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ABSTRACT
Society increasingly relies on machine learning models for auto-

mated decision making. Yet, efficiency gains from automation have

come paired with concern for algorithmic discrimination that can

systematize inequality. Recent work has proposed optimal post-

processing methods that randomize classification decisions for a

fraction of individuals, in order to achieve fairness measures related

to parity in errors and calibration. These methods, however, have

raised concern due to the information inefficiency, intra-group un-

fairness, and Pareto sub-optimality they entail. The present work

proposes an alternative active framework for fair classification,

where, in deployment, a decision-maker adaptively acquires infor-

mation according to the needs of different groups or individuals,

towards balancing disparities in classification performance. We pro-

pose two such methods, where information collection is adapted to

group- and individual-level needs respectively. We show on real-

world datasets that these can achieve: 1) calibration and single

error parity (e.g., equal opportunity); and 2) parity in both false

positive and false negative rates (i.e., equal odds). Moreover, we

show that by leveraging their additional degree of freedom, active
approaches can substantially outperform randomization-based clas-

sifiers previously considered optimal, while avoiding limitations

such as intra-group unfairness.
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1 INTRODUCTION
As automated decision-making systems (ADMs) have become in-

creasingly ubiquitous—e.g., in criminal justice [16], medical diag-

nosis and treatment [15], human resource management [3], social

work [9], credit [12], and insurance [25]—there is widespread con-

cern about how these can deepen social inequalities and systematize

discrimination. Consequently, substantial work on defining and

optimizing for algorithmic fairness has surged in the last few years.

Inspired by domains such as race biases in criminal risk predic-

tions [7], a substantial body of literature has focused on the problem

of balancing classification errors across protected population sub-

groups, towards achieving equal false positive rates, false negative

rates, or both (equal odds). To that end, recent research has proposed
“optimal" post-processing methods that randomize decisions of a

fraction of individuals to attain group fairness [11, 21]. Yet, strong
limitations of randomized approaches have been noted, such as

information wastefulness, Pareto sub-optimality, and intra-group

unfairness [5, 11, 21].

Our work aims at overcoming such limitations. We propose a

complementary approach, active fairness, where, in deployment,

an ADM adaptively collects information (features) about decision

subjects; gathering more information about groups or individuals

harder to classify, towards achieving equity in predictive perfor-

mance. Thereby, the approach leverages a natural affordance of

many real-world decision systems—adaptive information collec-

tion—and allocates an ADM’s information budget according to

group- or individual-level needs.

Summary of contributions.We propose two methods for achiev-

ing fairness, based on group-level and individual-level budgets. We

show that, without resorting to randomization, these methods are

able to achieve: a) calibration and a single-error parity constraint,

and b) parity in both false positive and false negative rates (i.e.,

equal odds). We show in four real-world datasets that, with con-

strained information budgets, active approaches can substantially

outperform randomized approaches previously considered opti-

mal (lower false positive and false negative rates) by leveraging

information collection as an extra degree of freedom. Finally, we

show that classifiers using individual-level budgets in combination

with active inquiry tend to dominate classifiers that use group-level

budget constraints.

Intuition and motivating contexts. Consider a patient entering
a hospital seeking diagnosis that typically undergoes a progressive

inquiry—measuring vitals, procuring lab tests, specialists’ opinions,

etc. At each step, absent sufficient certainty, the inquiry continues.

Intuitively, a fair health system allocates resources to provide all
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patients similar-quality diagnoses. Likewise, active inquiry under

cost constraints underlies contexts like disaster response, poverty

mapping, homeland security, recruitment, telemedicine, refugee

status determination, credit and insurance pricing, etc.

Problem formulation. LetX be ann×d feature matrix. LetX (q) ⊂
X denote a query on a subset of features in X , with q ⊂ {0, ...,d},

and x
(q)
i the partial feature vector of individual i; and let f (X (q))

be a predictor of class probability P{Y = 1|X (q)}. We study the

classification context in which a decision-maker can choose what

information to collect about each decision subject, and seeks to

maximize accuracy and fairness under an information budget con-

straint
¯b = 1

n
∑
i bi < bmax , where bi = |qi | ∈ [0,d] is the amount

of information collected for individual i .
Although this setting is natural to many real-world decision sys-

tems, its affordances and implications to algorithmic decision sys-

tems—at the intersection of accuracy, fairness, and cost-efficiency—have

not been thoroughly studied. Here, we focus on contexts with con-

stant costs across features. Yet we note that the active fairness

framework allows generalizations to contexts with varied costs

across features, as well as richer and context-specific utility func-

tions with potential costs to decision-subjects, such as monetary,

opportunity, or privacy costs.

2 RELATEDWORK
Active feature acquisition (AFA). Several probabilistic and non-

probabilistic methods exist for sequential feature querying under

budget constraints [8, 18], dating at least back to [20], and applied

in domains such as medical diagnosis [10], customer targeting [14],

and image classification [8]. To the best of our knowledge, this work

is the first to study the implications AFA has to the algorithmic

fairness literature and policy debate. Here, we use an approach

based on probabilistic random forests, but more sophisticated meth-

ods can be used, for example, for dealing with domains with very

high-dimensional input like medical images [26].

Active learning. Similar to the general AFA setting, this paper

assumes that a fixed set of training data is used and that incremen-

tal features of a test sample can be queried. This differs from the

active learning setting in which the system actively queries training

examples that optimize learning e.g. by balancing exploration and

exploitation, or by maximizing the expected model change [24].

We foresee future work studying synergies in systems that attain

fairness by actively choosing training samples using active learning

while also applying AFA at test time.

Notions of fairness. Several notions of fairness and their corre-

sponding formalizations have been proposed, most of which require

that statistical properties hold across two or more population sub-

groups. Demographic or statistical parity requires that decision

rates are independent from group membership [2, 19, 28], such

that P{Ŷ = 1|A = 0} = P{Ŷ = 1|A = 1}, for the case of binary

classification and a sensitive attribute A ∈ {0, 1}. Most recent work

focuses on meritocratic notions of fairness, or error rate matching
[1, 11], such as requiring population subgroups to have equal false

positive rates (FPR), equal false negative rates (FNR), or both, i.e.,

P{Ŷ = 1|A = 0,Y = y} = P{Ŷ = 1|A = 1,Y = y}, y ∈ 0, 1. In

this work we focus on the latter set of fairness notions, although

generalizations to others, such as statistical parity, are possible.

Refer to [29] for a survey on computational measures of fairness.

Achieving Equal Opportunity and Equal Odds
Hardt et al. 2016 proposes parity in FNRs and/or parity in FPRs as

a measure of unfair discrimination across population subgroups

[11]. Parity in both types of error is referred to as equal odds. Its
relaxation, equality in only FPRs, is conceptualized as equal oppor-
tunity, as in contexts of positive classification it means that subjects

within the positive class have an equal probability of being correctly

classified positive, regardless of group membership.

Equal opportunity can be achieved simply by shifting up or down

the decision threshold tA—where Ŷ = 1[tA,1]
(
P̂(Y = 1|X ,A)

)
—for

group A or A∁
. Yet, doing so also directly affects FNRs, impeding

achievement of equal odds. In this context, Hardt et al. 2016 pro-

pose a classifier that balances both FPRs and FNRs, based on naive

randomization of a fraction of individuals in the advantaged group;

and prove conditions under which the classifier is optimal with

respect to accuracy [11].

Although effective in achieving equal odds, these randomization-

based results have been considered discouraging for reasons out-

lined below, and, as shown in Section 6, are outperformed by active

approaches.

Achieving Calibration and Error Parity
In many real-world uses of algorithms for risk estimation, it is

common practice to require that predictions are calibrated—e.g., in
recidivism [6, 7], child maltreatment hotlines [4, 9], and credit risk

assessments [12]. A calibrated estimator is one where, if we look

at the subset of people who receive any given probability estimate

p ∈ [0, 1], we find indeed ap fraction of them to be positive instances

of the classification problem. In the context of credit assignment,

for example, we would expect a p fraction of credit applicants with

estimated default risk of p to default. In the context of algorithmic

fairness across population groups, it is often desired that calibration

holds for each group [7].

Calibration is not necessary nor sufficient to achieve parity in

classification errors [5]. However, it is particularly desirable in

cases where the output of an algorithm is not directly a decision

but used as input to the subsequent judgment of a human decision-

maker. In such contexts, risk estimates of an uncalibrated algorithm

would carry a different meaning for different groups (e.g., African-

American and white defendants), and hence their use in informing

human judges’ decisions would likely entail disparate impact.

Recently, Kleinberg et al. 2016 demonstrated that a tension exists

between minimizing error disparity across different population

groups and maintaining calibrated probability estimates [16]. In

particular, it showed that calibration is compatible only with a

single error constraint (i.e. equal FNR or equal FPR). On the same

vein, Pleiss et al. 2017 showed that the results hold for even a strong

relaxation of equal odds, named equal cost, where FPRs and FNRs are
allowed to compensate one another according to a cost function [21].

Finally, they propose a method that, using naive randomization, is

able to achieve parity on either error rate or equal cost. We compare

our methods to these benchmarks in Section 5.

Objections to naive randomization
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C) Mex., randomization vs. group budgets
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D) Adult income, naive randomization
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E) Adult income, group-level budgets
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F) Adult, randomization vs. group budgets
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Figure 1: Achieving calibration and single error rate parity: classifiers with group-level information budgets vs. naive ran-
domization. Rows correspond to analysis on two different datasets: theMexican poverty and adult income datasets. Green and
yellow colors correspond to error rates for two population subgroups (e.g., white and non-white individuals). Solid black lines
represent the space of possible calibrated classifiers, from the perfect classifier (at the origin), to the trivial classifier that as-
signs the base rate probability to all individuals (intersection with the grey line). Panels in the first column (A and D) show
the generalized false positive and false negative rates (GFPR and GFNR [21]) of classifiers that randomize an increasing pro-
portion of individuals (0% to 100%). Dashed lines connect classifiers that achieve single error parity constraints. In line with
[21], naive randomization is able to achieve calibration and any single error parity constraint. Panels in the second column
(B and E) show results for classifiers with increasing group-level budgets (i.e., increasing feature sets), showing that these are
also effective in achieving parity on either false positives, false negatives, or equal cost, while maintaining calibration; yet
without resorting to naive randomization. Finally, panels in the third column (C and F) compare the efficiency of both meth-
ods in achieving equal opportunity and calibration, under an information budget restriction (¯b < 20% in C, and ¯b < 5% in F).
Classifiers with group-level budgets Pareto-dominate randomized classifiers by a wide margin, i.e. for the same information
budget, both population subgroups are better off, incurring substantially lower false positive and false negative errors.

The aforementioned methods for achieving equal odds, as well as on
jointly achieving calibration and a single error parity measure, rely

on naive randomization as means to fairness. Hence, they have been

interpreted as unintuitive, discouraging, and unsettling [5, 11, 21].

Several objections have been put forth against the use of naive

randomization to achieve classification parity. Among them:

Inefficiency. As pointed out by [5, 11, 21], it is inefficient and ap-

pears unintuitive to withhold information that is already collected

by naively randomizing the classification of a subset of individuals.

Individual unfairness. Classifiers based on naive randomization,

such as those in [5, 11, 21], entail intra-group unfairness. Individ-

uals who are randomized are not necessarily those with higher

uncertainty but simply the ones who were unlucky, hence breaking

ordinality between the probability of classification error and the

underlying uncertainty.

Pareto sub-optimality and undesirability. Consider an uncon-

strained and unfair classifier ŶU , which incurs higher errors on

groupA than group B; and consider an alternative ‘fair’ classifier ŶF ,
where a fraction of individuals in B are randomized to achieve parity

in errors. Considering groups A and B as the system’s stakehold-

ers, we note that the original unfair classifier ŶU Pareto dominates

the fair alternative ŶF , i.e.: the disadvantaged group A will be in-

different, as its classification remained unchanged, while group B
will strongly prefer ŶU , the original classifier before accuracy was

degraded by randomization. No group would prefer ŶF .

3 ACTIVE FAIRNESS
The present work explores active feature acquisition approaches

for achieving fairness, where a decision-maker adaptively acquires



information according to the needs of different groups or individu-

als, in order to balance disparities in classification performance.

This section introduces two such strategies, one that allocates

group-level information budgets—constant for all members of a

group—and one that allocates individual-level information budgets,

which are computed dynamically at test time. Sections 5 and 6

demonstrate their use and advantages in attaining fairness.

Preliminaries.We denote data of each decision subject as a pair

(x ,y), where x is a feature vector of dimensionality d , and y is the

target variable we want to predict. Let S = (x i ,yi )ni=1
denote a

labeled dataset, and A ⊂ S represent a population subgroup. Let

Ŷ (X ) be a binary classifier. We denote by FPRA(Ŷ ) and FNRA(Ŷ )
the false positive and false negative rates of {(x ,y) ∈ A}, and define
disparity measures with respect to A in terms of the following FPR

and FNR differences:

DA
FPR =

��FPRA(Ŷ ) − FPRA∁ (Ŷ )
��

DA
FNR =

��FNRA(Ŷ ) − FNRA∁ (Ŷ )
��

Equal opportunity—or FNR parity—with respect to A requires that

DA
FNR = 0, while equal odds requires both DA

FNR = DA
FPR = 0 [11].

3.1 Group-Level Information Budgets
Let bA,bB be the information budgets for population sub-groups

A,B. We define predictor hд with group-level information budgets

bA,bB by:

hд(xi ) =

{
f (x
(qA)
i ) if i ∈ A

f (x
(qB )
i ) if i ∈ B

where qA,qB are feature sets that satisfy |qA | = bA and |qB | = bB .
Sections 5 and 6 show how decision-makers can achieve calibration

and group-level equity by allocating budgets bA,bB .

3.2 Individual-Level Information Budgets
Beyond group-level budgets, an ADM may adaptively collect infor-

mation of each decision subject until a confidence threshold is met,

upon which a classification decision is made. Thereby, individual-

level information budgets are set dynamically according to the

needs of each decision subject, towards attaining equity.

In particular, Algorithm 1 specifies active inquiry at the individ-

ual level as the decision-making process that, given lower and upper

probability thresholds αl ,αu ∈ (0, 1), and for each decision subject i ,

progressively expands the information set x
(qi )
i until either thresh-

old is met, or the available feature set is exhausted. Together with

the decision threshold, αl and αu control trade-offs between FPR

and FNR. In line with related AFA methods [8], we apply early stop-

ping to ensure we stop expanding the feature set if the classification

confidence is no longer improving significantly. We estimate the

parameter for early stopping using grid search while maximizing

the area under the receiver operating characteristic curve (AUROC)

for a given budget.

We define predictor hind with individual-level information bud-

gets as hind (xi ) = f (x
(qi )
i ), where qi is the feature set according to

active inquiry in Algorithm 1.

Algorithm 1: Active inquiry at the individual level

Input: data X , model f , probabilities (αl ,αu ), decision
threshold t ;

for i = 1 to i = n do
while f (x

(qi )
i ) ≤ αu and f (x

(qi )
i ) ≥ αl and

|qi | < d and not e do
j ′ ← Get next best feature j ′ < qi ;

x
(qi )
i ← x

(qi )
i ∪ xi j′ ;

e ← early_stopping( x
(qi )
i ,xi j′ ) ;

end

ŷi = 1[t,1]
(
f (x
(qi )
i )

)
;

end
return (qi )

n
i=1
, Ŷ ;

3.3 Random Forest Implementation
Implementation of active classifiers requires two elements: (1) a

model f , able to estimate P{Y |X (q)} for arbitrary feature subsets

X (q), with q ∈ [0,d], and (2) a feature selection method for choosing

expanding feature sets, either at the group- or individual-level.

Probabilistic model. We implement distribution-based classifica-

tion with incomplete data based on a probabilistic random forest

and extending related methods for dealing with incomplete data in

trees [22, 23]. In particular, when given an arbitrarily incomplete

feature vector x
(q)
i , the algorithm traverses all possible paths of

each tree according to the following rule: if value xi j for the cur-
rent decision node is available in q, the search follows the path

according to the node’s decision function; otherwise, if the value

is not available (j < q), the search follows both paths. We then

compute classification probabilities as a weighted average of the

leaf purity across all leaves landed on by the search. Finally, we

compute the average predicted probability across all trees. Similar

methods can be derived for adapting logistic regressions to admit

arbitrarily incomplete feature vectors [23, 27].

Static feature selection.We first consider a static feature ranking

for guiding the acquisition of additional features in Algorithm

1, based on feature importance derived from the random forest

inter-trees variability. Hence, under static feature selection, given

feature ranking R, the group-level budget classifier uses the top-
bA variables in R for classification of any i ∈ A, and the top-bB
variables in R for any i ∈ B. Similarly, the individual-level budgets

classifier collects the top-bi features in R in order to classify each

subject i .

Dynamic feature selection. In the same vein, we consider dy-

namic or personalized feature selection, given its potential for in-

creased individual-level equity and overall cost-efficiency. We im-

plemented a greedy feature selection algorithm, which, for each

subject i , and at each feature collection iteration, searches for the

feature j ′ < qi that maximizes the difference between the current

predicted probability P̂ and the expected probability given that an

additional feature j ′ is queried, given by:

j ′ = arg max

{j :j<qi , j ∈[0,d ]}

��P̂{yi = 1|x
(qi∪j′)
i } − P̂{yi = 1|x

(qi )
i }

��



4 DATASETS
We study these methods and compare them to randomization-based

approaches on four real-world, public datasets. All results are com-

puted using random 80%/20% train/test splits.

Mexican poverty. Targeted social programs are challenged with

household poverty prediction in order to determine eligibility [13].

This dataset is extracted from the Mexican household survey 2016,

which contains ground-truth household poverty levels, as well

as a series of visible household features on which inferences are

based. The dataset comprises a sample of 70,305 households in

Mexico, with 183 categorical and continuous features, related to

households’ observable attributes and other socio-demographic

features. Classification is binary according to the country’s official

poverty line, with 36% of the households having the label poor. We

study fairness across groups defined by a) young and old families,

split by the mean (where 53% are young), and b) across families

living in urban and rural areas (where 64% are urban).

Adult income. The Adult Dataset from UCI Machine Learning

Repository [17] comprises 14 demographic and occupational at-

tributes for 49,000 individuals, with the goal of classifying whether

a person’s income is above $50,000 (25% above), and using ethnicity

(whites v. non-whites) as sensitive attribute (86% white).

German credit. The German Credit dataset from UCI Machine

Learning Repository consists of 1000 instances, of which 70% corre-

spond to credit-worthy applicants and 30% correspond to applicants

to whom credit should not be extended. Each applicant is described

by 24 attributes. The sensitive attribute describes whether people

are below or above the mean age (60% is below).

Heart health prediction. The Heart Dataset from the UCI Ma-

chine Learning Repository contains 17 features from 906 adults.

The target is to accurately predict whether or not an individual has

a heart condition (54% has heart condition). The sensitive attribute

is whether people are below or above the mean age (46% is below).

5 ACHIEVING EQUAL OPPORTUNITY &
CALIBRATION

This section demonstrates how an active strategy with group-level

budgets can be used to achieve calibration and single error par-

ity, resulting in a higher efficiency and without resorting to naive

randomization.

We follow [21] and study predictive performance in terms of the

generalized false positive (GFPR) and false negative rates (GFNR),

appropriate for contexts where risk scores themselves are the out-

puts of the algorithm (as opposed to fully automated classification).

We aim at designing classifiers that satisfy calibration and error

parity. As shown by [16], the GFNR and GFPR of all calibrated

classifiers for a given group A fall along the straight line with slope

(1 − µA)/µA, where µA = P(Y = 1|A) is A’s base-rate, and origin in

the perfect classifier with (GFPR,GFNR) = (0, 0).
Panels A and D in Figure 1 show the space of calibrated classifiers

achievable by naive randomization (method in [21]), for theMexican
poverty and adult income datasets described in Section 4. These

replicate results from [21], showing how naive randomization of

individuals in the advantaged group can, by eroding prediction

performance, achieve calibration as well as either parity in false

positives, parity in false negatives (but not both), or an equal cost
generalization.

Similarly, panels B and E in Figure 1 demonstrate how calibration

and either of the three parity objectives can be achieved by adjust-

ing information budgets according to the groups’ needs, without

resorting to naive randomization. Moreover, the right column in Fig-

ure 1 shows that classifiers with group-level budgets achieve these

fairness goals with much higher efficiency in terms of information

cost. In particular, we set an overall information budget restriction

for both types of classifiers, equal to the minimum budget required

by the naive random classifier to achieve equal opportunity. It is
observed in panels C and F that the classifiers with group-level

budgets Pareto-dominate random classifiers by a wide margin, on

both datasets, i.e.: for the same information budget, both population

subgroups are better off, being exposed to substantially lower false

positive and false negative errors.

6 ACHIEVING EQUAL ODDS
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Figure 2: Achieving parity in false positives and false nega-
tives (equal odds) via group-level information budgets. Re-
sults correspond to the Mexican poverty dataset. Achiev-
able regions of classifiers for each population subgroup are
plotted in blue and yellow. The outer and inner FPR-FNR
curves of each achievable region correspond to classifiers us-
ing maximum and minimum information budgets. Points
along the curve correspond to different values of the de-
cision threshold. It is observed that active classifiers with
group-level budgets achieve parity in both FNR and FPR
(equal odds). Moreover, they provide equal odds solutions
anywhere on the overlap of the achievable regions for both
subgroups and thus along the entire FNR-FPR trade-off.

This section shows how activemethodswith group- and individual-

level information budgets can be used to achieve parity in false

positives and false negatives.

Figure 2 illustrates the achievable regions in FPR-FNR space for

classifiers with group-level information budgets, for two groups in

the Mexican poverty data. It’s observed that urban households are

more predictable than rural ones (achievable regions closer to the
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Figure 3: Achievable space of equal odds classifiers. Comparison of active classifiers with group-level (green) and individual-
level (yellow) information budgets, and naive randomization (blue) [11]. Classifiers are constrained by an information budget
¯b ≤ bmax . Figure A corresponds toMexican poverty, B toGerman credit and C toHeart health under different budget constraints.
It is observed that active classifiers yield equal odds solutions along the FPR-FNR trade-off,without resorting to randomization.
Moreover, in budget-constraint settings, the active classifiers are substantially more information-efficient. The individual-
level budget Pareto-dominates the group-level classifiers which in turn dominate randomized classifiers.

origin). The yellow and purple areas comprise the achievable re-

gions for urban and rural groups. A substantial overlap is observed,

showing a wide-ranged achievable region for equal odds.
In a similar way, we can obtain the achievable region of active

classifiers with individual-level information budgets, by varying

parameters αl < αu ∈ [0, 1] of Algorithm 1 (see Section 3).

We ran experiments to compare the three methods—naive ran-

domization (as in [11]), group-level budgets, and individual-level

budgets—and their performance in achieving equal odds solutions
along the FNR-FPR trade-off. In particular, we introduce an informa-

tion budget constraint
¯b = 1

n
∑
i bi < bmax , and compare solution

sets that satisfy it. Solutions of individual- and group-level classi-

fiers are discrete, due to finite samples and feature dimensionality.

Figure 3 shows results for three different information budgets

bmax on three different real-world datasets: Mexican poverty, Ger-
man credit, and Heart health datasets. We left out the Adult Income
dataset used in Fig. 1 since there exists no overlap between achiev-

able regions for both subgroups and therefore we cannot achieve

equal odds. Points in the FNR-FPR space were filtered to include

only classifier designs that satisfied equal odds and an overall infor-

mation budget constraint bmax .

It is observed that both group-level and individual-level strate-

gies yield equal odds solutions, covering a wide range along the

FNR-FPR trade-off curve, and without resorting to naive random-

ization. Moreover, it is shown that both type of active classifiers

are substantially more information-efficient than the randomized

classifier—Pareto dominance along most of the FNR-FPR trade-off

curve—leading to lower false positive and false negative errors in

budget-constrained environments. Finally, active classifiers with

individual-level budgets tend to dominate classifiers with group-

level budgets, due to their more efficient use of information by

means of personalized inquiry.

7 CONCLUSIONS
We have proposed and demonstrated methods for simultaneously

achieving equal opportunity and calibration, as well as for achieving

equal odds. In contrast to prior work, the active framework does not

rely on naive randomization to reach these fairness notions, avoid-

ing several known disadvantages of randomized approaches. In-

stead, a decision-maker acquires partial information sets according

to the needs of different groups or individuals, allocating resources

equitably in order to achieve balance in predictive performance. By

leveraging this additional degree of freedom, active approaches can

outperform randomization-based classifiers previously considered

optimal. Moreover, classifiers with individual-level budgets domi-

nated their group-level counterparts. Finally, the extent to which

the former can reduce intra-group unfairness is a relevant question

left to future work.

More broadly, this work illustrates how, by jointly considering in-

formation collection, inference, and decision-making processes, we

can design automated decision systems that more flexibly optimize

social objectives, including fairness, accuracy, efficiency, and pri-

vacy. A natural direction for future work is to consider richer utility

functions relevant to real-world decision systems. We expect future

studies that generalize the results presented here to contexts with

varying feature costs; as well as to contexts with multi-stakeholder

value functions, where the opportunity, privacy, andmonetary costs

that inquiry and decision-making bring to decision-subjects are

jointly considered as part of the adaptive inquiry process.

Lastly, a relevant path forward is to allow observations with

partial feature sets both during training and test phases. The cur-

rent implementation of this work necessitates access to full-feature

observations at training time. More efficient training and further

model refinement could be achieved under schemes that can learn

from partial feature vectors, or proactively collect features at train-

ing time; allowing to incorporate a wider set of features tailored to

increase prediction accuracy over different types of individuals.
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