 with three sub-languages35 (called profiles) offering distinct advantages,
computational properties or implementation possibilities, in particular application
scenarios: OWL 2 EL enables polynomial time algorithms for all standard reason-
ing tasks; OWL 2 QL enables conjunctive queries to be answered in LogSpace;

32https://github.com/lmazuel/onagui.
33http://www.w3.org/TR/daml+oil-reference.
34http://www.daml.org/.
35https://www.w3.org/TR/owl2-new-features/#F15:_OWL_2_EL.2C_OWL_2_QL.2C_OWL_2
_RL.

https://github.com/lmazuel/onagui
http://www.w3.org/TR/daml+oil-reference
http://www.daml.org/
https://www.w3.org/TR/owl2-new-features/#F15:_OWL_2_EL.2C_OWL_2_QL.2C_OWL_2_RL
https://www.w3.org/TR/owl2-new-features/#F15:_OWL_2_EL.2C_OWL_2_QL.2C_OWL_2_RL
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Fig. 2 The layer cake of the
semantic Web as proposed in
2009

OWL 2 RL enables the implementation of polynomial time reasoning algorithms
using rule-extended database technologies.

In the Semantic Web Stack proposed by Tim B. Lee (cf. Fig. 2), representing the
stacking order of the Semantic Web languages, we can notice that RDF,36 located
in the bottom part, is the basic language of the Semantic Web. RDF is the common
ground to all the languages of interest for KE (i.e. RDF, RDF-S, OWL, SPARQL
and RIF). These languages allow applications to consistently use ontologies and
associated rules. RDF is a simple language to express data models as a graph
where nodes are web resources and edges properties. RDF Schema37 is a seman-
tic extension of RDF. It is written in RDF and provides mechanisms to structure
data models, by describing groups of related resources and the relationships between
these resources. OWL is another and more expressive extension allowing a better
integration of ontologies and easier inferences. SPARQL38 is an RDF semantic query
language for databases, able to retrieve and manipulate data stored in RDF format.
RIF39 (Rule Interchange Format) is the rule layer in the Semantic Web Stack. RIF is
not a rule language but rather a standard for exchanging rules among rule systems.
Other rule languages may apply on ontologies, like SWRL,40 or Description Logic
Programs (DLP)41 (Hitzler et al. 2005). None of them is proposed as a standard for

36https://www.w3.org/RDF/.
37https://www.w3.org/TR/rdf-schema/.
38https://www.w3.org/TR/rdf-sparql-query/.
39https://www.w3.org/TR/rif-overview/.
40http://www.w3.org/Submission/SWRL/.
41http://logic.aifb.uni-karlsruhe.de/wiki/DLP.

https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rif-overview/
http://www.w3.org/Submission/SWRL/
http://logic.aifb.uni-karlsruhe.de/wiki/DLP
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the semantic web, because theW3C assumes that a single language would not satisfy
the needs of many popular paradigms for using rules in knowledge representation.

Another W3C recommendation defined as an application of RDF is SKOS42 (for
Simple Knowledge Organisation System). SKOS provides a model for expressing
the basic structure and content of concept schemes such as thesauri, taxonomies,
folksonomies, and other similar types of controlled vocabulary. In basic SKOS, con-
ceptual resources (concepts) are related to each other in informal hierarchies but
no logical inference is possible. Using SKOS, generalisation versus specialisation,
(broader-than and narrower-than - – BT/NT) relations that are very often used in the-
saurus can be represented without logical inferences associated to the subsumption
relationship in OWL.

SKOS was even more necessary in that logical inferences based on the subsump-
tion relationship are only valid if ontologies comply with the associated constraints
(whereas such relationship is not valid on thesaurus). Furthermore, the applications
using thesaurus and ontologies are increasingly efficient and the resources them-
selves – i.e. thesaurus and ontologies – are involved in the development processes
using different knowledge representation languages at different steps in the devel-
opment process and not always as intended by the language designers. For instance,
a thesaurus and an ontology jointly used in an application can be modelled in OWL
for that application. However, one could be originally developed in SKOS and the
other one in OWL, and they could further be distributed in a format like CTS2.43

4 Methodological Issues and Today’s Applications

The current KE challenges are both methodological and application oriented. A few
founding principles tackle those issues and provide a general framework:

• The need for a multidisciplinary approach taking into account the recommen-
dations of other disciplines such as cognitive psychology, ergonomics, manage-
ment, linguistics, information retrieval, natural language processing or document
management.

• The importance of a thorough modelling approach, bringing together different
models whenever required during the system development process.

• Theneed to consider upstream the systemergonomic design, prior to anymodelling
stage; more specifically, the targeted uses of the system should be taken into
account aswell as its integration in the broader informationprocessing architecture.

KE-related applications form a vast field of research, experimentation and transfer
of AI technologies in which innovative methods must be developed. The articulation
between methodology and applications guides the stakes described below.

42https://www.w3.org/TR/2009/REC-skos-reference-20090818/.
43http://www.3mtcs.com/resources/hl7cts.

https://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.3mtcs.com/resources/hl7cts
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4.1 Linking Language, Knowledge and Media

As said in Sect. 3.1, natural language is an ideal vector of knowledge, and written
natural language is now a good support for knowledge extraction thanks to recent
advances in NLP and machine learning techniques. To represent and manage knowl-
edge from text, KE has to deal with various interdisciplinary methodological issues
that appear in concordance with classes of applications related to various media.

4.1.1 Designing Problem-Solving Models and Ontologies from Natural
Language in Textual Documents

In the 1990s, the firstKE studies on knowledge acquisition for expert systems focused
on text to identify heuristic knowledge andmore or less explicitly explain human rea-
soning. At that time, text sources were either existing documents or documents elab-
orated for modelling purposes, such as transcriptions of interviews. Later, the focus
on domain ontologies accentuated the sometimes provisional dissociation between
the heuristic reasoning and the description of the concepts (and vocabulary) used by
these heuristics. Subsequently, at the end of the 1990s, under the impetus of research
studies like the one of the French TIA Group, textual corpora generated in relation
with an activity were used to help design ontologies for support systems of this same
activity. Thus textual corpora were considered as a complementary or alternative
source of knowledge to experts and specialists in the field. Processing such corpora
requires not only NLP tools but also platforms able to use the result of these tools to
design ontologies, terminologies or any conceptual scheme. (cf. Sect. 3.3.2).

Moreover, in this perspective, the document as such is a valuable knowledge con-
veyer in its own right. The management of documents produced and used in the
individual and collective activity, but also, as such, the management of documen-
tary collections (images, sounds, videos) is of interest to KE. KE can then rely on
document management technologies that support the sharing, dissemination, archiv-
ing, indexing, structuring or classification of documents or document flows. A major
difficulty is to select the right documents in order to best meet the users’ needs and
to find the useful task supports (including knowledge). Because more and more KE
projects integrate document management in a large variety of forms, researchers in
the field cannot free themselves from an in-depth reflection on the notion of a doc-
ument, particularly a digital document. To this end, several researchers contributed
to the work of the multidisciplinary thematic network on the document (RTP-DOC)
and its productions (Pédauque 2003, 2005).

4.1.2 Information Retrieval with Ontologies

Thanks to the Semantic Web, where ontologies provide metadata for indexing docu-
ments, ontologies are now at the heart of Information Retrieval (IR) applications. In
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this context, they make it easier to access to relevant resources, because they can be
used to link and integrate distributed and heterogeneous sources at both the schema
and data level. Ontologies are also a means to query multiple sources using a unified
vocabulary, to enrich queries with close concepts or synonym terms, to filter out and
classify the query results. Given that thesauri are already in use in this field, this
line of work obviously leads to compare the gains and limitations of ontologies with
those of thesauri or terminologies and to evaluate their respective contributions to
IR. These analyses contribute to specify which kind of ontology is more likely to
support IR: those having a strong linguistic component, with at least many terms
labeling the concepts. As a consequence, a new need emerged: the implementation
of application environments where ontologies and thesaurus co-exist to serve the
purpose of IR (Vandenbussche and Charlet 2009).

4.2 Coping with Data Explosion

For nearly 20 years, the amount of available data exploded. In a parallel movement,
the Semantic Web turned out to be a web of Data in addition to a web a document.
This means that the semantics should also be brought to data by labeling them with
ontology concepts. Thus applications address increasingly numerous and diverse
data that generate new needs in particular for their description and their integration.
The so-called Big Data is frequently characterised by the four (or more) versus
(4Vs): Volume, Velocity, Variety, Veracity. Velocity has to do with efficiency and
calculability of knowledge representation, which is out of the scope of this chapter.
In the following paragraphs, we explore the three others characteristics: Veracity,
Variety, and, for the Volume problematic, we focus more specifically on the question
of the size of designed models.

4.2.1 Volume

The description of these very numerous data requires the development of models in
which the amount of information to be taken into account can be large enough to open
new perspectives to statistical approaches and models. In order to maintain the use
and management of symbolic models, the challenge is to be able to design models of
very large size, for example by reducing the amount of information to be taken into
account simultaneously. In this way, work on ontology modularity aims at designing
very large ontologies needed for applications, and to consider these ontologies as sets
of (more or less independent) modules. Modularity, in the general sense of the word,
refers to the perception of a large knowledge repository (i.e. an ontology, a knowledge
or data base) as a set of smaller repositories. Although the concept of modularity
is widely used in computer science, it is a relatively new idea in KE. For example,
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the Knowledge Web project44 (2004–2007) provided guidelines to design modular
ontologies (Stuckenschmidt et al. 2009). This project showed the diversity of views
on modularity and pointed out the important research directions to be developed:
guidelines to design modules (how to determine a coherent and meaningful set of
concepts, relationships, axioms and instances), metadata to describe, to select and to
use or re-use modules, specification of how they can be linked to one another, their
composition and their reuse in different contexts. Managing a large mass of data in
a distributed context can also lead to designing on a set of existing ontologies that
need to be redesigned, aligned, transformed into modules or integrated with non-
ontological resources such as databases, folksonomies or thesauri. The networked
ontology construction method defined by the NeOn45 project (2006–2010) includes
a support for cooperative design and takes into account the dynamic and evolutionary
features of ontologies (Gómez-Pérez and Suárez-Figueroa 2009), which are major
issues for the development of large ontology-based applications.

4.2.2 Variety or Managing Knowledge Integration Through Ontologies

Both in the fields of databases and information retrieval, ontologies are experimented
as a promising solution for data integration. When integrating data from multiple
and heterogeneous sources, ontologies can help to understand and interpret data
belonging to the same domain but represented in heterogeneous structures. Then
ontologies are also a good support to relate them more easily (Assele Kama et al.
2010). In some domains, such as geography, few ontologies are practically available
for data integration (Buccella et al. 2009) or they describe targeted domains, such
as Towntology for planning and urbanism (Roussey et al. 2004) or FoDoMuSt in
the field of image processing (Brisson et al. 2007). The challenge then consists in
designing useful ontologies.

In other domains, like agriculture or medicine, ontologies exist but are very large
and therefore difficult to exploit. In this case, the challenge is to enable the understand-
ing of their content in order to help extract the relevant subset for an application. In
the medical field, many classifications contain several tens of thousands of concepts
and an ontology includes several hundred thousand concepts. Ontology reuse and
management reaches an additional level of complexity: ontologies are developed
to represent knowledge of a precise sub-domain, we speak of Interface ontology.
Other large ontologies are developed to provide broad representations and to serve
as references for future epidemiological studies, we speak of Reference ontology
(Rosenbloom et al. 2006). In this context, the best known models are SNOMED-CT
that covers the whole medical domain (Spackman 2005) and FMA for represent-
ing human anatomy in whole (Rosse and Mejino 2003). Between the two types of
ontologies, we need alignment services and the possibility of extracting the relevant
subsets for a target system. This is what a standard like CTS2 allows (cf. Sect. 3.5).

44http://cordis.europa.eu/ist/kct/knowledgeweb_synopsis.htm.
45http://www.neon-project.org/.

http://cordis.europa.eu/ist/kct/knowledgeweb_synopsis.htm
http://www.neon-project.org/
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This context, reinforced by the need to exploit diversified knowledge or several
partial models (or modules), requires to face the problem of heterogeneity between
models/ontologies/knowledge, and motivates the current interest in semantic inter-
operability. Research work on semantic interoperability bears on automatic mapping
tools that set links between elements of semantically heterogeneous concept schemes,
ontologies or other knowledge sources. They define processes for schema matching,
ontology alignment (cf. Sect. 3.4), or data reconciliation. For instance, recent medi-
cal studies have tried to integrate most of the knowledge needed to make a diagnosis
– e.g. clinical, imaging, genomics knowledge – thanks to a pivotal ontology based
on various available ontologies or models (Hochheiser et al. 2016; Sarntivijai et al.
2016).

4.2.3 Veracity

Veracity points out, with a step backwards, two things.
The quality of data is often a problem. For example, in medicine, the medical staff

generally inputs data into information systems through poor interfaces, with little
time, in difficult working conditions or with little involvement. As a consequence,
the data quality is poor too. In a KE point of view, it is important to stress that quality
ontologies, and quality Knowledge Organisation Systems in general, are necessary.

Secondly, it appears that medical data are coded (or tagged with concepts) with
precise goals and strict coding rules. This process involves a reduction of themeaning,
and raises difficulty when interpreting the data, which often requires to read again
the original text or resource. Indeed, when reusing data in a new context or when
trying to merge it with other data, we observe that the data is biased by the first
context. It is then necessary to closely analyse the bias and to check that it can be
taken into account or even compensated for in another way. Knowledge engineers
must be aware of these limitations and anticipate them before data reuse.

4.3 Managing Distributed Data

The web and web standards have greatly changed the way data is distributed. In par-
ticular, new types of systems, web services, rely on a new communication protocol
between machines. Thanks to web services, the Web became a distributed com-
puting device where programs (services) can interact intelligently by being able to
automatically discover other services, to negotiate among themselves and to com-
pose themselves into more complex services. A considerable amount of knowledge
is mandatory to get intelligible services from machines. When added a knowledge
base, web services become semantic web service.

Semantic web services are the bricks to create a semantic Web of services whose
properties, capabilities, interfaces and effects are described in an unambiguous way
and can be exploited by machines. The semantics thus expressed must facilitate
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the automatic management of services. Semantic web services are essential for the
effective use of web services in industrial applications. However, they still raise a
number of issues for the research community, including for the KE field because
they use ontologies to explain which service they provide to other services or to end
users. Semantic modelling contributes to evaluate the quality of aWeb service and to
take it into account in the process of discovery or composition of services. Peer-to-
peer (P2P) systems have also grown significantly, and a substantial body of research
work has recently sought to improve the search function in unstructured systems
by replacing random routing with semantically guided routing. Several dimensions
of the problem are analysed: Which semantics should be remembered? Which rep-
resentation to adopt? How to design it? What is shared among peers? How to use
semantics? How to disseminate it? These issues remained unresolved and have been
brought into sharper focus by KE.

4.4 Leveraging New Knowledge Sources

Two knowledge sources currently raise major challenges: data from the Web 2.0 and
data from the Web data-bases (web of data).

The Web 2.0 or social Web (OReilly 2007) devotes a considerable attention to
users compared to the Web in its initial version, by allowing them to become active.
Both authors and actors, Internet users can use the web 2.0 tools to store, imple-
ment and manage their own content and share it. These tools include blogs, social
networks, collaborative sites, linking platforms, and on-line sharing services. These
tools and services are increasingly used in organisations. However, the software tools
managing these contents have their own data format and they are increasingly dis-
tributed and heterogeneous. These features raise important problems of information
integration, reliable identification of the authors or history tracking to name but a
few. Similarly, tagging or labeling46 is a common practice to characterize and group
similar contents and to facilitate data search. This process presents several limita-
tions due to the ambiguity and heterogeneity of the labels, called tags. Enterprise 2.0
systems (McAfee 2006) recently tend to develop as a field of experimentation and
promotion for KE techniques. It enables a kind of renewal within the KE domain by
making new proposals for facilitating navigation, querying or retrieval. As proposed
by Tim Berners-Lee, linked Web data refer to an RDF-based publication and inter-
connection of structured data on theWeb, based on the RDFmodel. TimBerners-Lee
talks about aWeb of data. It thus promotes a W3C project that goes in this direction,
i.e. the Linking Open Data (LOD). The Web of Data, following the web of docu-
ments, intends to face the flood of information by connecting the data. Linked data
has the advantage of providing a single, standardised access mechanism rather than
using different interface and result formats. Data sources can bemore easily searched

46I.e. content indexing with user’s metadata. The sets of labels then form folksonomies.
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by search engines, accessed using generic data browsers, and linked to different data
sources.

The number of data published according to the principles of linked data is grow-
ing rapidly (we are talking about billions of RDF triplets available on the Internet).
The site http://lov.okfn.org/dataset/lov/ gives a snapshot of existing vocabularies
(more than 600) and highlights the numerous mutual reuse of terms between these
vocabularies. Among this large number of data sources, DBPedia47 structures the
content of Wikipedia48 into RDF triples so as to make the information of the ency-
clopedia reusable. DPpedia is a very powerful source as it is interconnected with
other data sources, such as Geonames49 and MusicBrainz50) and it has been linked
to even larger data sets like YAGO51 (Rebele et al. 2016) or BabelNet52 (Navigli and
Ponzetto 2012). These large generic knowledge bases are also used by search engines
to display structured content in response to users’ queries. Because of they propose
unambiguous and linked vocabularies, these masses of data represent promising
sources for KE.

4.5 Coping with Knowledge Evolution

The dynamic nature of the data on the Web gives rise to a multitude of problems
related to the description and analysis of the evolution of such data. The existing
models of knowledge representation are inadequately addressing the challenges of
data evolution and, above all, they do not benefit from any adaptive mechanism that
would allow them to rigorously follow the evolutions of a domain. Research work
on ontology evolution underlines howmuch the Semantic Web and KE communities
need to find appropriate solutions to this complex issue. Early studies defined the
stages of an evolution process (Noy and Klein 2004; Stojanovic 2004), they spec-
ified a typology of changes (Plessers et al. 2007) and change descriptions. Other
works proposed mechanisms, sometimes borrowed to belief revision (Flouris 2006)
to keep the modified ontology consistent and logically sound (Haase and Stojanovic
2005) and defined how to propagate changes in distributed ontologies and in the
applications that use them (Stuckenschmidt and Klein 2003). With similar purposes
to ontology engineering, ontology evolution can be fed thanks to the knowledge
identified in textual documents using NLP tools (Buitelaar and Cimiano 2008) and
relying on document structure, like in (Nederstigt et al. 2014). More recently, when
the ontology is used to generate semantic annotations of text, research studies deal

47http://wiki.dbpedia.org/.
48https://fr.wikipedia.org.
49http://www.geonames.org/.
50https://musicbrainz.org/.
51https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-na
ga/yago/.
52http://babelnet.org/.
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https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
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with the evolution of these semantic annotations when the textual corpus or when the
indexing vocabularies evolve (Tissaoui et al. 2011; Da Silveira et al. 2015; Cardoso
et al. 2016).

Zablith et al. (2015) propose a recent overview of the major trend in this domain.
Characterizing and representing domain data evolution raises issues both at the data
level (Stefanidis et al. 2016) and at the model scheme level (Guelfi et al. 2010).
Ontology evolution remains a hard issue, even at the era ofmachine learning, because
a statistic processing of a massive amount of documents is relevant for building large
knowledge bases like DBpedia, but produces poor results when trying to fix errors
or to identify local changes in an existing model. Processing large amounts of data is
much more appropriate to feed and update the data level in knowledge bases, which
corresponds to instances of ontological classes.

4.6 Collective Versus Personal Knowledge

Most of the previous approaches place little emphasis on the social dimension of
knowledge management. This dimension is strong enough in some professional
communities to consider them as communities of interest or as communities of prac-
tices. Communities of practices designate social groups in which learning processes
emerge through the sharing of networked knowledge. KE models need to capture
these learning processes or to integrate them into their knowledge management pro-
cess. To this end, Lewkowicz and Zacklad (2001) propose a new form of knowledge
management based on the structuring of collective interactions. This approach aims
at better using of the shared knowledge, at facilitating its reuse, the knowledge of an
organisation being considered as above all a matter of collective competence.

The identification of communities of interest that emerged thanks to the develop-
ment of Web 2.0 or the analysis of users’ digital traces sharing similar thematic
information implies the representation of individual knowledge about the fields
of interest and activities of their members, together with the collective dimension
of knowledge. This collective dimension is the focus of the Computer Supported
Cooperative Work (CSCW) research community, that designs specific solutions
to manage collective and in-use knowledge. For instance, M. Zacklad proposes a
conceptual model mid-way between thesauri and formal ontologies, called semiotic
ontologies, that should be more easily shared by a working community in an infor-
mation retrieval framework (Zacklad 2007). Conversely, more and more software
systems and Web interfaces are designed to be context sensitive or user customised.
To do so, they adapt to the user profile, environment or interactions with the system,
which requires the acquisition, the modelling and the processing of the interaction
contexts (Garlatti and Prié 2004).
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4.7 Model Quality Assessment

Finally, a fundamental question for KE concerns the quality assessment of the mod-
els used and the results produced. The use of poor quality knowledge may lead to
errors, duplications and inconsistencies that must be avoided. Beyond its interest in
research, the theme of quality has become critical with the deployment of systems
in companies.

The quality of the models/ontologies can be guaranteed methodologically, when
the ontology was designed following a rigorous method based on the theoretical and
philosophical foundations of what an ontology is (such as the methods presented in
Sect. 5). Other methodological works aim to move from manual and approximative
approaches, the cost and duration of which are difficult to estimate, to more system-
atic, equipped and better controlled processes. Of course, they focus on reuse such
as Methontology (Gómez-Pérez et al. 2007) and NEON in Suárez-Figueroa et al.
(2012), on practical guidelines (Noy and Hafner 1997) or on systematic text anal-
ysis using NLP tools and modelling platforms such as Terminae (Aussenac-Gilles
et al. 2000) or GATE and methods listed in Maedche (2002). In the case of Brank
et al. (2005), a state of the art classifies the ontology evaluation techniques into four
categories: (1) syntactic evaluations check whether the model complies the syntactic
rules of a reference language (RDF, OWL, …) such as Maedche and Staab (2002),
(2) in-use evaluations test the ontology when used by a targeted system, e.g. Porzel
and Malaka (2004) (3) comparison with a reference source in the domain (either
a gold model or a representative set of textual documents), such as Brewster et al.
(2004) or, finally (4) human evaluation tests how well the ontology meets a set of
predefined criteria, standards or needs, for example Lozano-Tello and Gomez-Perez
(2004). Moreover, in Brank et al. (2005), validation approaches are organised into
six levels: lexical level, level of taxonomic relations, level of other semantic rela-
tionships, application level (looking how the ontology impacts on the system that
uses it), context level (how the ontology is reused by or reuses another ontology),
syntactic level or, finally, the level of design principles. Practically, it may be easier
to evaluate an ontology level by level because of its complexity.

5 Conclusion

KE has undergone successive changes of direction. This research field constantly
evolves from the inside (experimenting new analyses, new perspectives, original
ways of posing problems, new theoretical concepts) and from outside (targeting new
types of applications, dealing with new types of data, in particular with the upheavals
of the Web, integrating the contributions of other disciplines that come to bring new
methods and concepts). Over the years, these developments gradually broadened
the scope of KE. Each new proposed theoretical framework includes parts of the
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previous work. Even if some changes of perspective correspond to actual breaks, the
results of the domain complement each other over time and can be taken from a new
angle when the context evolves.

For a long time, KE has been interested in producing knowledge models in a well-
structured process under the control of knowledge engineers. The resulting models,
generally complex, were used in specific applications. Today, applications in which
knowledge is used as support for reasoning or activity have become much more
diversified. Since 2000, they have been devoted to knowledge management in the
broadest sense, including semantic information retrieval, navigation aids, decision
support, and many semantic Web applications. This enlargement continues and new
fields of application are still emerging, posing the problems of KE in new terms.

Thus, in the age of ubiquitous computing, it is the living room, the train, the auto-
mobile, the workshop, the classroom or meeting room, the smallest kitchen device
that become “smart” tools. Within these tools, a dynamic process is required to con-
tinuously acquire context knowledge on the flow from a wide variety of sources (sen-
sors, databases, the Internet, users with various profiles). In addition, these intelligent
tools must have a pro-active behaviour that enables them to initiate communication
or action based on their understanding of the current situation and on their goals.
So, for example, phones know where we are at a given time and become capable
of automating some operations, such as when taking pictures, labeling them with
geographic and temporal metadata.

The last decade has seen a major transformation in the way individuals interact
and exchange. Information is now co-produced, shared, filed and evaluated on the
Web by thousands of people. These uses and the underlying technologies are known
as Web 2.0. Web 3.0 is the latest evolution to date that combines the social web and
the semantic technologies of the semantic Web. In the context of communities of
interest or practices where spontaneous emergence and activity are allowed by these
evolutions of the Web, KE and knowledge management are thus major stakes of the
future decade.

Finally, KE must feed and evaluate all these new developments, compare them
with previousmodels (reasoningmodels, rules bases), estimate the need to use ontolo-
gies and their alignment to type or organise data, to define new techniques and
languages if necessary, to justify the use of metadata to enrich and reuse data, and so
on. The speed of Web evolutions can be seen as a crazy accelerator of the research
pace or as an alarm that invites us to step back and pose the problems at a higher
abstraction level, necessarily interdisciplinary, in order to better qualify the essence
of knowledge, their dissemination and their formalisation for digital processing.
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Afterword – From Formal Reasoning to Trust

Luis Fariñas del Cerro

To formalize the different types of reasoning is a main task for logic. Initially, the
focus was on reasoning in all its generality, then, in the first half of the last century, it
shifted towards mathematical reasoning, promoting its unprecedented development.
In that period, contributions that were dedicated to the foundation of mathematics
gave a precise meaning to the concept of algorithm that plays a central role in our
discipline, computer science. Generally speaking, works from e.g. Alonzo Church,
Jacques Herbrand, Alain Turing and Rudolf Carnap laid the foundations of many
domains of computer science.

The problematic of logic was renewed by computer science, in particular since the
advent of artificial intelligence, highlighting that reasoning is not only mathematical.

We are used to reason and take decisions in our daily life even if we do not have an
accurate knowledge about our environment and more specifically about actions that
other human beings we interact with may perform. We only have partial knowledge
of the laws and conventions of communication with other humans. The modeling of
such interactions was, for a long time, a very important subject of philosophy and
philosophical logic, and has become an important subject of artificial intelligence,
motivated by the need of modeling interactions between human and artificial agents.

The incomplete, uncertain, or partially contradictory character of such informa-
tion manipulated by artificial agents makes use of very diverse types of reasoning.
These include among others, hypothetical reasoning, reasoning with uncertainty, and
temporal reasoning.

The formalisation of such types of reasoning is one of the essential challenges that
artificial intelligence poses to logic. In that perspective, we have recently seen the
development of new logical systems that try to capture certain aspects of reasoning,
for instance:
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• Substructural logics
• Linear logic
• Logics of uncertainty
• Modal logics
• Non-monotonic logics

Most prominently, non-monotonic logics that allow us to treat laws with
exceptions is a privileged domain of artificial intelligence. Thanks to numerous equiv-
alence results these formalisms converge towards a unique framework that is based
on the notion of preference. An important aspect of all these logical systems is the
definition of automated deductionmechanisms. Important results have been obtained
recently that can be traced back to both a clearer understanding of the logics.

The formalisation of reasoning is a problem by itself that is at the heart of both the
foundations of artificial intelligence as well as of its applications. Naturally, it has
interfaces with many other domains, in particular artificial intelligence and formal
logic. In recent years, important efforts have been devoted to the introduction of
humans as a fundamental element in the modeling and implementation of computing
systems. This allows us to imagine other ways to design these computing systems
that require the support of multiple disciplines of different nature, such as ethics and
economy. Let us take for example the notion of trust, which is a fundamental concept
in actual computing systems.

Trust has been studied in a large number of disciplines, such as philosophy, psy-
chology, economy, and computer science.

Here are some everyday life examples that show its importance regarding our use
of the internet:

• Is the information shown on that website correct?
• I have got two contradicting pieces of information on two different websites, which
one should I believe?

• Is this email safe?
• Can this web service use my information without my consent?
• Does this web service offer what I am asking for and not something different?

If we look at the different models of decentralised open systems, such as the web,
we can see that the concept of trust is at the top of the different elements taken into
consideration by such systems. See for example, in Fig. A.1, the diagram of the
semantic web proposed by Tim Berners-Lee.1

We can also note that the notion of trust raises many other questions, for example:

• How is it justified or motivated?
• What is the ability to produce actions from intentions?
• Are the norms met?
• What is the mutual interest of two agents?

1Image from https://www.w3.org/2002/Talks/04-sweb/slide12-0.html

https://www.w3.org/2002/Talks/04-sweb/slide12-0.html
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Fig. A.1 Diagram of the
semantic web proposed by
Tim Berners-Lee

In the relation between agents, trust plays an important role, in particular when
computer agents play an intermediary role and act on behalf of human agents or
institutions, which is the case e.g. for the relations between a bank and its clients for
example.

When information management is entrusted to a computer agent, trust issues arise
in the preservation of:

• Privacy;
• Integrity;
• Information availability and access.

Think of an action such as an online hotel reservation: it is immediately clear that
agents have to quickly decide if they can or cannot trust the transaction, and to which
extent such trust is justified.

The justification of this type of beliefs can be of different kinds:

• Empirical, if it comes from observation or reputation.
• Analytical, if the validity of an information source can be deduced from (beliefs
about) its sincerity and competence. For example, the validity of an information
source can be

• deduced from its sincerity and its competence.

When we say that we trust a computer system, we actually assert that we trust the
method by which the system was designed and implemented, since we believe that
design and implementation followed a series of protocols and standards.

This is the case for all artefacts constructed by man that we are using in our every
day lives. Thus, whenwe push the brake pedal we believe that the car will slow down.
In other words, we trust the fact that best practice design and production rules were
followed during the manufacturing process.
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The fundamental question is to know what explicit, measurable, and communica-
ble criteria ensure that the software that we are using follows standards, or in other
words, that it possesses a good behavior.

These kind of procedure was followed in a very efficient and thorough way in so-
called critical systems, such as systems tied to transportation or to energy production.
It should also be adopted by all these new computer systems that we use in our
everyday life and that allow human or institutional agents to connect to each other.
When studying the notion of trust, artificial intelligence researchers should study
ethical problems, in the sense that they should better understand and explicit the
impact of the actions done by the computer systems that are at the origin of these
new interactions between human beings.

These thoughts, around our example, show that artificial intelligence researchers
need to develop new formal frameworks integrating concepts that allow to model
and mechanise increasingly rich and complex reasoning modes. They should also
allow the formalisation of high-level cognitive capabilities, such as those related to
trust or emotion. All this should be taken into consideration if we want to improve
the cooperation between human and computer agents.
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